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1. INTRODUCTION

The advent of the special theory of relativity in 1905 brought many problems for the
physics community. One, it seemed, would not be a great source of trouble. It was the
problem of reconciling Newtonian gravitation theory with the new theory of space
and time. Indeed it seemed that Newtonian theory could be rendered compatible with
special relativity by any number of small modifications, each of which would be
unlikely to lead to any significant deviations from the empirically testable conse-
quences of Newtonian theory.
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 Einstein’s response to this problem is now legend. He
decided almost immediately to abandon the search for a Lorentz covariant gravitation
theory, for he had failed to construct such a theory that was compatible with the
equality of inertial and gravitational mass. Positing what he later called the principle
of equivalence, he decided that gravitation theory held the key to repairing what he
perceived as the defect of the special theory of relativity—its relativity principle
failed to apply to accelerated motion. He advanced a novel gravitation theory in
which the gravitational potential was the now variable speed of light and in which
special relativity held only as a limiting case.

It is almost impossible for modern readers to view this story with their vision
unclouded by the knowledge that Einstein’s fantastic 1907 speculations would lead to
his greatest scientific success, the general theory of relativity. Yet, as we shall see, in

 

1 In the historical period under consideration, there was no single label for a gravitation theory compat-
ible with special relativity. The Einstein of 1907 would have talked of the compatibility of gravitation
and the 

 

principle

 

 of relativity, since he then tended to use the term “principle of relativity” where we
would now use “theory of relativity”. See (CPAE 2, 254). Minkowski (1908, 90) however, talked of
reform “in accordance with the world postulate.” Nordström (1912, 1126), like Einstein, spoke of
“adapting ... the theory of gravitation to the principle of relativity” or (Nordström 1913, 872) of “treat-
ing gravitational phenomena from the standpoint of the theory of relativity,” emphasizing in both
cases that he planned to do so retaining the constancy of the speed of light in order to distinguish his
work from Einstein’s and Abraham’s. For clarity I shall describe gravitation theories compatible with
special relativity by the old-fashioned but still anachronistic label “Lorentz covariant.” It describes
exactly the goal of research, a gravitation theory whose equations are covariant under Lorentz trans-
formation. For a simplified presentation of the material in this chapter, see also (Norton 1993).
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1907 Einstein had only the slenderest of grounds for judging all Lorentz covariant
gravitation theories unacceptable. His 1907 judgement was clearly overly hasty. It
was found quite soon that one could construct Lorentz covariant gravitation theories
satisfying the equality of inertial and gravitational mass without great difficulty.
Nonetheless we now do believe that Einstein was right in so far as a thorough pursuit
of Lorentz covariant gravitation theories does lead us inexorably to abandon special
relativity. In the picturesque wording of Misner et al. (1973, Ch.7) “gravity bursts out
of special relativity.”

These facts raise some interesting questions. As Einstein sped towards his general
theory of relativity in the period 1907–1915 did he reassess his original, hasty 1907
judgement of the inadequacy of Lorentz covariant gravitation theories? In particular,
what of the most naturally suggested Lorentz covariant gravitation theory, one in
which the gravitational field was represented by a scalar field and the differential
operators of the Newtonian theory were replaced by their Lorentz covariant counter-
parts? Where does this theory lead? Did the Einstein of the early 1910s have good
reason to expect that developing this theory would lead outside special relativity?

This paper provides the answers to these questions. They arise in circumstances
surrounding a gravitation theory, developed in 1912–1914, by the Finnish physicist
Gunnar Nordström. It was one of a number of more conservative gravitation theories
advanced during this period. Nordström advanced this most conservative scalar,
Lorentz covariant gravitation theory and developed it so that it incorporated the
equality of inertial and gravitation mass. It turned out that even in this most conserva-
tive approach, odd things happened to space and time. In particular, the lengths of
rods and the rates of clocks turn out to be affected by the gravitational field, so that
the spaces and times of the theory’s background Minkowski spacetime ceased to be
directly measurable. The 

 

dénouement

 

 of the story came in early 1914. It was shown
that this conservative path led to the same sort of gravitation theory as did Einstein’s
more extravagant speculations on generalizing the principle of relativity. It lead to a
theory, akin to general relativity, in which gravitation was incorporated into a dynam-
ical spacetime background. If one abandoned the inaccessible background of
Minkowski spacetime and simply assumed that the spacetime of the theory was the
one revealed by idealized rod and clock measurements, then it turned out that the
gravitation theory was actually the theory of a spacetime that was only conformally
flat—gravitation had burst out of special relativity. Most strikingly the theory’s gravi-
tational field equation was an equation strongly reminiscent to modern readers of the
field equations of general relativity:

where  is the Riemann curvature scalar and  the trace of the stress-energy tensor.
This equation was revealed before Einstein had advanced the generally covariant field
equations of general relativity, at a time in which he believed that no such field equa-
tions could be physically acceptable.

What makes the story especially interesting are the two leading players other than
Nordström. The first was Einstein himself. He was in continued contact with Nord-
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ström during the period in which the Nordström theory was developed. We shall see
that the theory actually evolved through a continued exchange between them, with
Einstein often supplying ideas decisive to the development of the theory. Thus the
theory might more accurately be called the “Einstein-Nordström theory.” Again it
was Einstein in collaboration with Adriaan Fokker who revealed in early 1914 the
connection between the theory and conformally flat spacetimes.

The second leading player other than Nordström was not a person but a branch of
special relativity, the relativistic mechanics of stressed bodies. This study was under
intensive development at this time and had proven to be a locus of remarkably non-
classical results. For example it turned out that a moving body would acquire addi-
tional energy, inertia and momentum simply by being subjected to stresses, even if
the stresses did not elastically deform the body. The latest results of these studies—
most notably those of Laue—provided Einstein and Nordström with the means of
incorporating the equality of inertial and gravitational mass into their theory. It was
also the analysis of stressed bodies within the theory that led directly to the conclu-
sion that even idealized rods and clocks could not measure the background
Minkowski spacetime directly but must be affected by the gravitational field. For Ein-
stein and Nordström concluded that a body would also acquire a gravitational mass if
subjected to non-deforming stresses and that one had to assume that such a body
would alter its size in moving through the gravitational field on pain of violating the
law of conservation of energy.

Finally we shall see that the requirement of equality of inertial and gravitational
mass is a persistent theme of Einstein’s and Nordström’s work. However the require-
ment proves somewhat elastic with both Einstein and Nordström drifting between
conflicting versions of it. It will be convenient to prepare the reader by collecting and
stating the relevant versions here. On the observational level, the equality could be
taken as requiring:

• Uniqueness of free fall:
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 The trajectories of free fall of all bodies are independent
of their internal constitution.

Einstein preferred a more restrictive version:

• Independence of vertical acceleration: The vertical acceleration of bodies in free
fall is independent of their constitutions and horizontal velocities.

In attempting to devise theories compatible with these observational requirements,
Einstein and Nordström considered requiring equality of gravitational mass with

• inertial rest mass

• the inertial mass of closed systems

• the inertial mass of complete static systems

• the inertial mass of a a complete stationary systems
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2 This name is drawn from (Misner et al. 1973, 1050).
3 The notions of complete static and complete stationary systems arise in the context of the mechanics

of stressed bodies and are discussed in Sections 9 and 12 below.
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More often than not these theoretical requirements failed to bring about the desired
observational consequences. Unfortunately it is often unclear precisely which
requirement is intended when the equality of inertial and gravitational mass was
invoked.

2. THE PROBLEM OF GRAVITATION IMMEDIATELY AFTER 1905

In the years immediately following 1905 it was hard to see that there would be any
special problem in modifying Newtonian gravitation theory in order to bring it into
accord with the special theory of relativity. The problem was not whether it could be
done, but how to choose the best of the many possibilities perceived, given the expec-
tation that relativistic corrections to Newtonian theory might not have measurable
consequences even in the very sensitive domain of planetary astronomy. Poincaré
(1905, 1507–1508;1906, 166–75), for example, had addressed the problem in his cel-
ebrated papers on the dynamics of the electron. He limited himself to seeking an
expression for the gravitational force of attraction between two masses that would be
Lorentz covariant
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 and would yield the Newtonian limit for bodies at rest. Since this
failed to specify a unique result he applied further constraints including the require-
ment
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 of minimal deviations from Newtonian theory for bodies with small velocities,
in order to preserve the Newtonian successes in astronomy. The resulting law,
Poincaré noted, was not unique and he indicated how variants consistent with its con-
straints could be derived by modifying the terms of the original law.

Minkowski (1908, 401–404; 1909, 443–4) also sought a relativistic generalization
of the Newtonian expression for the gravitational force acting between two bodies. His
analysis was simpler than Poincaré’s since merely stating his law in terms of the geo-
metric structures of his four dimensional spacetime was sufficient to guarantee auto-
matic compatibility with special relativity. Where Poincaré (1905, 1508; 1906, 175)
had merely noted his expectation that the deviations from Newtonian astronomical
prediction introduced by relativistic corrections would be small, Minkowski (1908,
404) computed the deviations due to his law for planetary motions and concluded that
they were so small that they allowed no decision to be made concerning the law.

Presumably neither Poincaré nor Minkowski were seeking a fundamental theory
of gravitation, for they both considered action-at-a-distance laws at a time when field
theories were dominant. Rather the point was to make

 

 plausible
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 the idea that some
slight modification of Newtonian gravitational law was all that was necessary to bring
it into accord with special relativity, even if precise determination of that modifica-
tion was beyond the reach of the current state of observational astronomy.

 

4 More precisely he required that the law governing propagation of gravitational action be Lorentz
covariant and that the gravitational forces transform in the same way as electromagnetic forces.

5 Also he required that gravitational action propagate forward in time from a given body.
6 The word is Minkowski’s. He introduced his treatment of gravitation (Minkowski 1908, 401) with the

remark “I would not like to fail to make it plausible that nothing in the phenomena of gravitation can
be expected to contradict the assumption of the postulate of relativity.”
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3. EINSTEIN’S 1907 REJECTION OF LORENTZ
COVARIANT GRAVITATION THEORIES

In 1907 Einstein’s attention was focussed on the problem of gravitation and relativity
theory when he agreed to write a review article on relativity theory for Johannes Stark’s

 

Jahrbuch der Radioaktivität und Elektronik

 

. The relevant parts of the review article
(Einstein 1907a, 414; Section V, 454–62) say nothing of the possibility of a Lorentz
covariant gravitation theory. Rather Einstein speculates immediately on the possibility
of extending the principle of relativity to accelerated motion. He suggests the relevance
of gravitation to this possibility and posits what is later called the principle of equiva-
lence as the first step towards the complete extension of the principle of relativity.

It is only through later reminiscences that we know something of the circum-
stances leading to these conclusions. The most informative are given over 25 years
later in 1933 when Einstein gave a sketch of his pathway to general relativity.
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 In it
he wrote (Einstein 1933, 286–87):

 

I came a step nearer to the solution of the problem [of extending the principle of relativ-
ity] when I attempted to deal with law of gravity within the framework of the special the-
ory of relativity. Like most writers at the time, I tried to frame a 

 

field-law

 

 for gravitation,
since it was no longer possible, at least in any natural way, to introduce direct action at a
distance owing to the abolition of the notion of absolute simultaneity.

The simplest thing was, of course, to retain the Laplacian scalar potential of gravity, and
to complete the equation of Poisson in an obvious way by a term differentiated with
respect to time in such a way that the special theory of relativity was satisfied. The law of
motion of the mass point in a gravitational field had also to be adapted to the special the-
ory of relativity. The path was not so unmistakably marked out here, since the inert mass
of a body might depend on the gravitational potential. In fact this was to be expected on
account of the principle of the inertia of energy.

 

While Einstein’s verbal description is brief, the type of gravitation theory he alludes
to is not too hard to reconstruct. In Newtonian gravitation theory, with a scalar poten-
tial  mass density  and  the gravitation constant, the gravitational field equa-
tion—the “equation of Poisson”— is
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(1)

The force 

 

f

 

, with components  on a point mass  is given by  so
that 

(2)

 

7 A similar account is given more briefly in (Einstein 1949, 58–63).
8  are the usual spatial Cartesian coordinates. The index  ranges over 1, 2, 3.

Here and henceforth, summation over repeated indices is implied.

φ, ρ G

x y z, ,( ) x1 x2 x3, ,( )= i

 2φ∇ ∂2

∂x2
-------- ∂2

∂y2
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  φ ∂2φ
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f i m
dvi
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is the law of motion of a point mass  with velocity  in the gravitational
field 

The adaptation of (1) to special relativity is most straightforward. The added term,
differentiated with respect to the time coordinate, converts the Laplacian operator 
into a Lorentz covariant d’ Alembertian  so that the field equation alluded to by
Einstein would be

(3)

For consistency  is assumed to be Lorentz invariant and the mass density  must be
replaced with a Lorentz invariant, such as the rest mass density  used here.

The modification to the law of motion of a point mass is less clear. The natural
Lorentz covariant extension of (2) is most obvious if we adopt the four dimensional
spacetime methods introduced by Minkowski (1908). Einstein could not have been
using these methods in 1907. However I shall write the natural extension here since
Einstein gives us little other guide to the form of the equation he considered, since the
properties of this equation fit exactly with Einstein’s further remarks and since this
equation will lead us directly to Nordström’s work. The extension of (2) is

(4)

where  is the four force on a point mass with rest mass  is its
four velocity,

 

 

 

 is the proper time and 
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 Following the practice of
Nordström’s papers, the coordinates are  for 
the speed of light.

Simple as this extension is, it turns out to be incompatible with the kinematics of
a Minkowski spacetime. In a Minkowski spacetime, the constancy of  entails that
the four velocity  along a world line is orthogonal to the four acceleration

 For we have  so that  and the orthogonal-
ity now follows from the constancy of 

(5)

(4) and (5) together entail

 

9 Throughout this paper, Latin indices  range over 1, 2, 3 and Greek indices

 

 

 

 range over
1, 2, 3, 4.
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so that the law (4) can only obtain in a Minkowski spacetime in the extremely narrow
case in which the field  is constant along the world line of the particle, i.e.

(6)

We shall see below that one escape from this problem published by Nordström
involves allowing the rest mass  to be a function of the potential  Perhaps this is
what Einstein referred to above when he noted of the law of motion that the “path
was not so unmistakably marked out here, since the inert mass of a body might
depend on the gravitational potential.”

Whatever the precise form of the modifications Einstein made, he was clearly
unhappy with the outcome. Continuing his recollections, he noted:

These investigations, however, led to a result which raised my strong suspicions. Accord-
ing to classical mechanics, the vertical acceleration of a body in the vertical gravitational
field is independent of the horizontal component of its velocity. Hence in such a gravita-
tional field the vertical acceleration of a mechanical system or of its center of gravity
works out independently of its internal kinetic energy. But in the theory I advanced, the
acceleration of a falling body was not independent of its horizontal velocity or the inter-
nal energy of the system.

The result Einstein mentions here is readily recoverable from the law of motion (4) in
a special case in which it is compatible with the identity (5). The result has more gen-
eral applicability, however. The modifications introduced by Nordström to render (4)
compatible with (5) vanish in this special case, as would, presumably, other natural
modifications that Einstein may have entertained. So this special case is also a special
case of these more generally applicable laws.

We consider a coordinate system in which:

(i) the field is time independent  at some event and

(ii) the motion of a point mass m in free fall at that event is such that the “vertical”
direction of the field, as given by the acceleration three vector , is perpen-
dicular to the three velocity  so that

(7)

and the point’s motion is momentarily “horizontal.”

Condition (7) greatly simplifies the analysis, since it entails that the  derivative of
any function of  vanishes, so that we have

(8)

Notice also that in this case (7) entails that  so that

φ

dφ
dτ
------ 0.=

m φ.

∂φ/∂t 0=( )

dvi/dt
vi,
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dvi
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-------⋅ 0=

t
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d
dt
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dτ
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dt
----- 1

1 v2

c2
-----–
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 
 
 
 
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vi
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and (6) and then also (5) are satisfied for this special case. Finally an expression for
the acceleration of the point mass now follows directly from (4) and is10

(9)

According to (9), the greater the horizontal velocity  the less the vertical acceleration,
so that this acceleration is dependent on the horizontal velocity as Einstein claimed.

Einstein also claims in his remarks that the vertical acceleration would not be
independent of the internal energy of the falling system. This result is suggested by
equation (9), which tells us that the vertical acceleration of a point mass diminishes
with its kinetic energy if the velocity generating that kinetic energy is horizontally
directed. If we apply this result to the particles of a kinetic gas, we infer that in general
each individual particle will fall slower the greater its velocity. Presumably this result
applies to the whole system of a kinetic gas so that the gas falls slower the greater the
kinetic energy of its particles, that is, the greater its internal energy. This example of a
kinetic gas was precisely the one given by Einstein in an informal lecture on
April 14, 1954 in Princeton according to lecture notes taken by J. A. Wheeler.11

Einstein continued his recollections by explaining that he felt these results so con-
tradicted experience that he abandoned the search for a Lorentz covariant gravitation
theory.

