Home
Notes
Traductions & Res.
eStudio
Vielbein
Latest notes...
Some notes on Relativity and other arguments
Einstein - Autobiographical Sketch
<p style="text-align: justify;">Nell'agosto del 1954 Einstein fu invitato a scrivere una breve Autobiografia scientifica in occasione dei 100 anni del Politecnico di Zurigo (ETH). Einstein inviò l'articolo a solo due settimane dalla morte avvenuta nel 1955. Qui di seguito riportiamo il contributo in inglese:</p> <p style="text-align: justify;">In 1895, aged sixteen, I arrived in Zurich from Italy after spending a year at my parents’ home in Milan without attending school or having any tuition at all. My goal was admission to the Polytechnic, but I had no clear idea for achieving it. I was a headstrong yet modest young person who had acquired the pertinent elements of his patchy knowledge mostly by studying on his own. While I was keen to delve deeper, I lacked the talent for absorbing knowledge and was hampered by a bad memory, so university studies seemed far from easy to me. I was right to feel hesitant as I registered for the entrance examination in the engineering department. Although the examination made me painfully aware of the gaps in my education, the examiners were patient and understanding. My failure seemed completely justified, but it was comforting that the physicist H. F. Weber let me know I could attend his lectures if I stayed in Zurich. Meanwhile the rector, Professor Albin Herzog, recommended me to the cantonal school in Aarau, where I studied for a year and received my high school graduation certificate. This school, with its liberal spirit and the unpretentious, serious attitude of the teachers, who relied on their own judgment rather than any outside authority, made a lasting impression on me. Comparing this with my six years of education at a German high school run by authoritarian methods made me acutely aware that it is far better to teach people to act freely and on their own responsibility than to educate them on principles of military drill, external authority, and ambition. Genuine democracy is not an empty illusion. During the year in Aarau, the following question occurred to me: If one chases a light wave at the speed of light one would arrive at a time-independent wave field. But nothing like that really seems to exist! This was the first childlike experiment in thinking about special relativity theory. Innovation itself is not the result of logical thought, even though the end product is tied to a logical structure.</p> <p style="text-align: justify;">From 1896 to 1900 I studied at the specialist teachers’ department at the Federal Polytechnic. Before long I realized that I had to be content with being an average student. To be a good student you must be able to grasp things easily; you must be willing to concentrate your energies on everything you are told in the lectures; you must enjoy writing down everything presented in the lectures in an orderly fashion and working on it conscientiously. Regretfully, I realized that I fundamentally lacked all these qualities. This meant that I gradually learned to live in peace with a degree of bad conscience and to organize my studies to suit my intellectual tastes and my own interests. I followed some of the lectures with interest and excitement. Otherwise, I often skipped classes and studied the masters of theoretical physics at home with a divine zeal. This was a good thing in itself and soothed my bad conscience so effectively that I avoided any serious emotional upsets. I resumed my earlier habit of long private study sessions, in which I was joined by a Serbian student, Mileva Marić, whom I later married. At the same time, I worked zealously and passionately in Professor H. F. Weber’s physics laboratory. I was also fascinated by Professor Geiser’s lectures on infinitesimal geometry, which were veritable masterpieces of the art of education and proved very helpful later when I was wrestling with the general theory of relativity. Aside from this, higher mathematics was of little interest to me during my university studies. I mistakenly believed that this was such a widespread and diffuse territory that one could easily waste all one’s energy in a remote province. In my innocence I thought it was enough for a physicist to have grasped the elementary mathematical concepts clearly and to be able to use them readily, and that everything else involved subtleties that were unproductive for physicists—an error I regretfully realized only later. Evidently I lacked sufficient mathematical talent to be able to distinguish between central, fundamental matters and peripheral things of no major importance.</p> <p style="text-align: justify;">In my university days I became close friends with a fellow student, Marcel Grossmann. I had a regular weekly date with him in Café Metropol on Limmatquai, and we talked not only about our studies but also about everything else of possible interest to curious, open-minded young people. Unlike me, he was not a vagabond and a loner type; he was someone who was deeply rooted in his Swiss surroundings yet never lost his innate independence. He was also richly endowed with all the gifts I lacked: he was quick to grasp things and orderly in every sense. He attended all the lectures that interested us, and his work on them was so excellent that his notebooks were eminently fit for publication. He lent me those notebooks to prepare for the examinations, and they were like a life belt for me. I do not care to speculate how things would have turned out for me without them.