This did not fit with the old experimental fact that all bodies have the same acceleration
in a gravitational field. This law, which may also be formulated as the law of the equality
of inertial and gravitational mass, was now brought home to me in all its significance. I
was in the highest degree amazed at its existence and guessed that in it must lie the key to
a deeper understanding of inertia and gravitation. I had no serious doubts about its strict
validity even without knowing the results of the admirable experiments of Eötvos,
which—if my memory is right—I only came to know later. I now abandoned as inade-
quate the attempt to treat the problem of gravitation, in the manner outlined above,
within the framework of the special theory of relativity. It clearly failed to do justice to
the most fundamental property of gravitation.

Einstein then recounted briefly the introduction of the principle of equivalence, upon
which would be based his continued work on gravitation and relativity, and concluded

10 Since  (9) follows directly from (4) using (8).

11 Wheeler’s notes read “I had to write a paper about the content of special relativity. Then I came to the
question how to handle gravity. The object falls with a different acceleration if it is moving than if it is
not moving. ... Thus a gas falls with another acceleration if heated than if not heated. I felt this is not
true ... ” (Wheeler 1979, 188).

dφ
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Such reflections kept me busy from 1908 to 1911, and I attempted to draw special con-
clusions from them, of which I do not propose to speak here. For the moment the one
important thing was the discovery that a reasonable theory of gravitation could only be
hoped for from an extension of the principle of relativity.

Our sources concerning Einstein’s 1907 renunciation of Lorentz covariant gravi-
tation theories are largely later recollections so we should be somewhat wary of them.
Nonetheless they all agree in the essential details:12 Einstein began his attempts to
discover a Lorentz covariant theory of gravitation as a part of his work on his 1907
Jahrbuch review article. He found an inconsistency between these attempts and the
exact equality of inertial and gravitational mass, which he found sufficiently disturb-
ing to lead him to abandon the search for such theories.

We shall see shortly that Einstein’s 1907 evaluation and dismissal of the prospects
of a Lorentz covariant gravitation theory—as reconstructed above—was far too hasty.
Within a few years Einstein himself would play a role in showing that one could con-
struct a Lorentz covariant gravitation theory that was fully compatible with the exact
equality of inertial and gravitational mass. We can understand why Einstein’s 1907
analysis would be hurried, however, once we realize that the he could have devoted
very little time to contemplation of the prospects of a Lorentz covariant gravitation
theory. He accepted the commission of the Jahrbuch’s editor, Stark, to write the
review in a letter of September 25, 1907 (EA 22 333) and the lengthy and completed
article was submitted to the journal on December 4, 1907, a little over two months
later. This period must have been a very busy one for Einstein. As he explained to
Stark in the September 25 letter, he was not well read in the current literature perti-
nent to relativity theory, since the library was closed during his free time. He asked
Stark to send him relevant publications that he might not have seen.13 During this
period, whatever time Einstein could have spent privately contemplating the pros-
pects of a Lorentz covariant gravitation theory would have been multiply diluted.
There were the attractions of the principle of equivalence, whose advent so dazzled
him that he called it the “happiest thought of [his] life”.14 Its exploitation attracted all
the pages of the review article which concern gravitation and in which the prospects
of a Lorentz covariant gravitation theory are not even mentioned. Further diluting his
time would be the demands of the remaining sections of the review article. The sec-
tion devoted to gravitation filled only nine of the article’s fifty two pages. Finally, of

12 See also the 1920 recollections of Einstein on p. 23, “Grundgedanken und Methoden der Rela-
tivitätstheorie in ihrer Entwicklung dargestellt,” unpublished manuscript, control number 2 070,
Duplicate Einstein Archive, Mudd Manuscript Library, Princeton, NJ. (Henceforth “EA 2 070”.) Ein-
stein recalls:
“When, in the year 1907, I was working on a summary essay concerning the special theory of relativ-
ity for the Jahrbuch für Radioaktivität und Elektronik [sic], I had to try to modify Newton’s theory of
gravitation in such a way that it would fit into the theory [of relativity]. Attempts in this direction
showed the possibility of carrying out this enterprise, but they did not satisfy me because they had to
be supported by hypotheses without physical basis.” Translation from (Holton 1975, 369–71).

13 Einstein thanked him for sending papers in a letter of October 4, 1907 (EA, 22 320).
14 In Einstein’s 1920 manuscript (EA 2 070, 23–25).
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course, there were the obligations of his job at the patent office. It is no wonder that
he lamented to Stark in a letter of November 1, 1907, that he worked on the article in
his “unfortunately truly meagerly measured free time” (EA, 22 335).

4. EINSTEIN’S ARGUMENT OF JULY 1912

If the Einstein of 1907 had not probed deeply the prospects of Lorentz covariant
gravitation theories, we might well wonder if he returned to give the problem more
thorough treatment in the years following. We have good reason to believe that as late
as July 1912, Einstein had made no significant advance on his deliberations of
1907.15 Our source is an acrimonious dispute raging at this time between Einstein
and Max Abraham. In language that rarely appeared in the unpolluted pages of Anna-
len der Physik, Abraham (1912c, 1056) accused Einstein’s theory of relativity of hav-
ing “exerted an hypnotic influence especially on the youngest mathematical
physicists which threatened to hamper the healthy development of theoretical phys-
ics.” He rejoiced especially in what he saw as major retractions in Einstein’s latest
papers on relativity and gravitation. Einstein (1911) involved a theory of gravitation
which gave up the constancy of the velocity of light and Einstein (1912a, 1912b) even
dispensed with the requirement of the invariance of the equations of motion under
Lorentz transformation. These concessions, concluded Abraham triumphantly, were
the “death blow” for relativity theory.

Einstein took this attack very seriously. His correspondence from this time, a sim-
ple gauge of the focus of his thoughts, was filled with remarks on Abraham. He
repeatedly condemned Abraham’s (1912a,1912b) new theory of gravitation, which
had adopted Einstein’s idea of a variable speed of light as the gravitational potential.
“A stately beast that lacks three legs,” he wrote scathingly of the theory to Ludwig
Hopf.16 He anticipated the dispute with Abraham with some relish, writing to Hopf
earlier of the coming “difficult ink duel.”17 The public dispute ended fairly quickly,
however, with Einstein publishing a measured and detailed reply (Einstein 1912d)
and then refusing to reply to Abraham’s rejoinder (Abraham 1912d). Instead Einstein
published a short note (Einstein 1912e) indicating that both parties had stated their
views and asking readers not to interpret Einstein’s silence as agreement. Nonethe-
less Einstein continued to hold a high opinion of Abraham as a physicist, lamenting
in a letter to Hopf that Abraham’s theory was “truly superficial, contrary to his [Abra-
ham’s] usual practice.”18

15 This is a little surprising. Einstein had neglected gravitation in 1908–1911, possibly because of his
preoccupation with the problem of quanta. (See Pais (1983, 187–90.)) However he had returned to
gravitation with vigor with his June 1911 submission of Einstein (1911) and by July 1912, the time of
his dispute with Abraham, he had completed at least two more novel papers on the subject, (Einstein
1912a, 1912b), and possibly a third, (Einstein 1912c).

16 Einstein to Ludwig Hopf, 16 August 1912, (EA 13 288).
17 Einstein to Ludwig Hopf, December 1911 (?), (EA 13 282).
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Under these circumstances, Einstein had every incentive to make the best case for
his new work on gravitation. In particular, we would expect Einstein to advance the
best arguments available to him to justify his 1907 judgement of the untenability of
Lorentz covariant gravitation theories, for it was this conclusion that necessitated the
consideration of gravitation theories that went beyond special relativity. What he
included in his response shows us that as late as July 4, 1912—the date of submission
of his response (Einstein 1912d)—his grounds for this judgement had advanced very
little beyond those he recalled having in 1907. He wrote (pp. 1062–63)

One of the most important results of the theory of relativity is the realization that every
energy  possesses an inertia  proportional to it. Since each inertial mass is at the
same time a gravitational mass, as far as our experience goes, we cannot help but ascribe to
each energy  a gravitational mass 19 From this it follows immediately that gravi-
tation acts more strongly on a moving body than on the same body in case it is at rest.

If the gravitational field is to be interpreted in the sense of our current theory of relativity,
this can happen only in two ways. One can conceive of the gravitation vector either as a
four-vector or a six-vector. For each of these two cases there are transformation formulae
for the transition to a uniformly moving reference system. By means of these transforma-
tion formulae and the transformation formulae for ponderomotive forces one can find for
both cases the forces acting on moving material points in a static gravitational field. How-
ever from this one arrives at results which conflict with the consequences mentioned of the
law of the gravitational mass of energy. Therefore it seems that the gravitation vector can-
not be incorporated without contradiction in the scheme of the current theory of relativity.

Einstein’s argument is a fairly minor embellishment of the reflections summarized in
Section 3 above. Einstein has replaced a single theory, embodied in equations such as
(3) and (4), with two general classes of gravitation theory, the four-vector and six-
vector theory. In both classes of gravitation theory, in the case of moving masses,
Einstein claims that the gravitational field fails to act on them in proportion to their
total energy, in effect violating the requirement of equality of inertial and gravita-
tional mass.

18 Einstein to Ludwig Hopf, 12 June 1912, (EA 13 286). Einstein retained his high opinion of Abraham
as a physicist. Late the following year, after his work had advanced into the first sketch of the general
theory of relativity, Einstein conceded to his confidant Besso that “Abraham has the most understand-
ing [of the new theory].” Einstein to Michele Besso, end of 1913, in (Speziali 1972, 50). For further
mention of Abraham in correspondence from this period see Einstein to Heinrich Zangger, 27 January
1912, (EA 39 644); Einstein to Wilhelm Wien, 27 January 1912, (EA 23 548); Einstein to Heinrich
Zangger, 29 February 1912, (EA 39 653); Einstein to Wilhelm Wien, 24 February 1912, (EA 23 550);
Einstein to Heinrich Zangger, 20 May 1912, (EA 39 655); Einstein to Michele Besso, 26 March 1912,
(EA 7 066); Einstein to Heinrich Zangger, summer 1912, (EA 39 657); Einstein to Arnold Sommer-
feld, 29 October 1912, (EA 21 380). See also (Pais 1982, 231–32).

19 At this point, Einstein inserts the footnote:
Hr. Langevin has orally called my attention to the fact that one comes to a contradiction with experi-
ence if one does not make this assumption. That is, in radioactive decay large quantities of energy are
given off, so that the inertial mass of the matter must diminish. If the gravitational mass were not to
diminish proportionally, then the gravitational acceleration of bodies made out of different elements
would have to be demonstrably different in the same gravitational field.

E E c2⁄( )

E E c2.⁄
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Einstein does not give a full derivation of the result claimed. However we can
reconstruct what he intended from the derivation sketch given. The two types of force
fields correspond to the “spacetime vectors type I and II” introduced by Minkowski
(1908, § 5), which soon came to be known as four- and six-vector fields, respectively
(Sommerfeld 1910, 750). They represented the two types of force fields then examined
routinely in physics. The four-vector corresponds to the modern vector of a four
dimensional manifold. The gravitational four-force  acting on a body with rest mass

 in a four-vector theory is
(10a)

An example of such a theory is given by (4) above in which the gravitation four-vec-
tor  is set equal to  The six-vector corresponds to our modern antisym-
metric second rank tensor which has six independent components. The classic
example of a six-vector is what Sommerfeld called “the six-vector ... of the electro-
magnetic field” (Sommerfeld 1910, 754). We would now identify it as the Maxwell
field tensor. Presumably Einstein intended a six-vector gravitation theory to be mod-
elled after electrodynamics, so that the gravitational four-force  acting on a body
with rest mass  and four-velocity  in such a theory would be given by

(11a)

The gravitation six-vector,  satisfies the antisymmetry condition 
This antisymmetry guarantees compatibility with the identity (5) since it forces

Einstein claims that one needs only the transformation formulae for four and six-
vectors and for ponderomotive forces. to arrive at the results. However, since both
(10a) and (11a) are Lorentz covariant, application of the transformation formulae to
these equations simply returns equations of identical form—an uninformative out-
come. We do recover results of the type Einstein claims, however, if we apply these
transformation formulae to non-covariant specializations of (10a) and (11a).

We consider arbitrary four and six-vector gravitational fields and  In
each there is a body of mass  in free fall. In each case, select and orient a coordi-
nate system  in such a way that each mass is instantaneously at
rest and is accelerating only in  direction. For these coordinate systems, the
three spatial components of the four-force, , are equal to the three components of
the three force,  acting on the masses. In particular the  component 
of the three force is given in each case by

(10b)

(11b)

since  If we now transform from  to a reference system
 moving at velocity  in the  direction  then the rele-

vant Lorentz transformation formulae are

Fµ
m

Fµ mGµ.=

Gµ ∂φ/∂xµ.–

Fµ

m Uν

Fµ mGµνUν.=

Gµν, Gµν Gνµ.–=

FµUµ 0.=

Gµ Gµν .
m

S′ x′ y′ z′ u′,,, ict′=( )
y′ x′2=

F ′i
f ′i , x′2 y′= f ′2

f ′2 mG′2 ,=

f ′2 mG′2 νU ′ν mG′24 ic= =

U ′µ 0 0 0 ic, , ,( ).= S′
S x y z u, , , ict=( ) v x′1 x′= S′,
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Thus far we have not restricted the choice of four or six-vector fields  and 
The considerations that follow are simplified if we consider a special case of the six-
vector field  in which 20 Substituting with these transformation formu-
lae for  and  in this special in (10b) and (11b), we recover

(10c)

(11c)

These two equations describe the component of gravitational three-force,  in the
“vertical”  direction on a mass  moving with velocity  in the “horizontal”

 direction. In his 1912 argument, Einstein noted that the inertia of energy and
the equality of inertial and gravitational mass leads us to expect that “gravitation acts
more strongly on a moving body than on the same body in case it is at rest.” We read
directly from equations (10c) and (11c) that both four and six-vector theories fail to
satisfy this condition. The gravitational force is independent of velocity in the six-
vector case and actually decreases with velocity in the four-vector case. To meet Ein-
stein’s requirements, the gravitational force would need to increase with velocity, in
direct proportion to the mass’s energy 

We can also confirm that (10c) and (11c) lead to the result that the vertical accel-
eration of the masses is not independent of their horizontal velocities. To see this,
note that, were the masses of (10c) and (11c) instantaneously at rest, the vertical
forces exerted by the two fields would be respectively

In all cases, the three velocity and three-accelerations are perpendicular, so that con-
dition (8) holds. Therefore we have

20 This restriction does not compromise the generality of Einstein’s claim. If a Lorentz covariant theory
proves inadequate in a special case, that is sufficient to demonstrate its general inadequacy. A natural
instance of a six-vector field  in which  is easy to construct. Following the model of
electromagnetism, we assume that  is generated by a vector potential  according to

We choose a “gravito-static” field in  that is, one that is analogous to the electrostatic
field, by setting  Since  and  are everywhere vanishing,  Finally
note that Einstein does explicitly restrict his 1912 claim to static gravitational fields. Perhaps he also
considered simplifying special examples of this type.

f ′2
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Combining these results with (10c) and (11c) we recover expressions for the vertical
acceleration  of the masses in terms of the acceleration  they
would have had if they had no horizontal velocity

(10d)

(11d)

We see that in both four and six-vector cases the vertical acceleration decreases with
horizontal velocity, with equation (10d) generalizing the result in equation (9).

5. A GRAVITATION THEORY MODELLED AFTER MAXWELL’S 
ELECTROMAGNETISM?

Einstein’s mention of a six-vector theory of gravitation in his 1912 response to Abra-
ham raises the question of Einstein’s attitude to a very obvious strategy of relativiza-
tion of Newtonian gravitation theory. With hindsight one can view the transition from
the theory of Coulomb electrostatic fields to full Maxwell electromagnetism as the
first successful relativization of a field theory. Now Newtonian gravitation theory is
formally identical to the theory of electrostatic fields excepting a change of sign
needed to ensure that gravitational masses attract where like electric charges repel.
This suggests that one can relativize Newtonian gravitation theory by augmenting it
to a theory formally identical to Maxwell theory excepting this same change of sign.

While it is only with hindsight that one sees the transition from electrostatics to
electromagnetism as a relativization, Einstein had certainly developed this hindsight
by 1913. In his (Einstein 1913, 1250) he noted that Newtonian theory has sufficed so
far for celestial mechanics because of the smallness of the speeds and accelerations of
the heavenly bodies. Were these motions to be governed instead by electric forces of
similar magnitude, one would need only Coulomb’ s law to calculate these motions
with great accuracy. Maxwell’s theory would not be required. The problem of relativ-
izing gravitation theory, Einstein continued, corresponded exactly to this problem: if
we knew only experimentally of electrostatics but that electrical action could not
propagate faster than light, would we be able to develop Maxwell electromagnetics?
In the same paper Einstein proceeded to show (p. 1261) that his early 1913 version of
general relativity reduced in suitable weak field approximation to a theory with a
four-vector field potential that was formally analogous to electrodynamics. It was this
approximation that yielded the weak field effects we now label as “Machian.” The
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previous year, when seeking similar effects in his 1912 theory of static gravitational
fields, Einstein demonstrated that he then expected a relativized gravitation theory to
be formally analogous to electrodynamics at some level. For then he wrote a paper
with the revealing title “Is there a gravitational effect that is analogous to electrody-
namic induction?” (Einstein 1912c).

The celebrated defect of a theory of gravitation modelled after Maxwell electro-
magnetism was first pointed out by Maxwell himself (Maxwell 1864, 571). In such a
theory, due to the change of signs, the energy density of the gravitational field is neg-
ative and becomes more negative as the field becomes stronger. In order not to intro-
duce net negative energies into the theory, one must then suppose that space, in the
absence of gravitational forces, must contain a positive energy density sufficiently
great to offset the negative energy of any possible field strength. Maxwell professed
himself baffled by the question of how a medium could possess such properties and
renounced further work on the problem. As it turns out it was Einstein’s foe, Abra-
ham, shortly after his exchange with Einstein, who refined Maxwell’s concern into a
more telling objection. In a lecture of October 19, 1912, he reviewed his own gravita-
tion theory based on Einstein’s idea of using the speed of light as a gravitational
potential. (Abraham 1912e) He first reflected (pp. 193–94), however, on a gravitation
theory modelled after Maxwell electromagnetism. In such a theory, a mass, set into
oscillation, would emit waves analogous to light waves. However, because of the
change of sign, the energy flow would not be away from the mass but towards it, so
that the energy of oscillation would increase. In other words such an oscillating mass
would have no stable equilibrium. Similar difficulties were reported by him for gravi-
tation theories of Maxwellian form due to H.A. Lorentz and R. Gans.

What was Einstein’s attitude to such a theory of gravitation? He was clearly aware
of the formal possibility of such a theory in 1912 and 1913. From his failure to
exploit such a theory, we can only assume that he did not think it an adequate means
of relativizing gravitation.21 Unfortunately I know of no source from that period
through which Einstein states a definite view on the matter beyond the brief remarks
in his exchange with Abraham. We shall see that Einstein is about to renounce the
conclusion of his reply to Abraham, that a Lorentz covariant theory cannot capture
the equality of inertial and gravitational mass, at least for the case of Nordström’s
theory of gravitation. Did Einstein have other reservations about six-vector theories
of gravitation? How seriously, for example, did he regard the negative field energy
problem in such a theory?

The idea of an analogy between a relativized gravitation theory and electrody-
namics seems to play no significant role in the methods Einstein used to generate rel-
ativized gravitation theories. The effect analogous to electrodynamic induction of

21 Notice these reservations must have amounted to more than the observation that such a theory fails to
extend the relativity of motion to acceleration. In (Einstein 1913), immediately after his remarks on
the similarity between the problems of relativizing gravitation and electrostatics, he considers Lorentz
covariant gravitation theories. The only theory taken seriously in this category is a version of Nord-
ström’s theory of gravitation.
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(Einstein 1912c), for example, was derived fully within Einstein’s 1912 theory of
static gravitational fields and the analogy to electrodynamics appeared only in the
description of the final result. In general, the mention of an analogy to electrodynam-
ics seems intended solely to aid Einstein’s readers in understanding the enterprise and
physical effects appearing in the relativized theories of gravitation by relating them to
an example familiar to his readers. That we have any surviving, written remarks by
Einstein directly on this matter we owe to J.W. Killian. Some thirty years later, in a
letter of June 9, 1943 (EA 14 261) to Einstein, Killian proposed a gravitation theory
modelled after Maxwell electromagnetism.22 Einstein’s reply of June 28, 1943, gives
a fairly thorough statement of his attitude at that time to this theory.23

Because there was no question of experimental support for the theory, Einstein
proposed to speak only to its formal properties. To begin, he noted, Maxwell’s equa-
tions only form a complete theory for parts of space free of source charges, for the
theory cannot determine the velocity field of the charge distribution without further
assumption. After Lorentz, to form a complete theory, it was assumed that charges
were carried by ponderable masses whose motions followed from Newton’s laws.
What Einstein called “real difficulties” arise only in explaining inertia. These difficul-
ties result from the negative gravitational field energy density in the theory. Assum-
ing, apparently, that the energy of a mass in the theory would reside in its
gravitational field, Einstein pointed out that the kinetic energy of a moving mass
point would be negative. This negativity would have to be overcome by a device
entirely arbitrary from the perspective of the theory’s equations, the introduction of a
compensating positive energy density located within the masses. This difficulty is
more serious for the gravitational version of the theory, for, in the electromagnetic
theory, the positivity of electromagnetic field energy density allows one to locate all
the energy of a charge in its electromagnetic field.

Calling the preceding difficulty “the fundamental problem of the wrong sign,”
Einstein closed his letter with brief treatment of two further and, by suggestion, lesser
difficulties. The proposed theory could not account, Einstein continued, for the pro-
portionality of inertial and gravitational mass. Here we finally see the concern that
drove Einstein’s work on Lorentz covariant gravitation theory in the decade following
1907. Yet Einstein does not use the transformation arguments of this early period to
establish the failure of the proposed theory to yield this proportionality. Instead he
continues to imagine that the energy and therefore inertia of a mass resides in its
gravitational field. Some fixed quantity of gravitational mass could be configured in
many different ways. Thus it follows that the one quantity of gravitational mass could
be associated with many different gravitational fields and thus many different inertial
masses, in contradiction with the proportionality sought.24 Finally Einstein remarked

22 Einstein addresses his reply to “Mr. J.W. Killian, Dept. of Physics, Rockerfeller Hall, Ithaca N.Y.”
23 EA 14 265 is an autograph draft of the letter in German. EA 14 264 is an unsigned typescript of the

English translation. There are some significant differences of content between the two, indicating fur-
ther editing of content presumably by Einstein between the draft and typescript.
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that the proposed theory allows no interaction between electromagnetic and gravita-
tional fields other than through charged, ponderable masses. Thus it could not explain
the bending of starlight in a gravitational field.

6. NORDSTRÖM’S FIRST THEORY OF GRAVITATION

The dispute between Einstein and Abraham was observed with interest by a Finnish
physicist, Gunnar Nordström.25 In a paper submitted to Physikalische Zeitschrift in
October 1912 (Nordström 1912), he explained that Einstein’s hypothesis that the
speed of light c depends on the gravitational potential led to considerable problems
such as revealed in the Einstein-Abraham dispute. Nordström announced (p. 1126)
that he believed he had found an alternative to Einstein’s hypothesis which would

... leave  constant and still adapt the theory of gravitation to the relativity principle in
such a way that gravitational and inertial masses are equal.

The theory of gravitation which Nordström developed was a slight modification of
the theory embodied in equations (3) and (4) above. Selecting the commonly used
coordinates  Nordström gave his version of the field equation (3):

(12)

where  is the gravitational potential,  the rest density of matter and  the gravita-
tional constant. As he noted, this field equation was identical to the one advanced by
Abraham (1912a, equation (1)) in the latter’s gravitation theory.

Where Nordström differed from Abraham, however, was in the treatment of the
force equation (4). This equation, as Nordström pointed out, is incompatible with the
constancy of  We saw above that force equation (4), in conjunction with the con-
stancy of c in equation (5) entails the unphysical condition (6). Abraham had resolved
the problem by invoking Einstein’s hypothesis that  not be constant but vary with
gravitational potential so that condition (5) no longer obtains. Thus Abraham’s gravi-
tation theory was no longer a special relativistic theory. Nordström, determined to
preserve special relativity and the constancy of  offered a choice of two modified
versions of (4).

First, one could allow the rest mass  of a body in a gravitational field to vary
with gravitational potential. Defining

24 In the German autograph draft (EA 14 265), Einstein imagines some fixed quantity of gravitational
mass distributed between two bodies. The field strength they generate, and therefore their energy and
inertial mass, would increase as the bodies were concentrated into smaller regions of space. (We may
conjecture here that Einstein is ignoring the fact the field energy becomes more negative as the field
strength increases.) The translated typescript (EA 14 264) simplifies the example by imagining that
the gravitational mass is located in a single corpuscle, whose field and thence inertia varies with the
radius of the corpuscle.

25 For a brief account of Nordström’s life and his contribution to gravitation theory see (Isaksson 1985).
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the four force on a body of mass  is

(13)

where  is the mass’ four velocity and  proper time.26 The dependence of  on

 introduces the additional, final term in  which prevents the derivation of

the disastrous condition (6). In its place, by contracting (13) with  and not-

ing that , Nordström recovered the condition

(14)

which yields an expression for the  dependence of  upon integration

(15)

where  is the value of  when  Using (14) to substitute  in (13), Nor-

dström then recovered an equation of motion for a mass point independent of 

(16)

26 Note on notation: The notation used in the sequence of papers discussed here varies. I shall follow the
notation of the original papers as it changes, with one exception for brevity. Where the components of
an equation such as (13) were written out explicitly as four equations

I silently introduce the coordinates  and corresponding
index notation as in equation (13) above.
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Nordström’s second alternative to force equation (4) preserved the independence

of  from the potential. The quantity  could not be set equal to the

gravitational four-force on a mass  for that would be incompatible with

the orthogonality (5) of four velocity and four acceleration. However one can retain
compatibility with this orthogonality if one selects as the four force only that part of

 which is orthogonal to the four-velocity  This yields the second alternative

for the force equation

(17)

Nordström somewhat casually noted that he would use the first alternative, since it
corresponded to “the position of most researchers in the domain of relativity theory.”
(p. 1126) Indeed Nordström proceeded to show that both force equations lead to
exactly the same equation of motion (16) for a point mass, planting the suggestion
that the choice between alternatives could be made arbitrarily.

Regular readers of Physikalische Zeitschrift, however, would know that Nord-
ström’s decision between the two alternatives could not have been made so casually
by him. For in late 1909 and early 1910, Nordström had engaged in a lively public
dispute with none other than Abraham on a problem in relativistic electrodynamics
that was in formal terms virtually the twin of the choice between the force laws (13)
and (17). (Nordström 1909, 1910; Abraham 1909, 1910.) The problem centered on
the correct expression for the four force density on a matter distribution in the case of
Joule heating. The usual formula for the four force density  on a mass distribution
with rest mass density is, in the notation of Abraham (1910),

with  proper time and coordinates  In the case of Joule heat-

ing, it turns out that this expression leads to a contradiction with the orthogonality
condition (5). The two escapes from this problem at issue in the dispute are formally
the same as the two alternative gravitational force laws. Nordström defended

Minkowski’s approach, which took the four force density to be that part of 

orthogonal to the matter four velocity —the counterpart of force law (17).
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Abraham concluded that the rest mass density  would increases in response to
the energy of Joule heat generated. He showed a consistent system could be achieved
if one now imported this variable  into the scope of the  operator in the
expression for —an escape that is the counterpart of (13). Abraham’s escape was
judged the only tenable one when he was able to show that it yielded the then stan-
dard Lorentz transformation formula for heat whereas the Nordström-Minkowski for-
mula did not.27

The connection between Nordström’s 1912 gravitation theory and this earlier dis-
pute surfaced only in extremely abbreviated form in Nordström (1912). In a brief sen-
tence in the body of the paper, Nordström noted gingerly that (p. 1127)

the latter way of thinking [alternative (17)] corresponds to Minkowski’s original, that
treated first [alternative (13)] to that held by Laue and Abraham.

That Nordström had any stake in the differing viewpoints is only revealed in a foot-
note to this sentence in which the reader is invited to consult “the discussion between
Abraham and the author,” followed by a citation to the four papers forming the dis-
pute. Nordström then closes with the remark28

I now take the position then taken up by Abraham.

Nordström now continued his treatment of gravitation by extending the discus-
sion from isolated point masses to the case of continuous matter distributions—an
area in which he had some interest and expertise (Nordström 1911). He derived a
series of results in a straightforward manner. They included expressions for gravita-
tional four force density on a continuous mass distributions and the corresponding
equations of motion, expressions for the energy density and flux due to both gravita-
tional field and matter distribution, the gravitational field stress-energy tensor and the
laws of conservation of energy and momentum.

The last result Nordström derives concerns point masses. He notes that the field
equation (12) admits the familiar retarded potential as a solution for a matter distribu-
tion with rest density 

where  is  evaluated at time  the integration extends over all of three
dimensional space and  It follows from the
factor of  in the integral that the potential  at a true point mass would be

 Allowing for the dependence of mass on potential given in (15), it follows

27 Thus the authoritative judgement of Pauli’s Teubner Encyklopädie article (Pauli 1921, 108) is that
“Nordström’s objections cannot be upheld.” For a lengthy discussion of this debate and an indication
that the issues were not so simple, see (Liu 1991).

28 His earlier work (Nordström 1911) had explicitly employed Abraham’s “force concept,” although
Nordström had then noted very evasively that, in using it, he “wish[es] to assert no definite opinion on
the correctness of one or other of the two concepts” (p. 854).
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that the mass of such a point would have to be zero so that true point masses cannot
exist. Nordström concluded with confidence, however, that he could see no contradic-
tions arising from this result.

We may wonder at Nordström’s lack of concern over this result. It would be thor-
oughly intelligible, however, if Nordström were to agree—as Nordström’s later (Nor-
dström 1913a, 856) suggests —with Laue’s view on the relation between the theory
of point masses and of continua. Laue had urged that the former ought to be derived
from the latter (Laue 1911a, 525). Under this view, the properties of extended masses
are derived from consideration of discrete volumes in a continuous matter distribu-
tion, not from the accumulated behavior of many point masses. So the impossibility
of point masses in Nordström’s theory would present no obstacle in his generation of
the behavior of extended bodies.

7. EINSTEIN REPLIES

In advancing his theory, Nordström had claimed to do precisely what Einstein had
claimed impossible: the construction of a Lorentz covariant theory of gravitation in
which the equality of inertial and gravitational mass held. We need not guess whether
Einstein communicated his displeasure to Nordström, for Einstein’s missive was suf-
ficiently swift for Nordström to acknowledge it in an addendum (p. 1129) to his paper
which read

Addendum to proofs. From a letter from Herr Prof. Dr. A. Einstein I learn that he had
already earlier concerned himself with the possibility used above by me for treating grav-
itational phenomena in a simple way. He however came to the conviction that the conse-
quences of such a theory cannot correspond with reality. In a simple example he shows
that, according to this theory, a rotating system in a gravitational field will acquire a
smaller acceleration than a non-rotating system.

Einstein’s objection to Nordström is clearly an instance of his then standard objection
to Lorentz covariant theories of gravitation: in such theories the acceleration of fall is
not independent of a body’s energy so that the equality of inertial and gravitational
mass is violated. It is not hard to guess how Einstein would establish this result for a
spinning body in Nordström’s theory. It would seem to follow directly from the
familiar equation (9) which holds in Nordström’s theory and which says, loosely
speaking, that a body falls slower if it has a greater horizontal velocity. Indeed, as we
shall see below, this is precisely how Nordström shortly establishes the result in his
next paper on gravitation theory.

Nordström continued and completed his addendum with a somewhat casual dis-
missal of Einstein’s objection.

I do not find this result dubious in itself, for the difference is too small to yield a contra-
diction with experience. Of course, the result under discussion shows that my theory is
not compatible with Einstein’s principle of equivalence, according to which an unaccel-
erated reference system in a homogeneous gravitational field is equivalent to an acceler-
ated reference system in a gravitation free space.



22 JOHN D. NORTON

In this circumstance, however, I do not see a sufficient reason to reject the theory. For,
even though Einstein’s hypothesis is extraordinarily ingenious, on the other hand it still
provides great difficulties. Therefore other attempts at treating gravitation are also desir-
able and I want to provide a contribution to them with my communication.

Nordström’s reply is thoroughly reasonable. The requirement of exact equality of
inertial and gravitational mass was clearly an obsession of Einstein’s thinking at this
time and not shared by Einstein’s contemporaries. The now celebrated Eötvos experi-
ment had not yet been mentioned in the publications cited up to this point. We can
also see from equation (9) that the failure of the equality of inertial and gravitational
mass implied by Nordström’s theory would reside in a second order effect in 
Nordström clearly believed it to be beyond recovery from then available experiments.

Finally we should note that Einstein and Nordström are using quite different ver-
sions of the requirement of the equality of inertial and gravitational mass. At this
time, Einstein presumed that the total inertial mass would enter into the equality with
the expectation that it would yield the independence of the vertical acceleration of a
body in free fall from its horizontal velocity. We can only conjecture the precise sense
Nordström had in mind, when he promised his theory would satisfy the equality, for
he does not explain how the equality is expressed in his theory. My guess is that he
took the rest mass to represent the body’s inertial mass in the equality, for Nord-
ström’s equation (16) clearly shows that the motion of a massive particle in free fall is
independent of its rest mass  Under this reading Nordström’s version of the equal-
ity entails the weaker observational requirement of the “uniqueness of free fall”
defined above in Section 1.29 

8. NORDSTRÖM’S FIRST THEORY ELABORATED

Nordström’s first paper on his gravitation theory was followed fairly quickly by
another (Nordström 1913a), submitted to Annalen der Physik in January 1913. This
new paper largely ignored Einstein’s objection although the paper bore the title “Iner-
tial and gravitational mass in relativistic mechanics.” The closing sections of this paper
recapitulated the basic results of (Nordström 1912) with essentially notational differ-
ences only. In Section 6, Nordström’s original field equation (12) was rewritten as

(12’)

As before,  was the gravitational potential. The rest density of matter was now rep-
resented by  and Nordström explicitly named the new constant  the “gravitation

29 The equality of inertial and gravitational mass and the uniqueness of free fall are distinct from the
principle of equivalence. Einstein’s version of the principle has been routinely misrepresented since
about 1920 in virtually all literatures. See (Norton 1985). It is stated correctly, however, in Nord-
ström’s addendum.
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factor.” The force equation was presented as a density in terms of the gravitational
force per unit volume of matter  

(18)

The only difference between this expression and the analogous one offered in the pre-
vious paper was the presence of the gravitation factor  Since this factor was a con-
stant and thus did not materially alter the physical content of either of the basic
equations, Nordström might well have anticipated his readers’ puzzlement over its
use. He hastened to explain that, while  was a constant here, nothing ruled out the
assumption that  might vary with the inner constitution of matter. The paper contin-
ued to derive the  dependence of rest mass  of equation (15). The new version of
the relation now contained the gravitation factor  and read

Nordström no longer even mentioned the possibility of avoiding this dependence of
 on  by positing the alternative force equation (17). The section continued with a

brief treatment of the gravitational field stress-energy tensor and related quantities. It
closed with a statement of the retarded potential solution of the field equation.