</p> <p style="text-align: justify;">Even with this invaluable help, and although the subjects discussed in our lectures were intrinsically interesting, I still had to struggle to overcome my reluctance to learn all these things thoroughly. Academic studies are not necessarily beneficial for withdrawn, contemplative people like myself. Constantly being forced to eat so many good things can ruin your appetite and give you bellyache. It can extinguish the delicate light of divine curiosity forever. Fortunately, in my case my studies ended well, and this intellectual depression lasted only a year after I finished university.</p> <p style="text-align: justify;">The best thing Marcel Grossmann ever did for me as a friend happened around a year after I finished studying. With his father’s help he recommended me to the director of the Swiss Patent Office, which was still called the Office of Intellectual Property in those days. After an extensive interview Mr. Haller gave me a job there. This relieved me of existential pressures during the years when I produced my best work. Aside from this, working to evaluate technical patent applications was a real blessing for me. It compelled me to think in many different ways and provided important stimuli for my thinking about physics. A practical profession is ultimately a blessing for people like myself. An academic career puts a young person into a coercive situation in which he is compelled to produce impressive quantities of scientific papers, and this creates a temptation to superficiality that only strong-minded characters can resist. What is more, in most practical professions an averagely gifted person can perform according to expectations. His life in society is not dependent on any special intellectual discoveries. If his scientific interests go deeper, he can get immersed in his favorite problems alongside his usual work obligations. He has no need to worry that his efforts might fail to yield results. Thanks to Marcel Grossmann, I was now in this fortunate position.</p> <p style="text-align: justify;">Among the scientific experiences of those happy years in Bern I shall mention one in particular, which turned out to be the most fruitful idea of my life. The theory of special relativity was already a few years old. The question was whether the principle of relativity was limited to inertial systems, that is, coordinate systems that move in a straight line at constant velocity relative to each other (linear coordinate transformations). On a formal level one would instinctively say, “Probably not!” Yet the foundation of every kind of mechanics until then—the principle of inertia—seemed to exclude any extension of the principle of relativity. In fact, if one introduces an accelerated coordinate system (relative to an inertial system), an “isolated” mass point no longer moves uniformly and in a straight line in relation to it. At this juncture, a mind not bound by narrow thinking habits would have asked, “Does this type of motion offer me a means of differentiating between an inertial and a non-inertial system?” The untrammeled mind would have necessarily have answered negatively (at least in the case of uniform acceleration in a straight line). For one could also interpret the mechanical behavior of bodies relative to such an accelerated coordinate system as the effect of a gravitational field; this is possible by virtue of the empirical fact that in a gravitational field, too, the acceleration of bodies is always the same, independent of their nature. This insight (the equivalence principle) not only made it probable that the natural laws must be invariant with respect to a universal group of transformations corresponding to the group of Lorentz transformations (extension of the principle of relativity), but also that this extension would lead to an advanced theory of the gravitational field. I had not the least doubt that this idea was correct in principle. But it seemed nearly impossible to establish this conclusively. To begin with, there were elementary considerations that the transition to a further group of transformations is not compatible with a direct physical interpretation of the space-time coordinates that had prepared the ground for special relativity theory. Moreover, at first it was hard to see how to choose the extended group of transformations. In fact, I arrived at the equivalence principle by way of a detour that is beyond the scope of the present account.</p> <p style="text-align: justify;">This problem occupied me continuously all through the period 1909–1912, while I was engaged in teaching theoretical physics at the universities of Zurich and Prague. By 1912, when I was appointed as a professor at Zurich Polytechnic, I had come much closer to solving the problem. Hermann Minkowski’s analysis of the formal foundations of special relativity theory emerged as an important factor here. It can be summarized in the sentence: Four-dimensional space has an (invariant) pseudo-Euclidean metrics; this determines the experimentally verifiable metrical characteristics of the space as well as the inertia principle and, moreover, the form of Lorentz-invariant equivalence systems. This space contains preferred, namely, quasi-Cartesian coordinate systems, which are the only “natural” ones here (inertial systems).