The final section 7 of the paper analyzed the motion of a point mass in free fall in
an arbitrary static gravitational field. The analysis was qualified by repetition of his
earlier observation that true point masses are impossible in his theory (Nordström
1912, 1129). In addition he noted that the particle’s own field must be assumed to be
vanishingly weak in relation to the external field. The bulk of the section is given over
to a tedious but straightforward derivation of the analog of equation (9). Nordström
considered a static field, that is one in which  where  is the time coor-
dinate of the coordinate system  He assumed the field homoge-
neous and acting only in the direction of the coordinate system. A point mass in
free fall moves according to

(19)

where  and  are the components of the mass’ velocity 30At this point in
the paper, readers of (Nordström 1912) might well suspect that the entire purpose of
developing equation (19) was to enable statement of the objection of Einstein
reported in that last paper’s addendum. For, after observing that this result (19) tells

30 Notice that this result is more general than result (9), since it is not restricted to masses with vanishing
vertical velocity, that is, masses whose motion satisfies the condition (7). Curiously Nordström’s con-
dition that the field be homogeneous, so that  is invoked nowhere in the deriva-
tion or discussion of the result.

Kµ
g

Kµ
g gν

∂Φ
∂xµ
--------.–=

g.

g
g
Φ m

g

m m0exp
gΦ
c2
------- 

  .=

m Φ

∂Φ ∂t⁄ 0,= t
x y z u, , , ict=( ).

z-

dvz

dt
-------- 1

v2

c2
-----– 

  g
∂φ
∂z
------,   

dvx

dt
--------– 0    

dvy

dt
--------, 0,= = =

vx vy, vz v.

∂Φ ∂z⁄ constant,=



24 JOHN D. NORTON

us that a body with horizontal velocity falls slower than one without, he concluded
immediately that a rotating body must fall slower than a non-rotating body.

Because this example will be reappraised shortly, it is worth inserting the steps
that Nordström must have assumed to arrive at this conclusion. In the simplest case,
the axis of rotation of the body is aligned vertically in the static field. Each small ele-
ment of the spinning body has a horizontal motion, due to the rotation. If each such
element were independent, then the vertical acceleration of each would be given by
the equation (19), so that each element would fall slower because of the horizontal
velocity imparted by the rotation. If this result holds for each element, it seems
unproblematic to conclude that it obtains for the whole, so that the vertical accelera-
tion of fall of the body is diminished by its rotation.

While Nordström urged that this effect is much too small to be accessible to
observation, he was more sanguine about the analogous effect on the acceleration of
fall of a body by the independent motions of its molecules. Its possibility could not be
denied, he said. However, in the penultimate paragraph of the paper, he anticipated
that such an effect could be incorporated into his theory by allowing the gravitation
factor  to depend on the molecular motion of the body. He pointed out that the rest
energy of a body would also be influenced by this molecular motion.

The results Nordström recapitulated in Section 6 and 7 were not the major novel-
ties of the paper. In fact the paper was intended to address a quite precise problem. The
field equation (12’) contained a density term  Nordström’s problem was to identify
what this term should be. The term—or, more precisely, —represented the gravita-
tional field source density. According to Nordström’s understanding of the equality of
inertial and gravitational mass,  must also represent the inertial properties of the
source matter. The selection of such a term was not straightforward. For, drawing upon
his own work and that of Laue and others, he knew that stressed bodies would exhibit
inertial properties that were not reducible to the inertial properties of any individual
masses that may compose them. Thus Nordström recognized that his gravitation the-
ory must be developed by means of the theory of relativistic continua, in which
stresses were treated. This had clearly been his program from the start. In a footnote to
the first paragraph of his first paper on gravitation, Nordström (1912), at the mention
of the equality inertial and gravitational mass, he foreshadowed his next paper

By the equality of inertial and gravitational mass, I do not understand, however, that
every inertial phenomenon is caused by an inertial and gravitational mass. For elastically
stressed bodies, according to Laue ..., one recovers a quantity of motion [momentum]
that cannot at all be reduced back to a mass. I will return to this question in a future com-
munication.

The special behavior of stressed bodies proved to be of decisive importance for the
development of Nordström’s theory. Therefore, in the following section, I review the
understanding of this behavior at the time of Nordström’s work on gravitation. I will
then return to (Nordström 1913a).
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9. LAUE AND THE BEHAVIOR OF STRESSED BODIES

By 1911 it was apparent that a range of problems in the theory of relativity had a
common core—they all involved the behavior of stressed bodies—and that a general
theory of stressed bodies should be able to handle all of these problems in a unified
format. The development of this general theory was largely the work of Laue and
came from a synthesis and generalization of the work of many of his predecessors,
including Einstein, Lorentz, Minkowski and Planck. The fullest expression of this
general theory came in Laue (1911a) and was also incorporated into Laue (1911b),
the first text book published on the new theory of relativity.31 Three problems treated
in Laue’ s work give us a sense of the range of problems that Laue’s work addressed.

9.1 Three Problems for Relativity Theory

In 1909, in a remarkably prescient paper, Lewis and Tolman (1909) set out to develop
relativistic mechanics in a manner that was independent of electromagnetic theory
using simple and vivid arguments. At this time relativity theory was almost invariably
coupled with Lorentzian electrodynamics and its content was accessible essentially
only to those with significant expertise in electrodynamics. Their exposition was
marred, however, by an error in its closing pages (pp. 520–21). By this point, they
had established the Lorentz transformation for forces transverse to the direction of
motion. Specifically, if the force is  in the rest frame, then the force 
measured in a frame moving at a fraction  of the speed of light is

(20)

To recover the transformation formula for forces parallel to the direction of motion,
the “longitudinal” direction, they considered the rigid, right angled lever of Figure 1.
The arms  and  are of equal length and pivot about point  In its rest frame
two equal forces  act at points  and  the first in direction  the second in
direction  The level will not turn since there is no net turning couple about its
pivot  They then imagined the whole system in motion in the direction  They
conclude—presumably directly from the principle of relativity—that the system must
remain in equilibrium. Therefore the net turning couple about  must continue to
vanish for the moving system, so that

Now, according to (20), the transverse force at  is diminished by the factor
 The length of its lever arm  is also contracted by the same factor,

31 Presumably the two works were prepared together. (Laue 1911a) was submitted on 30 April, 1911.
The introduction to (Laue 1911b) is dated May, 1911.
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whereas the arm  being transverse to the motion, is uncontracted. Lewis and Tol-
man now concluded that equilibrium can only be maintained if the longitudinal force

 at  transforms according to

(21)

This conclusion comes from an argument so simple that one would hardly suspect it.
What they did not point out, however, was that its conclusion (21) contradicted the
then standard expositions of relativity theory (e.g. Einstein 1907a, 448) according to
which (20) is correct but (21) should be replaced by

(22)

We now see the problem in its starkest form. If we apply the standard transformation
formulae (20) and (22) to the case of Lewis and Tolman’s bent lever we seem driven
to a curious conclusion. We have a system at equilibrium in its rest frame which now
forfeits that equilibrium in a moving frame through the appearance of a non-vanish-
ing turning couple. Indeed we seem to have a violation of the principle of relativity,
for the presence of this turning couple should yield an experimental indication of the
motion of the system.

Figure 1: Lewis and Tolman’s Bent Lever

The second problem is, at first glance, quite unrelated to the Lewis and Tolman
bent lever. Under a classical analysis, one expects that a charged, parallel plate con-
denser can experience a net turning couple if it is set in motion through the aether. In
a classic experiment, Trouton and Noble (1903) sought to detect the turning couple
acting on a charged condenser due to its motion with the earth. Their null result is
celebrated. Just as in the case of the Lewis and Tolman bent lever, the problem is to
see how relativity theory allows one to predict this null result, which otherwise would
contradict the principle of relativity. In fact, as Laue (1911c, 517) and others soon
pointed out, the two problems were closely connected. In its rest frame, the Trouton-
Noble condenser was simply a rigid system of two parallel plates with an electric
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force acting on each plate in such a way that the entire system was in equilibrium. If
that equilibrium system was set into motion, under either a classical or relativistic
analysis, the electric forces would transform according to the Lorentz transformation
(20) and (22). Unless the direction of motion imparted was parallel or exactly perpen-
dicular to the plates, the net effect would be exactly the same as the Lewis and Tol-
man bent lever. A non-vanishing turning couple is predicted which deprives the
system of equilibrium. The couple ought to be detectable in violation of the principle
of relativity.32

The third problem concerns the theory of electrons. The decade preceding 1911
had seen considerable work on the problem of providing a model for the electron.
Best known of these were the models of Lorentz and Abraham, which depicted elec-
trons as electrically charged spheres with varying properties. The general problem
was to show that the relativistic dynamics of an acceptable model of the electron
would coincide with the relativistic dynamics of a point mass. There were a range of
difficulties to be addressed here. In introducing his (Laue 1911a, 524–25), Laue
recalled a brief exchange between Ehrenfest and Einstein. In a short note, Ehrenfest
(1907) had drawn on work of Abraham that raised the possibility of troubling behav-
ior by an electron of non-spherical or non-ellipsoidal shape when at rest. It was sug-
gested that such an electron cannot persist in uniform translational motion unless
forces are applied to it.33 We might note that such a result would violate not only the
principle of inertia in the dynamics of point masses but also the principle of relativity.
Einstein’s reply (1907b) was more a promise than resolution, although he ultimately
proved correct. He pointed out that Ehrenfest’s model of the electron was incomplete.
One must also posit that the electron’s charge was carried by a rigid frame, stressed to
counteract the forces of self repulsion of the charge distribution. Ehrenfest’s problem
could not be solved until a theory of such frames was developed.

Finally another aspect of the problem of the relativistic dynamics of electrons was
the notorious question of electromagnetic mass. If one computed the total momentum
and energy of the electromagnetic field of an electron, the result universally accepted
at this time was the one reported in (Laue 1911b, 98):

(23)

The conflict with the relativistic dynamics of point masses arose if one now posited
that all the energy and momentum of the electron resides in its electromagnetic field.

For one must then identify  the electromagnetic mass of the electron,

32 For further extensive discussion of the Trouton-Noble experiment and its aether theoretic treatment by
Lorentz, see (Janssen 1995).

33 In a footnote, Ehrenfest pointed out the analogy to the turning couple induced on a charged condenser
and reviewed the then current explanation of it absence in terms of molecular forces.
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as the total inertial mass of the electron, so that equation (23) tells us that the momen-
tum of an electron is  the product of its mass and velocity. The canonical resolu-
tion of this difficulty, as stated for example in (Pauli 1921, 185–86), is that such a
purely electromagnetic account of the dynamics of the electron is inadmissible. As
Einstein (1907b) urged, there must be also stresses of a non-electromagnetic charac-

ter within the electron.34 The puzzle Laue addressed in 1911 was to find very general
circumstances under which the dynamics of such an electron would agree with the
relativistic dynamics of point masses.

9.2 The General-Stress Energy Tensor

The focus of Laue’s treatment of stressed bodies in his (1911a) and (1911b) lay in a
general stress-energy tensor.35 While Minkowski (1908, § 13) had introduced the
four dimensional stress-energy tensor at the birth of four dimensional methods in rel-
ativity theory, his use of the tensor was restricted to the special case of the electro-
magnetic field. Laue’s 1911 work concentrated on extending the use of this tensor to
the most general domain. The properties of this tensor and its behavior under Lorentz
transformation summarized a great deal of the then current knowledge of the behav-
ior of stressed bodies. Laue (1911a) uses a coordinate system  so that
the components of the stress energy tensor  have the following interpretations:

The three dimensional tensor  is the familiar stress tensor. The vec-
tor  represents the momentum density. The vector

 is the energy flux.  is the energy density.
The most fundamental result of relativistic dynamics is Einstein’s celebrated iner-

tia of energy according to which every quantity of energy  is associated with an
inertial mass  The symmetry of Laue’s tensor entails a result closely con-

34 While these stresses are needed to preserve the mechanical equilibrium of the electron, Rohrlich
(1960) showed that they were not needed to eliminate the extraneous factor of 4/3 in equation (23). He
showed that the standard derivation of (23) was erroneous and that the correct derivation did not yield
the troubling factor of 4/3.

35 The label “stress-energy tensor” is anachronistic. Laue had no special name for the tensor other than
the generic “world tensor,” which, according to the text book exposition of Laue (1911b, § 13)
described any structure which transformed as what we would now call a second rank, symmetric ten-
sor. Notice that the term “tensor” was still restricted at this time to what we would now call second
rank tensors and even then usually to symmetric, second rank tensors. See (Norton 1992, Appendix).
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nected with Einstein’s inertia of energy and attributed to Planck by Laue (1911a,
530). We have  which immediately leads to

(24)

This tells us that whenever there is an energy flux  present in a body then there is
an associated momentum density 

As emphasized in (Laue 1911c), this result is already sufficient to resolve the first
of the three problems described above in Section 9.1, the Lewis and Tolman bent
lever. Notice first that Figure 1 does not display all the forces present. There must be
reaction forces present at the pivot point  to preserve equilibrium in the rest frame.
See Figure 2, which also includes the effect of the motion of the system at velocity 
in the direction  When the lever moves in the direction  then work is done by
the force  at point  which acts in the direction  The energy of this work is trans-
mitted along the arm  as an energy current of magnitude  and is lost at the pivot
point  as work done against the reaction force that acts in the direction  This
energy current  in the arm  must be associated with a momentum 
according to (24) when integrated over the volume of the arm  and this momen-
tum will be directed from  towards  As Laue (1911c) showed, a short calculation
reveals that this momentum provides precisely the additional turning couple needed to
return the moving system to equilibrium. Notice that the force at  and its associated
reaction force at  are directed transverse to the motion so no work is done by them.36

The essential and entirely non-classical part of the analysis resides in the result
that the there is an additional momentum present in the moving arm  because it is
under the influence of a shear stress due to the force  at  and the corresponding
reaction force at  As Laue (1911c, 517) and Pauli (1921, 128–29) point out,
exactly this same relativistic effect explains the absence of net turning couple in the
Trouton-Noble condenser. The condenser’s dielectric must be stressed in reaction to
the attractive forces between the oppositely charged plates. The additional momen-
tum associated with these non-electromagnetic stresses provides the additional turn-
ing couple required to preserve the equilibrium of the moving condenser.

36 Assume that the level arms are of unit length at rest so that the arm  contracts to length
 when the system moves at velocity  in direction  The turning couple about a point

 at rest and instantaneously coincident with the moving pivot point  due to the applied forces
alone is

where a positive couple is in the clockwise direction. The relativistic momentum  generates
angular momentum about the point  Since the distance of the arm  from  is growing at the
rate of  this angular momentum is increasing at a rate  which is exactly
the turning couple needed to balance the couple due to the applied forces.
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Figure 2: Lewis and Tolman’s Bent Lever Showing Reaction Forces
and Effects of Motion

While this analysis satisfactorily resolves at least the case of the Lewis and Tol-
man lever, more complicated cases will require a clearer statement of the relation-
ship between the stresses in a moving body and the momentum associated with it.
These results were derived directly by Laue (1911a, 531–32) from the Lorentz trans-
formation of the components of the stress-energy tensor. In the rest frame of the
stressed matter distribution, the matter has energy density  and a stress tensor

 for  The momentum density  and energy flux  vanish. Trans-
forming to a frame of reference moving at velocity  in the  direction, from a
direct application of the Lorentz transformation formula for a tensor, Laue recovered
results that included

(25)

The first two equations show that, in a moving body, there is a momentum density
associated with both normal stresses  and with shear stresses  The Lewis
and Tolman lever is a case in which a momentum density is associated with shear
stresses in a moving body in accord with (25). The third equation shows that there is
an energy density associated with normal stresses in moving body.

This last result, in a form integrated over a whole stressed body, had already been
investigated and clearly stated by Einstein (1907c, § 1), as a part of his continuing
analysis of the inertia of energy. He gave the result a very plausible, intuitive basis,
relating it directly to the relativity of simultaneity. He imagined a rigid body in uni-
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form translational motion. At some single instant in the body’s rest frame, an equilib-
rium state of stress appears in the body. Since it appears at a single instant, the new
forces do not alter the state of motion of the body. However in the frame in which the
body moves, because of the relativity of simultaneity, these new forces do not appear
simultaneously over the entire body. Thus there is a brief period of disequilibrium of
forces during which net work is done on the body. This new work is exactly the
energy associated with the stresses  in the equation (25). Einstein (1907a, § 2)
continued with an example similar in structure to the Trouton-Noble condenser—a
rigid body, in uniform motion, carrying an electric charge distribution. The forces
between the charges carried stress the rigid body, so that there is an energy associated
with these stresses. Einstein showed that this latter energy was essential. Otherwise
the energy of the moving body would depend on the direction of its motion which
would lead to a contradiction.37

Laue (1911, § 2) continued his treatment of the transformation formulae (25) by
restating them for an extended body. In particular, integration of (25) over such a body
revealed relationships between the rest energy  of the body and its energy  and
momentum  in the frame of reference in which the body moves at velocity  Writ-
ing the three components of the body’s ordinary velocity as  he recov-
ered38

(26)

The expression for momentum had an immediate and important consequence. In gen-
eral, whenever the body was stressed so that the stress tensor  does not vanish, the
momentum  of the body will not be in the same direction as its velocity  This
was exemplified in the Lewis and Tolman lever. Although it was set in motion in the
direction  the presence of stresses in the arm  led to a momentum in that arm

37 Specifically, in the body’s rest frame, the body can rotate infinitely slowly without application of any
forces. By the principle of relativity, this same motion will be possible if the body is in uniform trans-
lational motion as well. However in this latter case the kinetic energy of the body would alter accord-
ing to its orientation as it rotates. Since no forces were applied, this would violate the “energy
principle,” the law of conservation of energy. Notice that the rotation is infinitely slow, so that it does
not contribute to the body’s kinetic energy.

38  is the rest volume of the body and  I have simplified Laue’s opaque notation by
introducing an index notation, where Laue used round and square brackets to represent various prod-
ucts. For example, where I would write , he would write “ .”
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directed transverse to the motion. If this momentum is added vectorially to the
momentum of the inertial mass of the lever, the resultant total momentum vector will
not be parallel to the direction of motion.

Laue was now in a position to restate the analysis given for the Lewis and Tolman
lever in a way that would apply to general systems. This was the principle of burden
of (Laue 1911a, § 3 and § 4). To begin, Laue introduced a new three dimensional
stress tensor. In a body at rest, the time rate of change of momentum density 
is given by the negative divergence of the tensor 

However if one wishes to investigate the time rate of change of momentum density in

a moving body, one must replace the partial time derivative  with a total time

derivative coordinated to the motion,  Laue was able

to show that the relevant time rate of change of momentum was given as the negative
divergence of a new tensor 

where this “tensor of elastic stresses” was defined by

Note in particular that  will not in general be symmetric since the momentum den-
sity  will not in general be parallel to the velocity 

The lack of symmetry of  is a cause of momentary concern, for it is exactly the
symmetry of  that enables recovery, in effect, of the law of conservation of angu-
lar momentum. More precisely, the symmetry of the stress tensor is needed for the
standard derivation of the result that the time rate of change of angular momentum of
a body is equal to the total turning couple impressed on its surface. Laue proceeds to
show, however, that this asymmetry does not threaten recovery of this law and is, in
fact essential for it.39 He writes the time rate of change of total angular momentum

 of a moving body as40

39 Laue calls § 4, which contains this discussion, “the area law.” I presume this is a reference to Kepler’s
second law of planetary motion, which amount to a statement of the conservation of angular momen-
tum for planetary motion.

40   is a volume element of the body. I make no apology at this point for shielding the reader from
Laue’s notation, which has become more than opaque. Laue now uses square brackets to represent
vector products, where earlier they represented an inner product of vector and tensor.  is the fully
antisymmetric Levi-Civita tensor, so that  is the vector product of two vectors  and 
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(27)

Were the tensor  symmetric, then the integration of the first term alone could be
carried out using a version of Gauss’ theorem. One could then arrive at the result that
the total rate of change of momentum of the body is given by the turning couple
applied to its surface. Thus if there is no applied couple, angular momentum would
be conserved. However the tensor  is not symmetric, and so an integral over the
first term leaves a residual rate of change of angular momentum even when no turn-
ing couple is applied to the body. Fortunately there is a second term in the integrals of
(27) that results from allowing for the use of the total time derivative. It is the vector
product of the velocity  and momentum density  This term would not be present
in a classical analysis since these two vectors would then be parallel so that their vec-
tor product would vanish. In the relativistic context, this is not the case. This term
corresponds exactly to the stress induced momentum in the arm  of the Lewis and
Tolman lever. This extra term exactly cancels the residual rate of change of angular
momentum of the first term, restoring the desired result, the rate of change of angular
momentum equals the externally applied turning couple.

9.3 Laue’s “Complete Static Systems”

The last of the group of results developed in (Laue 1911a, § 5) proved to be the most
important for the longer term development of Nordström’s theory of gravitation.
Laue had shown clearly just how different the behavior of stressed and unstressed
bodies in relativity theory could be. He now sought to delineate circumstances in
which the presence of stresses within a body would not affect its overall dynamics.
Such was the case of a “complete static system,” which Laue defined as follows:

We understand by this term such a system which is in static equilibrium in any justified
reference system  without sustaining an interaction with other bodies.

This definition is somewhat elusive and the corresponding definition in (Laue 1911b,
168–69) is similar but even briefer. In both cases, however, Laue immediately gave
the same example of such a system, “an electrostatic field including all its charge car-
riers.” This example and the definition leaves open the question of whether a body
spinning at constant speed and not interacting with any other bodies is a complete
static system. Such a body is in equilibrium and static in the sense that its properties
are not changing with time, especially if the body spins around an axis of rotational
symmetry. Tolman (1934, 81) gave a clearer definition:

And in general we shall understand by a complete static system, an entire structure
which can remain in a permanent state of rest with respect to a set of proper coordinates

 without the necessity for any forces from the outside.

He clearly understood this definition to rule out rotating bodies, for he noted a few
lines later “the velocity of all parts of the system is zero in these coordinates ”.
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Tolman used this to justify the condition that the momentum density in the rest frame
vanishes at every point

(28)

Presumably Laue agreed for he also invoked this condition. From it, both Laue and
Tolman derived the fundamental result characteristic of complete static systems:

(29)

where the integral extends over the rest volume  of the whole body. Laue allowed,
in effect, that his conception of a complete static system could be relaxed without com-
promising the recovery of (29). For in a footnote (Laue 1911a, 540) to the example of
an electrostatic field with its charge carriers, he noted that one could also consider the
case of electrostatic-magnetostatic fields. Even though (28) failed to obtain for this
case, the time derivative of  did vanish which still allowed the derivation of (29).

This fundamental property (29) of complete static systems greatly simplified the
expression (26) for the energy and momentum of a stressed body. Through (29) all
the terms explicitly dependent on stresses vanish so that

(30)

As Laue pointed out, these expressions coincide precisely with those of a point mass
with rest mass  Moreover under quasi-stationary acceleration—that
is acceleration in which “the inner state  is not noticeably changed”—a com-
plete static system will behave exactly like a point mass.

Laue could now offer a full resolution of the remaining problems described above
in Section 9.1. An electron together with its field is a complete static system, he
noted, no matter how it may be formed. As a result it will behave like a point mass, as
long as its acceleration is quasi-stationary. In particular it will sustain inertial motion
without the need for impressed forces. While Laue did not explicitly mention the
problem of relating the electron’s total field momentum to its inertial mass, Laue’s
result (30) resolves whatever difficulty might arise for the overall behavior of an elec-
tron. For however the electron may be constructed, as long as it forms a complete
static system, equation (30) shows that the extraneous factor of 4/3 in equation (23)
cannot appear. Finally, the Trouton-Noble condenser is a complete static system.
While neither the momentum of its electromagnetic field or of its stressed mechanical
structure will lie in the direction of its motion, equation (30) shows that the combined
momentum  will lie parallel to the velocity  so that there is no net turning cou-
ple acting on the condenser.41

g0 0.=

pik
0 V 0d∫ 0,=

V 0

g0

E
c

c2 q2–
--------------------E0,=

Gi

qi

c c2 q2–
-----------------------E0.=

m0 E0 c2⁄( ).=
E0 p0,( )

Gi qi,



EINSTEIN, NORDSTRÖM AND THE EARLY DEMISE ... 35

10. THE DEFINITION OF INERTIAL MASS IN
NORDSTRÖM’S FIRST THEORY

What had emerged clearly from Laue’s work was that the inertial properties of bodies
could not be explained solely in terms of their rest masses and velocities, if the bodies
were stressed. For Laue’s equation (26) showed that the momentum of a moving
body would be changed merely by the imposition of a stress, even though that stress
need not deform the body or perform net work on it. Nordström clearly had results
such as these in mind when he laid out the project of his (Nordström 1913a, 856–57).
Laue and Herglotz, he reported, had constructed the entire mechanics of extended
bodies without exploiting the concept of inertial mass. That concept, he continued,
was neither necessary nor sufficient to represent the inertial properties of stressed
matter. This now seems to overstate the difficulty, for Laue’s entire system depended
upon Einstein’s result of the inertia of energy. Nonetheless nowhere did Laue’s
mechanics of stressed bodies provide a single quantity that represented the inertial
mass of a stressed body.

It was to this last omission that Nordström planned to direct his paper. It was
important, he urged, to develop a notion of the inertial mass of matter for the develop-
ment of a gravitation theory. Such a theory must be based on the “unity of essence”42

of inertia and gravity. He promised to treat the relativistic mechanics of deformable
bodies in such a way that it would reveal a concept of inertial mass suitable for use in
a theory of gravitation.

Nordström’s analysis was embedded in a lengthy treatment of the mechanics of
deformable bodies whose details will not be recapitulated here. Its basic supposition,
however, was that the stress energy tensor  of a body with an arbitrary state of
motion and stress would be given as the sum of two symmetric tensors (p. 858)

(31)

The second tensor,  he called the “material tensor.” It represented the con-
tribution to the total stress tensor from a matter distribution with rest mass density 
and four velocity  The first tensor,  he called the “elastic stress tensor.” It
represented the stresses in the matter distribution. In the rest frame of the matter dis-
tribution, Nordström wrote the elastic stress tensor as (p. 863)

41 However this result did not end Laue’s analysis of the Trouton-Noble experiment. See (Laue 1912).
42 Wesenseinheit. The term is sufficiently strong and idiosyncratic for it to be noteworthy that, so far as I

know, Einstein was the only other figure from this period who used even a related term in connection
with inertia and gravitation. In a paper cited earlier in (Nordström 1912, 1126), Einstein (1912d,
1063) had talked of the “equality of essence” (Wesensgleichheit) of inertial and gravitational mass.
Einstein used the term again twice in later discussion. See (Norton 1985, 233).
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The six zero-valued components in this matrix represent the momentum density and
energy current due to the presence of stresses. They must vanish, Nordström pointed
out, since stresses cannot be responsible for a momentum or energy current in the
rest frame.43 In particular, Nordström identified the component  as a Lorentz
invariant.44 

In the crucial Section 4, “Definition of Inertial Mass,” Nordström turned his atten-
tion to the  component of equation (31) in the rest frame. This equation gave an
expression for the Lorentz invariant rest energy density  in terms of the sum of two
invariant quantities45

(32)

This equation gave simplest expression to the quantity of fundamental interest to
Nordström’s whole paper, the density  which would provide the source for the
gravitational field equation. This density would be determined once  and  were
fixed. However, while the rest energy density  was a “defined quantity,” it was not
so clear how  was to be determined. It represented an energy density associated
with the stresses. Clearly if there were no stresses in the material, then this energy
would have to be zero. But what if there were stresses?

To proceed Nordström considered a special case, a body in which there is an iso-
tropic, normal pressure. In this case, Nordström continued, it is possible to fix the
value of  in such a way that the density  can be determined. The elastic stress
tensor could be generated out of a single scalar invariant, which I will write here as

 so that the elastic stress tensor in the rest frame is given by

43 In Section 5, Nordström augmented his analysis by considering the effect of heat conduction. This
was represented by a third symmetric tensor,  whose only non-zero components in the rest frame
were exactly these six components. Thus heat conduction was represented by an energy current and
associated momentum density which did not arise from stresses and which had no associated energy
density in the rest frame.

44 This followed easily from the fact that the tensor  twice contracted with the four velocity 
yields a Lorentz invariant,  which can be evaluated in the rest frame, where

 and turns out to be 
45 The presence of the negative sign follows from the use of a coordinate system in which the fourth
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(33)

With this particular choice of stress tensor, Nordström pointed out, there is no
momentum density associated with the stresses when the body is in motion. We can
confirm this conclusion merely by inspecting the matrix (33). Since  is an invariant,
the matrix will transform back into itself under Lorentz transformation. Therefore in
all frames of reference, the six components  and 
will remain zero. But these six components between them represent the momentum
density and energy current due the stresses. Thus any momentum density present in
the body will be due to the density 46 

At this point, the reader might expect Nordström to recommend that one set 
in the general case in such a way that there are no momentum densities associated
with stresses. Nordström informs us, however, that he could find no natural way of
doing this. As a result, he urged that the “simplest and most expedient definition” lies
in setting

(34)

so that  To quell any concern that this choice had been made with undue
haste, Nordström continued by asserting that the factual content of relativistic
mechanics is unaffected by the choice of quantity that represents inertial mass. It is
only when weight is assigned to inertial masses, such as in his gravitation theory, that
the choice becomes important.

The reader who has followed the development of Nordström’s argument up to this
point cannot fail to be perplexed at the indirectness of what is the core of the entire
paper! There are three problems. First, the choice of  as given in (34) seems unchal-
lengeable as the correct expression for the rest density of inertial mass. It merely sets
this density equal to  times the rest energy density—exactly as one would
expect from Einstein’s celebrated result of the inertia of energy. Indeed, any other
division of total rest energy  between the two terms of (32) would force us to say
that  does not represent the total inertial rest mass density, for there would be
another part of the body’s energy it does not embrace. Second, no argument is given
for the claim that the choice of  has no effect on the factual content of relativistic
mechanics.47 Finally, even if this second point is correct, it hardly seems worth much
attention since the choice of expression for  does significantly affect the factual
content of gravitation theory.

The clue that explains the vagaries of Nordström’s analysis lies in his citation of
his own (Nordström 1911). There one finds an elaborate analysis of the relativistic

46 Unless, of course, heat conduction is present.

p  0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

p

p  14 p  24 p  34,( , ) p  41 p  42 p  43,( , )

v.
puu

0

c2ν Ψ=

puu
0 0.=

v

1 c2⁄

Ψ
v

v

v



38 JOHN D. NORTON

mechanics of the special case of a body with isotropic normal stresses—exactly the
special case considered above. The analysis began by representing the stresses
through a tensor of form (33). Nordström then showed the effect of arbitrarily reset-
ting the value of  Reverting to the notation of (Nordström 1911), Nordström
imagined that the  term of (33) is replaced by some arbitrary  He showed that
the effect of this substitution is simply to replace the rest mass density  (the analog
of  in the 1913 paper) in the equations of the theory with an augmented

without otherwise altering the theory’s relations. He was able to conclude that setting
 “is not a specialization of the theory, but only a specialization of concepts.”

In the introduction to (Nordström 1911), he had announced his plan to extend this
analysis to the more general case with tangential stresses in another paper. Presum-
ably the discussion of Section 4 in (Nordström 1913a) was intended to inform his
readers that he was now unable to make good on his earlier plan. Indeed the remarks
that seemed puzzling are merely a synopsis of some of the major points of (Nord-
ström 1911). That the choice of (34) does not affect the factual content of relativistic
mechanics is merely an extension of the result developed in detail in (Nordström
1911). It had become something of a moot point, however, in the context of gravita-
tion theory.

To sum up, Nordström’s choice of source density  was given by equation (34)
and it was this result that gave meaning to the quantity  in the final sections of the
paper in which his gravitation theory was recapitulated. We can give this quantity
more transparent form by writing it in a manifestly covariant manner48

(35)

Natural as this choice seemed to Nordström, it was Einstein who shortly proclaimed
that another term derived from the stress energy tensor was the only viable candidate
and that this unique candidate led to disastrous results.

47 On reflection, however, I think the result not surprising. Barring special routes such as might be pro-
vided through gravitation theory, we have no independent access to the energy represented by the term

 For example, in so far as this energy is able to generate inertial effects, such as through genera-
tion of a momentum density, it is only through its contribution to the sum  The
momentum density follows from the Lorentz transformation of the tensor  How we envisage the
energy divided between the two terms of this sum will be immaterial to the final density yielded.

48 While  is the trace of the material tensor  this quantity  is not the trace of the
full tensor  as given in (31). This latter trace would contain terms in  etc.
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11. EINSTEIN OBJECTS AGAIN

By early 1913, Einstein’s work on his own gravitation theory had taken a dramatic
turn. With his return to Zurich in August 1912, he had begun a collaboration with his
old friend Marcel Grossmann. It culminated in the first sketch of his general theory of
relativity, (Einstein and Grossmann 1913), the so-called “Entwurf” paper. This work
furnished his colleagues all the essential elements of the completed theory of 1915,
excepting generally covariant gravitational field equations.49 While we now know
that this work would soon be Einstein’ s most celebrated achievement, the Einstein of
1913 could not count on such a jubilant reception for his new theory. He had already
survived a bitter dispute with Abraham over the variability of the speed of light in his
earlier theory of gravitation. And Einstein sensed that the lack of general covariance
of his gravitational field equations was a serious defect of the theory which would
attract justifiable criticism.