</p> <p style="text-align: justify;">The equivalence principle leads us to introduce nonlinear coordinate transformations into this type of space, that is, non-Cartesian (“curvilinear”) coordinates. In this case, the pseudo-Euclidean metrics assumes the universal form:</p> <p style="text-align: center;"><img title="ds^2=\Sigma g_{ik}dx_idx_k" src="http://latex.codecogs.com/gif.latex?ds^2=\Sigma&space;g_{ik}dx_idx_k" /></p> <p style="text-align: justify;">summed over the indices i and k (which take values from 1–4). These g functions are then functions of the four coordinates that, according to the equivalence principle, describe not only the metrics but also the gravitational field. The latter has a very special quality, of course; as we know, it can be transformed into the special form</p> <p style="text-align: center;"><img title="-dx_1^2-dx_2^2-dx_3^2+dx_4^2" src="http://latex.codecogs.com/gif.latex?-dx_1^2-dx_2^2-dx_3^2+dx_4^2" /></p> <p style="text-align: justify;">that is, a form in which the gik functions are independent of the coordinates. In this case, it can be “transformed away” by the gik-defined gravitational field. In the latter special form, the inertial motion of isolated bodies is expressed by a (timelike) straight line. In the universal form, it is expressed by the “geodetic line.”</p> <p style="text-align: justify;">Although this formulation still derived from the case of pseudo-Euclidean space, it clearly showed how the transition to gravitational fields of a general type was to be achieved. Here, too, the gravitational field can be described by a type of metrics, that is, by a symmetrical tensor field, gik. The generalization merely consists in leaving out the precondition that this field can be transformed into a pseudo-Euclidean one simply by transforming the coordinates.</p> <p style="text-align: justify;">This solution reduced the problem of gravitation to a purely mathematical one. Are there differential equations for the gik functions that are invariant with respect to nonlinear coordinate transformations? Such differential equations, and only such, would come into consideration as field equations of the gravitational field. The law of motion of material points was then given by the equation of the geodetic line.</p> <p style="text-align: justify;">It was with this problem in mind that I went to see my old friend from university, Marcel Grossmann, in 1912. By then he had become a professor of mathematics at the Swiss Federal Polytechnic. He caught on to the problem right away, even though as a true mathematician he had a rather skeptical attitude toward physics. In our student days when we used to discuss ideas over coffee, he once made such a lovely characteristic remark that I cannot resist quoting it: “I must admit that studying physics has actually benefited me considerably. Before, when I sat down on a chair that felt a bit warm from the person who had occupied it previously, I used to feel rather uncomfortable. This feeling has completely gone now, because physics has taught me that the heat is something totally impersonal.”</p> <p style="text-align: justify;">In the event, he was fully prepared to collaborate on the problem with me, but only on condition that he would not have to take responsibility for any claims and interpretations related to physics. He checked out the literature and soon discovered that the mathematical problem in question was already solved, in particular by Riemann, Ricci, and Levi-Civita. The whole development connected up with the theory of the Gaussian curvature, which systematically used generalized coordinates for the first time. Riemann’s achievement was the greatest. He showed that tensors of second-order covariant differentiation could be formed out of the field of gik tensors. This revealed what the gravitational field. equations must look like—under the condition that invariance is required with respect to the group of all continuous coordinate transformations. It was, however, not very easy to see that this condition was justified, especially as I believed I had found arguments against it. This reservation, which eventually turned out to be mistaken, resulted in the theory only appearing in its final form for the first time in 1916.</p> <p style="text-align: justify;">While I was avidly working with my old friend, none of us dreamed that this outstanding man would be carried off by a pernicious illness far too early. It was the urge to express my gratitude to Marcel Grossmann at least once in my lifetime that prompted me to write this rather slapdash autobiographical note.</p> <p style="text-align: justify;">Forty years have passed since the theory of gravitation was completed. Those years were almost entirely devoted to efforts to develop a unified field theory that could form a foundation for the whole of physics by generalizing from gravitational field theory. Many people worked toward the same goal. I investigated several seemingly promising approaches and subsequently discarded them. But the past ten years finally led to a theory that seems natural and promising to me. Still, I have not been able to convince myself about whether I should regard this theory as valuable for physics or not. This is fundamentally due to mathematical difficulties that are insurmountable for the time being, like those, incidentally, that arise in the use of any nonlinear field theory. Moreover, it seems doubtful altogether whether a field theory can properly account for the atomistic structure of matter and radiation as well as of quantum phenomena. Most physicists would immediately answer “no,” because they believe that the quantum problem has been solved in principle in another way. Be that as it may, we should take comfort from Lessing’s dictum that the search for truth is more precious than its possession.</p> <p style="text-align: justify;"> </p>