There was one aspect of the theory which dogged it for many years, its very great
complexity compared with other gravitation theories. In particular, in representing
gravitation by a metric tensor, Einstein had, in effect, decided to replace the single
scalar potential of gravitation theories such as Newton’s and Nordström’s, with ten
gravitational potentials, the components of the metric tensor. This concern was
addressed squarely by Einstein in Section 7 of his part of the Entwurf paper. It was
entitled “Can the gravitational field be reduced to a scalar?” Einstein believed he
could answer this question decisively in the negative, thereby, of course, ruling out
not just Nordström’s theory of gravitation, but any relativistic gravitation theory
which represented the gravitational field by a scalar potential.

Einstein’s analysis revealed that he agreed with Nordström’s assessment of the
importance of Laue’s work for gravitation theory. However he felt that Laue’s work,
in conjunction with the requirement of the equality of inertial and gravitational mass,
pointed unambiguously to a different quantity as the gravitational source density.
That was the trace of the stress-energy tensor. He proposed that a scalar theory would
be based on the equation of motion for a point mass

(36)

where  is the gravitational potential,  is the spacetime line element of special
relativity and  represents a variation of the mass’ world line. He continued, tacitly
comparing the scalar theory with his new Entwurf theory:

Here also material processes of arbitrary kind are characterized by a stress-energy tensor
 However in this approach a scalar determines the interaction between the gravita-

tional field and material processes. This scalar, as Herr Laue has made me aware, can
only be

49 For an account of this episode, see (Norton 1984).
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I want to call it “Laue’s scalar.” Then one can do justice to the law of the equivalence of
inertial and gravitational mass here also up to a certain degree. That is, Herr Laue has
pointed my attention to the fact that, for a closed system,

From this one sees that the weight of a closed system is determined by its total energy
according to this approach as well.

Recall that Einstein’s version of the requirement of the equality of inertial and gravi-
tational mass seeks to use the total energy of a system as a measure of it as a gravita-
tional source. The selection of  the trace of the stress energy tensor, does this for
the special case of one of Laue’s complete static systems. For such a system, the inte-
gral of the trace  over the spatial volume  of the system is equal to the negative
value of the total energy of the system50  since

(37)

The three terms in   and  in the integral vanish because of the fundamen-
tal property (29) of complete static systems. Notice that Einstein can only say he does
justice to the equality of inertial and gravitational mass “up to a certain degree,” since
this result is known to hold only for complete static systems and then only in their
rest frames.

Einstein’s wording indicates direct personal communication from Laue. concern-
ing the stress-energy tensor and complete static systems. Such personal communica-
tion is entirely compatible with the fact that both Einstein and Laue were then in
Zurich, with Einstein at the ETH and Laue at the University of Zurich. Below, in Sec-
tion 15, I will argue that there is evidence that, prior to his move to Zurich, Einstein
was unaware of the particular application of Laue’s work discussed here by him.

Einstein continued his analysis by arguing that this choice of gravitational source
density was disastrous. It leads to a violation of the law of conservation of energy. He
wrote:

The weight of a system that is not closed would depend however on the orthogonal
stresses  etc. to which the system is subjected. From this there arise consequences
which seem to me unacceptable as will be shown in the example of cavity radiation.51

For radiation in a vacuum it is well known that the scalar  vanishes. If the radiation is
enclosed in a massless, mirrored box, then its walls experience tensile stresses that cause

50 Presumably Einstein’s “ ” is a misprint and should read  In a coordinate system in which
 so that  is the negative value of the total energy.

51 [JDN] One might well think that only Einstein could seriously ask after the gravitational mass of such
an oddity in gravitation theory as radiation enclosed in a massless, mirrored chamber. Yet Planck
(1908, 4) had already asked exactly this question.
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the system, taken as a whole, to be accorded a gravitational mass  which corre-
sponds with the energy  of the radiation.

Now instead of the radiation being enclosed in an empty box, I imagine it bounded
1. by the mirrored walls of a fixed shaft 
2. by two vertically moveable, mirrored walls  and  which are firmly fixed to
one another by a rod. (See figure 3.)

In this case the gravitational mass  of the moving system amounts to only a third
part of the value which arises for a box moving as a whole. Therefore, in raising the
radiation against a gravitational field, one would have to expend only a third part of the
work as in the case considered before, in which the radiation is enclosed in a box. This
seems unacceptable to me.

Einstein’s objection bears a little expansion. He has devised two means of raising and
lowering some fixed quantity of radiation in a gravitational field. Notice that in either
case the radiation by itself has no gravitational mass, since the trace of the stress-
energy tensor of pure electromagnetic radiation vanishes. What introduces such a
mass is the fact that the radiation is held within an enclosure upon which it exerts a
pressure, so that the enclosure is stressed. Even though the members of the enclosure
are assumed massless, it turns out that a gravitational mass must still be ascribed to
them simply because they are stressed. The beauty of Einstein’s argument is that the
gravitational masses ascribed in each of the two cases can be inferred essentially
without calculation.

Figure 3: Rendering of Figure in Einstein’s Text

In the first case, the radiation is moved in a mirrored box. The radiation and
enclosing box form a complete static system. Therefore the gravitational mass of the
box together with the radiation is given by the total energy of the radiation, 
in its rest frame, where I now write the stress-energy tensor of the electromagnetic
radiation as  For ease of transition to the second case, it is convenient to imagine
that each of the three pairs of opposing wall of the box is held in place only by a con-
necting rod, that the faces of the box are aligned with the  and  axes and that the
disposition of the system is identical in these three directions. Each connecting rod
will be stressed in reaction to the radiation pressure. I write  for the stress-energy
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tensor of the rod aligned in the  direction and the two stressed walls that this rod
connects.  and  represent the other two corresponding systems. We can then
infer directly from (37) that the gravitational mass of the entire system in its rest
frame is proportional to

The second equality follows from  and from the symmetry of the three axes,
which entails

In Einstein’s second case the radiation is trapped between sliding, mirrored baf-
fles in a mirrored shaft aligned, let us say, in the  direction. The only component of
the moveable system carrying a gravitation mass in this case will be the stressed rod
and the stressed baffles it connects. Its gravitational mass in its rest frame will simply
be proportional to the volume integral of the trace of its stress energy tensor. This
integral is equal to  and is one third of the corresponding integral for the first
case, as Einstein claimed.

We now combine the two cases into a cycle. We lower the radiation inside the cube
into the gravitational field, recovering some work, since the system has a gravitational
mass. We then transfer the radiation into the baffle system and raise it. Only one third
of the work released in the first step is needed to elevate the radiation because of the
baffle system’s reduced gravitational mass.52 The mirrored cube and baffles are
weightless once they are unstressed by the release of the radiation so they can be
returned to their original positions. The cycle is complete with a net gain of energy.

That a theory should violate the conservation of energy is one of the most serious
objections that Einstein could raise against it. Notice that he did not mention another
possible objection that would derive directly from the vanishing of the trace of the
stress-energy tensor of pure radiation. This vanishing entails that light cannot be
deflected by a gravitational field. However, in 1913, prior to the experimental deter-
mination of this effect, Einstein could hardly have expected this last objection to have
any force.

As devastating and spectacular as Einstein’s objection was, he had at this time
developed the unfortunate habit of advancing devastating arguments to prove conclu-
sion he later wished to retract, see (Norton 1984, § 5). This objection to all theories of
gravitation with a scalar potential proved to be another instance of his habit. Within a
few months Einstein had endorsed (if not initiated) a most interesting escape.

52 Since the estimates of gravitational mass are made in the system’s rest frames, these motions would
have to be carried out infinitely slowly.
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12. NORDSTRÖM’S SECOND THEORY

On July 24, 1913, Nordström submitted another version of his gravitation theory to
Annalen der Physik, (Nordström 1913b). This version of the theory finally took
proper notice of what Einstein had presented as obvious in his Entwurf paper. The
only possible scalar that can represent gravitational source density is the trace of the
stress-energy tensor and this choice, in conjunction with Laue’s work on complete
static systems, enables satisfaction of the requirement of equality of inertial and grav-
itational mass. Moreover the version of the requirement satisfied is an Einsteinian
version in which the quantity of gravitational source is proportional to the total
energy. This differs from the version embodied in Nordström’s equation (16) in
which the motion of a body in free fall is merely independent of its rest mass. Finally
the theory offered an ingenious escape from Einstein’s Entwurf objection. It turned
out that the objection failed if one assumed that the proper length of a body would
vary with the gravitational potential. This new version of this theory is sufficiently
changed that it is now customarily known as Nordström’s second theory.

There is room for interesting speculation on the circumstances under which Nord-
ström came to modify his theory. In the introduction (p. 533) he thanked Laue and
Einstein for identifying the correct gravitational source density. As we shall see, at two
places in the paper (p. 544, 554), he also attributed arguments and results directly to
Einstein without citation. Since I know of no place in which Einstein published these
results, it seems a reasonable conjecture that Nordström learned of them either by cor-
respondence or personal contact. That it was personal contact during a visit to Zurich
at this time is strongly suggested by the penultimate line of the paper, which, in stan-
dard Annalen der Physik style, gives a place and date. It reads “Zurich, July 1913.”53

Since Nordström does thank both Laue and Einstein directly and in that order and
since the wording of Einstein’s Entwurf suggests a personal communication directly
from Laue, we might conjecture also that there was similar direct contact between
Laue and Nordström. Laue was also in Zurich at this time at the University of Zurich.

One cannot help but sense a somewhat sheepish tone in the introduction to (Nord-
ström 1913b, 533), when he announced that this earlier presentation (Nordström
1913a) was “not completely unique” and that “the rest density of matter was defined
in a fairly arbitrary way.” In effect he was conceding that he had bungled the basic
idea of his earlier (Nordström 1913a), that one had to take notice of the mechanics of
stressed bodies in defining the gravitational source density and that this ought to be
done in a way that preserved the equality of inertial and gravitational mass. Laue and
Einstein were now telling him how he ought to have written that paper.

53 An entry in Ehrenfest’s Diary (“I”, NeLR, Ehrenfest Archive, Scientific Correspondence, ENB: 4–15)
reveals a visit to Zurich by Nordström in late June. See (CPAE 4, 294–301), “Einstein on Gravitation
and Relativity: the Collaboration with Marcel Grossmann.”
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12.1 The Identification of the Gravitational Source

The first task of Nordström (1913b) was to incorporate the new source density into
his theory and this was tackled in its first section. The final result would be to define
this density in terms of what he called the “elastic-material tensor”  which corre-
sponded to the sum of Nordström’s (1913a) material tensor and elastic stress tensor
as given above in (31). Following Einstein and Laue, he ended up selecting 
times the negative54 trace  of  as his source density 

(38)

However unlike Laue and Einstein, that selection came at the conclusion of a fairly
lengthy derivation. Nordström would show that the requirement of equality of inertial
and gravitational mass in the case of a complete static system would force this choice
of source density.

To begin, Nordström chose essentially the same field equation for the potential 
and gravitational force density equations as in (Nordström 1913a):

(12’’)

(18’)

Here  remained the as yet undetermined gravitational source density. The important
innovation was that the gravitation factor  was now allowed to vary as a function of
the potential  In an attempt to bring some continuity to the development of (Nord-
ström 1913b) from (1913a), he recalled that in the former paper (p. 873, 878) he had
foreshadowed the possibility that  might be a function of the inner constitution of
bodies. Indeed the paper had closed with the speculation that such a dependence might
enable the molecular motions of a falling body to influence its acceleration of fall, pre-
sumably as part of a possible escape from Einstein’s original objection to his theory.

As it happened, however, the  dependence of  was introduced for an entirely
different purpose in (Nordström 1913b). Einstein’s version of the equality of inertial
and gravitational mass required that the total energy of a system would be the mea-
sure of its gravitational source strength. This total energy would include the energy of
the gravitational field itself. This requirement, familiar to us from Einstein’s treat-
ment of general relativity, leads to non-linearity of field equations. In Nordström’s
theory, this non-linearity would be expressed as a  dependence of 

Nordström now turned to complete static systems, whose properties would yield
not just the relation (38) but also a quite specific function for  At this point

54 Since he retained his standard coordinate system of  the negative sign is needed to
preserve the positive sign of 
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Nordström seemed able to give Laue a little taste of his own medicine. As I pointed
out above, Laue’s 1911 definition of a complete static system had excluded such sys-
tems as bodies rotating uniformly about their axis of symmetry. Nordström now
made the obvious extension, defining what he called a “complete stationary” system.
Curiously he made no explicit statement that his was a more general concept. Read-
ers simply had to guess that his replacement of Laue’s “static” by his “stationary”
was no accident. Or perhaps they had to wait until Laue’s (1917, 273) own conces-
sion that Nordström was first to point out the extension.

Nordström’s complete stationary system had the following defining characteris-
tics: it was a system of finite bodies for which a “justified”55 reference system existed
in which the gravitational field was static, that is,  In particular in the
relevant reference system, instead of Laue’ s condition (28) which required the van-
ishing everywhere of the momentum density  Nordström required merely that the
total momentum  vanished,

where  is the volume of the body in its rest frame. The two illustrations Nordström
gave—surely not coincidentally—were exactly two systems that Laue’s earlier defi-
nition did not admit: a body rotating about its axis of symmetry and a fluid in station-
ary flow. Of course the first example was one of great importance to Nordström. It
was precisely the example discussed in the final paragraphs of both (Nordström 1912
and 1913a). That such a system would fall more slowly than a non-rotating system
was the substance of Einstein’s original objection. Now able to apply the machinery
of Laue’s complete static systems to this example, Nordström could try to show that
these rotating bodies did not fall slower in the new theory.

Nordström proceeded to identify the three stress-energy tensors which could con-
tribute to the total energy of a complete stationary system. They were the “elastic-
material tensor”  mentioned above; the “electromagnetic tensor”  which we
would otherwise know as the stress-energy tensor of the electromagnetic field; and
finally the “gravitation tensor”  This last tensor was the stress-energy tensor of
the gravitational field itself. It had been identified routinely in (Nordström (1912,
1128; 1913a, 875). It was given by56

55 In this context I read this to mean “inertial”.
56 I continue to compress Nordström’s notation. He did not use the Kronecker delta  and wrote indi-

vidual expressions for  etc. The derivation of (39) is brief and entirely standard. Writing 
for  we have, from substituting (12”) into (18’)
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(39)

where  is the gravitational potential. Invoking Laue’s basic result (29), which was
also used by Einstein for the same end, Nordström could represent the total energy

 of a complete stationary system in its rest frame as the integral over all space of
the sum of the traces of these three tensors

However we have  and have written  Finally the integral of the trace
 could be written in greatly simplified fashion if one assumed special properties for

the complete stationary system. In particular, the gravitational potential  must
approach the limiting constant value  at spatial infinity. From this and an applica-
tion of Gauss’ theorem, Nordström inferred that57

(40)

Combining and noting that the inertial rest mass  of the system is  we have

However we also have the total gravitational mass  of the system is

(41)

Nordström was now finally able to invoke what he calls “Einstein’s law of equiva-
lence,” the equality of inertial and gravitational mass. Presumably viewing the com-
pletely stationary system from a great distance, one sees that it is a system with
inertial mass  lying within a potential  so that we must be able to write

These last three equations form an integral equation which can only be satisfied iden-
tically if

57 Nordström’s derivation of (40) seems to require the additional assumption that  is non-zero only in

some finite part of space. For a completely stationary system, the field equation reduces to the Newto-

nian  If  satisfies this additional assumption one can recover from it Nordström’s

result (his equation (5)), that  at large distances  from the sys-

tem. This result seems to be needed to complete the derivation of (40).
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Finally Nordström required that this relation between  and  be independent of
 from which the two major result of the analysis followed: first,  is given by

(42)

where  is a universal constant; second, he recovered the anticipated identity of the
source density 

(38)

The constant  in equation (42) is taken by Nordström to be an arbitrary additive
gauge factor, corresponding to the freedom in Newtonian gravitation theory of setting
an arbitrary zero point for the gravitational potential. However, in contrast with the
Newtonian case, there is a natural gauge of  in which the equations are greatly
simplified. Writing the potential that corresponds to the choice of  as  the
expression for  is

(43)

and in this gauge one recovers a beautifully simple expression for the relationship
between the total rest energy  inertial rest mass  and gravitational mass  of
a completely stationary system

(44)

In particular, it contains exactly the Newtonian result that the energy of a system with
gravitational mass  in a gravitational field with potential  is  This was
an improvement over Nordström’s first theory were the closest corresponding result
was (15), a dependence of mass on an exponential function of the potential.

12.2 Dependence of Lengths and Times on the Gravitational Potential

Satisfactory as these results were, Nordström had not yet answered the objection of
Einstein’s Entwurf paper. Indeed it is nowhere directly mentioned in Nordström’s
paper, although Nordström (1913b, 544) does cite the relevant part of the Entwurf
paper to acknowledge Einstein’s priority concerning the expression for the gravita-
tional source density in equation (38). However at least the second, third and fourth
parts of Nordström (1913b) are devoted implicitly to escaping from Einstein’s objec-
tion. Nordström there developed a model of a spherical electron within his theory and
showed that its size must vary inversely with the gravitational potential  It only
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becomes apparent towards the middle of Section 3 that this result must hold for the
dimensions of all bodies and that this general result provides the escape from Ein-
stein’s objection. The general result is demonstrated by an argument attributed with-
out any citation to Einstein. Since I know of no place where this argument was
published by Einstein and since we know that Nordström was visiting Einstein at the
time of submission of his paper, it is a reasonable supposition that he had the argu-
ment directly from Einstein in person. Since the general result appears only in the
context of this argument, it is a plausible conjecture that the result, as well as its
proof, is due to Einstein. Of course the successful recourse to an unusual kinematical
effect of this type is almost uniquely characteristic of Einstein’s work.

Einstein’s argument takes the Entwurf objection and reduces it to its barest essen-
tials. The violation of energy conservation inferred there depended solely on the
behavior of the massless members of the systems that were oriented transverse to the
direction of the field in which they moved. The transverse members lowered were
stressed and thus were endowed with a gravitational mass so that work was recov-
ered. The transverse members elevated were unstressed so that they had no gravita-
tional mass and no work was required to elevate them. The outcome was a net gain in
energy. Einstein’s new argument considered this effect in a greatly simplified physi-
cal system. Instead of using radiation pressure to stress the transverse members, Ein-
stein now just imagined a single transverse member—a non-deformable rod—
tensioned between vertical rails. The gravitational mass of the rod is increased by the
presence of these stresses. Since the rod expands on falling into the gravitational
field, the rails must diverge and work must be done by the forces that maintain the
tension in the rod. It turns out that this work done exactly matches the work released
by the fall of the extra gravitational mass of the rod due to its stressed state. The out-
come is that no net work is released. In recounting Einstein’s argument, Nordström
makes no mention of Einstein’s Entwurf objection. This is puzzling. It is hard to
imagine that he wished to avoid publicly correcting Einstein when the history of the
whole theory had been a fruitful sequence of objections and correction and this cor-
rection was endorsed and even possibly invented by Einstein. In any case it should
have been clear to a contemporary reader who understood the mechanism of Ein-
stein’s objection that the objection would be blocked by an analogous expansion of
the systems as they fell into the gravitational field. Certainly Einstein (1913, 1253), a
few months later, reported that his Entwurf objection failed because of the tacit
assumption of the constancy of dimensions of the systems as they move to regions of
different potential.58

58 He gives no further analysis. It is clear, however, that as the mirrored box is lowered into the field and
expands, work would be done by the radiation pressure on its walls. It will be clear from the ensuing
analysis that this work would reduce the total energy of the radiation by exactly the work released by
the lowering of the gravitational mass of the system. Thus when the radiation is elevated in the mir-
rored shaft the radiation energy recovered would be diminished by exactly the amount needed to pre-
serve conservation of energy in the entire cycle.
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Einstein’s argument actually establishes that the requirement of energy conserva-
tion for such cycles necessitates a presumed isotropic expansion of linear dimensions
to be in inverse proportion to the gravitational potential  Nordström’s report of
the argument reads:

Herr Einstein has proved that the dependence in the theory developed here of the length
dimensions of a body on the gravitational potential must be a general property of matter.
He has shown that otherwise it would be possible to construct an apparatus with which
one could pump energy out of the gravitational field. In Einstein’s example one considers
a non-deformable rod that can be tensioned moveably between two vertical rails. One
could let the rod fall stressed, then relax it and raise it again. The rod has a greater weight
when stressed than unstressed, and therefore it would provide greater work than would
be consumed in raising the unstressed rod. However because of the lengthening of the
rod in falling, the rails must diverge and the excess work in falling will be consumed
again as the work of the tensioning forces on the ends of the rod.

Let  be the total stress (stress times cross-sectional area) of the rod and  its length.
Because of the stress, the gravitational mass of the rod is increased by59

In falling [an infinitesimal distance in which the potential changes by  and the
length of the rod by  this gravitational mass provides the extra work

However at the same time at the ends of the rod the work is lost [to forces stressing the
rod]. Setting equal these two expressions provides

which yields on integration

[(45)]

This, however, corresponds with [Nordström’s] equation (25a) [the potential dependence
of the radius of the electron].60

59 [JDN] To see this, align the  axis of the rest frame with the rod. The only non-vanishing component
of  is  which is the stress (per unit area) in the rod. Therefore, from (38) and (41), the gravi-
tational mass

60 A footnote here considers a complication that need not concern us. It reads:
If the rod is deformable, in stressing it, some work will be expended and the rest energy of the rod will be
correspondingly increased. Thereby the weight also experiences an increase, which provides the added
work  in falling. However, since in falling the rest energy diminishes, the work recovered in relaxing
the rod is smaller than that consumed at the stressing and the difference amounts to exactly 
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This result (45) was just one of a series of dependencies of basic physical quantities
on gravitational potential. In preparation in Section 2 for his analysis of the electron,
Nordström had already demonstrated that the inertial mass  of a complete station-
ary system varied in proportion to the external gravitational potential 

(46)

whereas the gravitational mass of the system  was independent of  The proof
considered the special case of a complete stationary system for which the external
field  would be uniform over some sphere at sufficient distance from the system
and directed perpendicular to the sphere. We might note that a complete stationary
system of finite size within a constant potential field would have this property. He
then imagined that the external field  is altered by a slow displacement of yet
more distant masses. He could read directly from the expression for the stress energy
tensor of the gravitational field what was the resulting energy flow through the sphere
enclosing the system and from this infer the alteration in total energy and therefore
mass of the system. The result (46) followed immediately and from it the constancy
of  through (44).61 Calling on (45), (46) and other specific results in his analysis
of the electron, Nordström was able to infer dependencies on gravitational potential
for the stress  in the electron’s surface, the gravitational source density  and the
stress tensor 

Finally, after these results had been established, the entire Section 5 was given to
establishing that the time of a process  would depend on the potential  according
to

(47)

In particular it followed from this result that the wave lengths of spectral lines
depends on the gravitational potential. Nordström reported that the wavelength of
light from the sun’s surface would be increased by one part in two million. He contin-
ued to report that “The same—possibly even observable—shift is given by several
other new theories of gravitation.” (p. 549) While he gave no citation, modern readers
need hardly be told that all of Einstein’s theories of gravitation from this period give
this effect, including his 1907–1912 scalar theory of static fields, his Entwurf form of
general relativity and the final 1915 generally covariant version of the theory. The
very numerical value that Nordström reported—one part in two million—was first
reported in Einstein’s earliest publication on gravitation, (Einstein 1907a, 459).

61 On pp. 545–46, he showed that, for a complete stationary system, the external potential  varied in
direct proportion to the potential  at some arbitrary point within the system, so that  and 
could be used interchangeably in expressing the proportionalities of the form of (45), (46) and (47).
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Nordström devoted some effort to the proof of (47). He noted that it followed
immediately from (45) and the constancy of the velocity of light for the time taken by
a light signal traversing a a rod. Anxious to show that it held for other systems, he
considered a small mass orbiting another larger mass  in a circular orbit of radius

 within an external potential field  The analysis proved very simple since the
speed of the small mass, its inertial mass and the potential along its trajectory were all
constant with time. He showed that its orbital period  satisfied

(48)

As the potential  varies,  remains constant according to (45). Therefore the
equality requires that  vary in direct proportion to  from which it follows that 
satisfies (47). Again he showed the same effect for the period of a simple harmonic
oscillator of small amplitude.

12.3 Applications of Nordström’s Second Theory:
The Spherical Electron and Free Fall

So far we have seen the content of Nordström’s second theory and how he established
its coherence. The paper also contained two interesting applications of the theory. The
first was an analysis of a spherical electron given in his Section 3. It turned out to yield
an especially pretty illustration of the result that a gravitational mass is associated with
a stress. For the entire gravitational mass of Nordström’s electron proves to be due to
an internal stress. The electron was modelled as a massless shell carrying a charge dis-
tributed on its surface. (See Appendix for details.) The shell must be stressed to pre-
vent mechanical disintegration of the electron due to repulsive forces between parts of
the charge distribution. The electric field does not contribute to the electron’s gravita-
tional mass since the trace of its stress-energy tensor vanishes. Since the shell itself is
massless it also does not contribute to the gravitational mass when unstressed. How-
ever, when stressed in reaction to the repulsive electric forces, it acquires a gravita-
tional mass which comprises the entire gravitational mass of the electron.

Nordström’s model of the electron was not self contained in the sense that it
required only known theories of electricity and gravitation. Like other theories of the
electron at this time, it had to posit that the stability of the electron depended on the
presence of a stress bearing shell whose properties were largely unknown. While one
might hope that the attractive forces of gravitation would replace this stabilizing
shell, that was not the case in Nordström’s electron. Rather he was superimposing the
effects of gravitation on a standard model of the electron.62

62 We can see the Nordström had no real hope of eliminating this shell with gravitational attraction. For
the electric field by itself generates no gravitational field in his theory. Another element must be
present in the structure of the electron if gravitational forces are to arise.
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The second illustration was an analysis in his final Section 7 of the motion in free
fall of a complete stationary system. In particular, Nordström was concerned to deter-
mine just how close this motion was to the corresponding motion of a point mass.
The results were not entirely satisfactory. He was able to show that complete station-
ary systems fell like point masses only for the case of a homogeneous external gravi-
tational field, that is, one whose potential was a linear function of all four coordinates

 He showed that a complete stationary system of mass  falling with
four velocity  in a homogeneous external field  obeys equations of motion

(49)

which corresponded to the equations (13) for a point mass in his first theory, except-
ing the added factor  Allowing that the mass  varies inversely with 
through equation (46), it follows that explicit mention of the mass  can be elimi-
nated from these equations of motion which become63

Nordström’s concern was clearly still Einstein’s original objection to this first theory
recounted above in Section 7. A body rotating about its axis of symmetry could form
a complete stationary system. He could now conclude that such a body would fall
exactly as if it had no rotation, contrary, as he noted, to the result of his earlier theory.
Also, he concluded without further discussion that molecular motions would have no
influence on free fall. However, the vertical acceleration of free fall would continue to
be slowed by its initial velocity according to (19) of his first theory.

We might observe that stresses would play a key role in the cases of the rotating
body and the kinetic gas. The rotating body would be stressed to balance centrifugal
forces and the walls containing a kinetic gas of molecules would be stressed by the
forces of the gas pressure. These stresses would add to the gravitational mass of the
spinning body and the contained gas allowing them to fall independently of their
internal motions. No such compensating stresses would be present in the case of a
point mass or a complete stationary system projected horizontally, so they would fall
slower due to their horizontal velocity.

Thus, while Nordström’s theory finally satisfied the requirement of equality of
inertial and gravitational mass in Einstein’s sense, it still did not satisfy the require-
ment that all bodies fall alike in a gravitational field. This Einstein (1911, § 1) called
“Galileo’s principle,” elsewhere (1913, 1251) citing it as the fact of experience sup-
porting the equality of inertial and gravitational mass. Galileo’s principle held only
under rather restricted conditions: the system must be in vertical fall and in a homo-
geneous field.64 At least, however, he could report that Einstein had extended the

63 I have corrected Nordström’s incorrect “+” to “–” on the right-hand side.
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result to systems that were not complete stationary systems. He had shown that the
average acceleration of an elastically oscillating system accorded with (19). Since
this last result is nowhere reported in Einstein’s publications, we must assume that he
had it directly from Einstein.

Finally, in the course of his exposition, Nordström could note that the mass depen-
dence on  of relation (46) now replaces the corresponding condition (15) of his first

theory. The new variable factor of  in the in the equation of motion

(49) causes (14) to be replaced by  which integrates to yield (46).

13. EINSTEIN FINALLY APPROVES:
THE VIENNA LECTURE OF SEPTEMBER 1913

In September 1913, Einstein attended the 85th Congress of the German Natural Sci-
entists and Physicians. There he spoke on the subject of the current state of the prob-
lem of gravitation, giving a presentation of his new Entwurf theory and engaging in
fairly sharp dispute in discussion. A text for this lecture with ensuing discussion was
published in the December issue of Physikalische Zeitschrift (Einstein 1913). Ein-
stein made clear (p. 1250) his preference for Nordström’s theory over other gravita-
tion theories, including Abraham’s and Mie’s. Nordström’s latest version of his
gravitation theory was the only competitor to Einstein’s own new Entwurf theory sat-
isfying four requirements that could be asked of such gravitation theories:

1. “Satisfaction of the conservation law of momentum and energy;”

2. “Equality of inertial and gravitational masses of closed systems;”

3. Reduction to special relativity as a limiting case;

4. Independence of observable natural laws from the absolute value of the gravitational
potential.

What Einstein did not say was that the satisfaction of 1. and 2. by Nordström’s theory
was due in significant measure to Einstein’s pressure on Nordström and Einstein’s
own suggestions.

Einstein devoted a sizeable part of his lecture to Nordström’s theory, giving a self-
contained exposition of it in his Section 3. That exposition was a beautiful illustration
of Einstein’s ability to reduce the complex to its barest essentials and beyond. He
simplified Nordström’s development in many ways, most notably:

64 One might think that this would give Einstein grounds for rejecting the competing Nordström theory
in favor of his own Entwurf theory. At the appropriate place, however, Einstein (1913, 1254) did not
attack Nordström on these grounds. Perhaps that was for the better since it eventually turned out that
general relativity fared no better. In general relativity, for example, a rotating body falls differently, in
general, from a non-rotating body. See (Papapetrou 1951; Corinaldesi and Papapetrou 1951).
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• Einstein selected the natural gauge (43) for the potential  writing the resulting
potential without the prime as 

• Einstein eradicated the implicit potential dependence of the mass  in (46), using
a new mass  which did not vary with potential. This meant that Einstein’s 
coincided with the gravitational mass, not the inertial mass of a body.

To begin, Einstein used as the starting point the “Hamiltonian” equation of motion (36)
which he had first recommended in Section 7 of his Entwurf paper. Using coordinates

 he wrote this equation of motion of a mass  as

(50)

where

Here  is the coordinate three-speed and  is the Minkowski interval given by

(51)

Since Einstein varied the three spatial coordinates of the particle trajectory  the

resulting equation of motion governed the three-velocity 

It also followed that the momentum (increased by a multiplicative factor   and
the conserved energy  were given by

In particular, one could read directly from these formulae that the inertial mass of a
body of mass  at rest is given by  and that its energy is 

Einstein then introduced the notion that had rescued Nordström’s theory from his
own recent attack: directly measured lengths and times might not coincide with those
given by the Minkowski line element (51). He called the former quantities “natural”
and indicated them with a subscript 0. He called the latter “coordinate” quantities.
The magnitude of the effect was represented by a factor  which would be a function
of  and was defined by

(52)

Allowing for the dependence of energy on  and the effects of the factor  Einstein
developed an expression for the stress-energy tensor  of “flowing, incoherent
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matter”—we would now say “pressureless dust”—in terms of its natural mass density
 and the corresponding gravitational force density 

The two quantities were related by the familiar conservation law

The next task was to re-express this conservation law in terms of the trace  of the
stress-energy tensor. Mentioning Laue’s work, Einstein remarked that this quantity
was the only choice for the quantity measuring the gravitational source density. For
the special case of incoherent matter,  so that the conservation law
took on a form independent of the special quantities involved in the case of incoher-
ent matter flow

(53)

Einstein announced what was really an assumption: this form of the law governed
arbitrary types of matter as well.

This general form of the conservation law allowed Einstein to display the satisfac-
tion by the theory of the second requirement he had listed. That was the equality of
inertial and gravitational masses of closed systems. His purpose in including the
additional words “closed systems” now became clear. In effect he meant by them
Laue’s complete static systems. His demonstration of the satisfaction of this result
was admirably brief but damnably imprecise, compared to the careful attention Nord-
ström had lavished on the same point. Einstein simply assumed that he had a system

over whose spatial extension there was little variation in the  term 

on the right hand side of (53). An integration of (53) over the spatial volume  of
such a system revealed that the four-force acting on the body is

where the terms in   and  were eliminated by Laue’s basic result (29).
Since  is the negative of the total energy of the system, Einstein felt justified
to conclude: “Thereby is proven that the weight of a closed system is determined by
its total measure [of energy].” Einstein’s readers might well doubt this conclusion and
suspect that the case of constant  considered was a special case that may not be rep-
resentative of the general case. Fortunately such readers could consult (Nordström
1913b) for a more precise treatment.
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In his lecture, Einstein was seeking to give an exposition of both Nordström’s and
his new theory of gravitation and reasons for deciding between them. Thus we might
anticipate that he had to cut corners somewhere. And that place turned out to be the
singular novelty of Nordström’s theory in 1913, the potential dependence of lengths
and times. His introduction of this effect and concomitant retraction of his Entwurf
objection was so brief that only someone who had followed the story closely and read
the report of Einstein’s argument in (Nordström 1913b) could follow it. Virtually all
he had to say lay in a short paragraph (p. 1253):

Further, equation [(53)] allows us to determine the function [ω] of ϕ left undetermined
from the physical assumption that no work can be gained from a static gravitational field
through a cyclical process. In § 7 of my jointly published work on gravitation with Herr
Grossmann I generated a contradiction between the scalar theory and the fundamental
law mentioned. But I was there proceeding from the tacit assumption that ω = const[ant].
The contradiction is resolved, however, as is easy to show, if one sets65

or

[(54)]

We will give yet a second substantiation for this stipulation later.

That second substantiation followed shortly, immediately after Einstein had given the
field equation of Nordström’s theory. He considered two clocks. The first was a “light
clock,” a rod of length  with mirrors at either end and a light signal propagating in
a vacuum and reflected between them. The second was a “gravitation clock,” two
gravitationally bound masses orbiting about one another at constant distance  He
gave no explicit analysis of these clocks. His only remark on their behavior was that
their relative speed is independent of the absolute value of the gravitational potential,
in accord with the fourth of the requirements he had laid out earlier for gravitation
theories. This, he concluded, “is an indirect confirmation of the expression for 
given in equation [(54)].”

Einstein’s readers would have had to fill in quite a few details here. Clearly the
dependence of  on the potential would cause the period of the light clock also to
vary according to (47). But readers would also need to know of the analysis of the
gravitation clock given by (Nordström 1913b) which led to (48) above and the same
dependence on potential for the clock’s period. Thus the dependence of both periods
is the same so that the relative rate of the two clocks remains the same as the external
potential changes. Had this result been otherwise, the fourth requirement would have
been violated. That it was not presumably displays the coherence of the theory and
thereby provides the “indirect confirmation.” Curiously Einstein seems not to be

65   is defined earlier as the length of a body. This retraction is also mentioned more briefly (p. 261) in
the addendum to the later printing of (Einstein and Grossmann 1913) in the Zeitschrift.
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making the obvious point that his equations (52) and (54) together yield the same
potential dependence for periodic processes as follows from the behavior of these
two clocks—or perhaps he deemed that point too obvious to mention.

The final component of the theory was its field equation. Recalling that “Laue’s
scalar” must enter into this equation, Einstein simply announced it to be

(55)

It became apparent that the additional factor of  on the right hand side was included
to ensure compatibility with the conservation of energy and momentum.66 To display
this compatibility he noted that stress-energy tensor  of the gravitational field is 

This tensor satisfies the equalities

The first depends on substitution of  by the field equation and the second holds
identically. Substituting into the conservation law (53) yields an expression for the
joint conservation of gravitational and non-gravitational energy momentum,67

All that remained for Einstein was to give his reasons for not accepting Nordström’s
theory. In our time, of course, the theory is deemed an empirical failure because it
does not predict any deflection of a light ray by a gravitational field and does not
explain the anomalous motion of Mercury. However in late 1913, there had been no
celebrated eclipse expeditions and Einstein’s own Entwurf theory also did not explain
the anomalous motion of Mercury. Thus Einstein’s sole objection to the theory was
not decisive, although we should not underestimate its importance to Einstein.
According to Nordström’s theory, the inertia of a body with mass  was 

66 Although Einstein does not make this point, it is helpful to divide both sides by  and look upon
 as the gravitational source density. The trace  represents the mass-energy density and

division by  cancels out this density’s  dependence to return the gravitational mass density.
67 As Michel Janssen has repeatedly emphasized to me, Einstein’s analysis is a minor variant of the

method he described and used to generate the field equations of his Entwurf theory. Had Einstein
begun with the identity mentioned, the expression for  and the conservation law (53), a reversal of
the steps of Einstein’s argument would generate the field equation. For further discussion of Einstein’s
method, see (Norton 1995).
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Therefore, as the gravitational field in the neighborhood of the body was intensified
by, for example, bringing other masses closer, the inertia of the body would actually
decrease. This was incompatible with Einstein’s idea of the “relativity of inertia”
according to which the inertia of a body was caused by the remaining bodies of the
universe, the precursor of what he later called “Mach’s Principle.” This deficiency
enabled Einstein to ask after the possibility of extending the principle of relativity to
accelerated motion, to see the real significance of the equality of inertial and gravita-
tional mass in his principle of equivalence (which was not satisfied by Nordström’s
theory) and to develop his Entwurf theory.

14. EINSTEIN AND FOKKER: GRAVITATION IN NORDSTRÖM’S
THEORY AS SPACETIME CURVATURE

It was clear by the time of Einstein’s Vienna lecture that Nordström’s most conserva-
tive of approaches to gravitation had led to a something more than a conservative
Lorentz covariant theory of gravitation, for it had become a theory with kinematical
effects very similar to those of Einstein’s general theory of relativity. Gravitational
fields would slow clocks and alter the lengths of rods. All that remained was the task
of showing just how close Nordström’s theory had come to Einstein’s theory. This
task was carried out by Einstein in collaboration with a student of Lorentz’, Adriaan
D. Fokker, who visited Einstein in Zurich in the winter semester of 1913–1914 (Pais
1982, 487). Their joint (Einstein and Fokker 1914), submitted on February 19, 1914,
was devoted to establishing essentially one result, namely, in modern language, Nor-
dström’s theory was actually the theory of a spacetime that was only conformal to a
Minkowski spacetime with the gravitational potential the conformal factor, so that the
presence of a gravitational field coincided with deviations of the spacetime from flat-
ness. That, of course, was not how Einstein and Fokker described the result. Their
purpose, as they explained in the title and introduction of the paper, was to apply the
new mathematical methods of Einstein’s Entwurf theory to Nordström’s theory.
These methods were the “absolute differential calculus” of Ricci and Levi-Civita
(1901). They enabled a dramatic simplification of Nordström’s theory. It will be con-
venient here to summarize the content of the theory from this new perspective as
residing in three basic assumptions:

I. Spacetime admits preferred coordinate systems 
in which the spacetime interval is given by

(56)

and in which the trajectory of point masses in free fall is given by

That such a characterization of the spacetime of Nordström’s theory is possible is
implicit in Einstein’s Vienna lecture. In fact, once one knows the proportionality of
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 and  the characterization can be read without calculation from Einstein’s
expression (52) for the natural proper time and the equation of motion (50). Einstein
and Fokker emphasized that the preferred coordinate systems are ones in which the
postulate of the constancy of the velocity of light obtains. For, along a light beam

 so that

We see here in simplest form the failure of the theory to yield a deflection of a light
beam in a gravitational field. This failure is already evident, of course, from the fact
that a light beam has no gravitational mass since the trace of its stress-energy tensor
vanishes.

II. The conservation of gravitational and non-gravitational energy momentum is
given by the requirement of the vanishing of the covariant divergence of the
stress-energy tensor  for non-gravitational matter. At this time, Einstein pre-
ferred to write this condition as68

since they could interpret the term on the right hand side as representing the grav-
itational force density.

Noting, as Einstein and Fokker did on pp. 322–23, that the  of the Vienna lecture
corresponds to the tensor density  of the new development, they evaluated this
conservation law in the preferred coordinate systems of I. It yielded the form of the
conservation law (53) of the Vienna lecture.

Finally Einstein and Fokker turned to the field equation which was to have the
form

where  is a constant. The quantity  had to be a scalar representing material pro-
cesses. In the light of the earlier discussion, we know there was only one viable

choice, the trace of the stress-energy tensor  For the quantity 

which must be constructed from the metric tensor and its derivatives, they reported
that the researches of mathematicians allowed only one quantity to be considered, the
full contraction of the Riemann-Christoffel tensor  of the fourth rank, where

68 Here Einstein had not yet begun to use modern notational conventions. Summation over repeated indi-
ces is not implied. All indices are written as subscript so that  is the fully contravariant form of the
metric, which we would now write as   is the mixed tensor density which we could now
write as 
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they allowed  and  to vary over 1, 2, 3 and 4. This assumed that the second

derivative of  enters linearly into the equation. Therefore we have:

III. The gravitational field satisfies the field equation which asserts the proportion-
ality of the fully contracted Riemann-Christoffel tensor and the trace of the stress
energy tensor

Evaluation of this field equation in the preferred coordinate systems of I. yields the
field equation (55) of the Vienna lecture.

Einstein and Fokker were clearly and justifiably very pleased at the ease with
which the methods of the Entwurf theory had allowed generation of Nordström’s the-
ory. In the paper’s introduction they had promised to show that (p. 321)

... one arrives at Nordström’s theory instead of the Einstein-Grossmann theory if one
makes the single assumption that it is possible to choose preferred reference systems in
such a way that the principle of the constancy of the velocity of light obtains.

Their concluding remarks shine with the glow of their success when they boast that
(p. 328)

... one can arrive at Nordström’s theory from the foundation of the principle of the con-
stancy of the velocity of light through purely formal considerations, i.e. without assis-
tance of further physical hypotheses. Therefore it seems to us that this theory earns
preference over all other gravitation theories that retain this principle. From the physical
stand point, this is all the more the case, as this theory achieves strict satisfaction of the
equality of inertial and gravitational mass.

Of course Einstein retained his objection that Nordström’s theory violates the
requirement of the relativity of inertia.69 The new formulation gives us vivid demon-
stration of this failure: the disposition of the preferred coordinate systems of I. will be
entirely unaffected by the distribution of matter in spacetime. Einstein must then
surely have been unaware that it would prove possible to give a generally covariant
formulation of Nordström’s theory on the basis of Weyl’s work (Weyl 1918). The
requirement that the preferred coordinate systems of I. exist could be replaced by the
generally covariant requirement of the vanishing of the conformal curvature tensor.
This formal trick, however, does not alter the theory’s violation of the relativity of
inertia and the presence of preferred coordinate systems in it.

There remained a great irony in Einstein and Fokker’s paper, which their readers
would discover within two short years. While the existence of preferred coordinate
systems was held against the Nordström theory, Einstein’s own Entwurf theory was

69 As we know from lecture notes taken by a student, Walter Dallenbach, (EA 4 008, 41-42), Einstein in
his teaching at the ETH in Zurich at this time included the claim that one arrives at the Nordström the-
ory merely by assuming there are specialized coordinate system in which the speed of light is con-
stant.There he remarks that this theory violates the relativity of inertia.
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not itself generally covariant and would not be until November 1915, when Einstein
would disclose the modern field equations to the Prussian Academy. Einstein and
Grossmann (1913) had settled upon gravitational field equations which were not gen-
erally covariant. We now know that the generally covariant field equations of the
completed general theory of relativity can be derived by means of the Riemann-
Christoffel tensor through an argument very similar to the one used to arrive at the
generally covariant form of the field equation of the Nordström theory. Einstein and
Grossmann had considered and rejected this possibility in § 4.2 of Grossmann’s part
of their joint paper. The obvious ease with which consideration of the Riemann-
Christoffel tensor led to the field equation of Nordström’s theory clearly gave Ein-
stein an occasion to rethink that rejection. For Einstein and Fokker’s paper concluded
with the tantalizing remark that the reasons given in Grossmann’s § 4 of their joint
paper against such a connection did not withstand further examination. Whatever
doubt this raised in Einstein’s mind seem to have subsided by March 1914, at which
time he reported in a letter to this confidant Michele Besso that the “general theory of
invariants functioned only as a hindrance” in construction of his system
(Speziali 1972, 53).

Thus the conservative path struck by Nordström and Einstein led not just to the
connection between gravitation and spacetime curvature but to the first successful
field equation which set an expression in the Riemann-Christoffel curvature tensor
proportional to one in the stress-energy tensor of matter.

15. WHAT EINSTEIN KNEW IN 1912

Einstein and Fokker’s characterization in 1914 of the Nordström theory gives us a
convenient vantage point from which to view Einstein’s theory of 1912 for static grav-
itational fields. In particular we can see clearly that this theory already contained
many of the components that would be assembled to form Nordström’s theory. Indeed
we shall see that Einstein’s theory came very close to Nordström’s theory. However
we shall also see that a vital component was missing—the use of the stress-energy
tensor and Laue’s work on complete static systems. This component enables a scalar
Lorentz covariant theory of gravitation to satisfy some version of the requirement of
the equality of inertial and gravitational mass. We must already suspect that Einstein
was unaware of this possibility prior to his August 1912 move to Zurich for his July
1912 response to Abraham (Einstein 1912d), quoted in Section 4 above, purports to
show that no Lorentz covariant theory of gravitation could satisfy this requirement.

Einstein (1912a, 1912b) was the fullest development of a relativistic theory of
static gravitational fields based on the principle of equivalence and in which the grav-
itational potential was the speed of light  By Einstein’s own account the following
year (Einstein and Grossmann 1913, I, § 1, § 2), the theory was actually a theory of a
spacetime with the line element

(57)
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where  is now a function of  and  and behaves as a gravitational potential.
Einstein (1912a, 360) offered the field equation

(58)

where  is a constant and  the rest density of matter.70 What Einstein did not men-
tion in his Entwurf reformulation of the 1912 theory was that this field equation cor-
responded to the generally covariant field equation

where  is the fully contracted Riemann-Christoffel tensor and  the trace of the
stress–energy tensor, in the case of an unstressed, static matter distribution. This is
exactly the field equation of Nordström’s theory!

This field equation (58) had an extremely short life, for in (Einstein 1912b, § 4), a
paper submitted to Annalen der Physik on March 23, 1912, just a month after Febru-
ary 26, when he had submitted (Einstein 1912a), he revealed the disaster that had
befallen his theory and would lead him to retract this field equation. Within the theory
the force density  on a matter distribution  at rest is

Einstein conjoined this innocuous result with the field equation (58) and applied it to
a system of masses at rest held together in a rigid massless frame within a space in
which  approached a constant value at spatial infinity. He concluded that the total
gravitational force on the frame

in general does not vanish. That is, the resultant of the gravitational forces exerted by
the bodies on one another does not vanish. Therefore the system will set itself into
motion, a violation of the equality of action and reaction, as Einstein pointed out. In
effect the difficulty lay in the theory’s failure to admit a gravitational field stress ten-
sor, for the gravitational force density  is equal to the divergence of this tensor. Were
the tensor to be definable in Einstein’s theory, that fact alone, through a standard appli-
cation of Gauss’ theorem, would make the net resultant force on the system vanish.71

Einstein then proceeded to consider a number of escapes from this disaster. The
second and third escapes involved modifications to the force law and the field equa-
tion. The former failed but the latter proved workable. Einstein augmented the source
density  of (58) with a term in 

70 The factor of  on the right hand side of this otherwise entirely classical equation is introduced in
order to leave  undetermined by a multiplicative gauge factor rather than an additive one.
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The extra term was constructed to allow the formation of a gravitational field stress
tensor and the conclusion that there would be no net force on the system of masses.
Einstein was especially pleased to find that this extra term proved to represent the
gravitational field energy density so that the source term of the field equation was
now the total energy density of the system, gravitational and non-gravitational.72

For our purposes what is most interesting is the first escape that Einstein consid-
ered and rejected. Mentioning vaguely “results of the old theory of relativity,” he con-
sidered the possibility that the stressed frame of the system might have a gravitational
mass. That possibility was dismissed however with an argument that is surprising to
those familiar with his work of the following year: that possibility would violate the
equality of inertial and gravitational mass! Einstein considered a box with mirrored
walls containing radiation of energy  He concluded from his theory that, if the box
were sufficiently small, the radiation would exert a net force on the walls of the box
of –  He continued (Einstein 1912b, 453):

This sum of forces must be equal to the resultant of forces which the gravitational field
exerts on the whole system (box together with radiation), if the box is massless and if the
circumstance that the box walls are subject to stresses as a result of the radiation pressure
does not have the consequence that the gravitational field acts on the box walls. Were the
latter the case, then the resultant of the forces exerted by the gravitational field on the box
(together with its contents) would be different from the value –  i.e. the gravita-
tional mass of the system would be different from 

71 Writing  for the quantity that comes closest to the stress tensor,

we have the following in place of the standard derivation of the stress tensor (analogous to the deriva-

tion of (39)). Substituting field equation (58) into the expression for  we recover:

The first term of the final sum is a divergence which would vanish by Gauss’ theorem when integrated
over the space containing the masses of the frame, leaving no net force. The problem comes from the

second term, which is present only because of the factor of  on the source side of the field equation

(58). In this integration it will not vanish in general, leaving the residual force on the masses. The
need to eliminate this second term also dictates the precise form of the modification to the field equa-

tion that Einstein ultimately adopted. When the field equation source  was augmented to become

 this second term no longer arose in the above expression for 

72 However Einstein was disturbed to find that the new field equation only allowed his principle of
equivalence to apply to infinitesimally small parts of space. See (Norton 1985, § 4.2, § 4.3).
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Einstein could not have written this were he aware of the relevant properties of
“Laue’s scalar”  As Einstein himself showed the following year, the use of  as
the gravitational source density in exactly this example of radiation enclosed in a mir-
rored cavity allowed one to infer both that the walls of the cavity acquired a gravita-
tional mass because of their stressed state and that the gravitational mass of the entire
system was given by its total energy. We must then take Einstein at his word and con-
clude that he learned of these properties of  from Laue. Presumably this means
after his move to Zurich in August 1912 where Laue also was, and after completion
of his work on his scalar theory of static gravitational fields in 1912.

Had Einstein been aware of these results earlier in 1912, they would probably not
have pleased him in the long run. To begin, he did believe at the time of writing the
Entwurf paper that the selection of  as the gravitational source density in a scalar
theory of gravitation led to a contradiction with the conservation of energy. Had he
seen past this to its resolution in the gravitational potential dependence of lengths he
would have arrived at a most remarkable outcome: his theory of 1912 would have
become exactly Nordström’s final theory! As we saw above, his first field equation of
1912 was already equivalent to Nordström’s final field equation in covariant terms.
His equation of motion for a mass point was already the geodesic equation for a
spacetime with the line element (57). This line element already entailed a dependence
of times on the gravitational potential. The consistent use of Laue’s scalar  as a
source density would finally have led to a similar dependence for spatial length so
that the line element (57) would be replaced by Nordström’s (56). Since the
expressed purpose of Einstein’s 1912 theory was to extend the principle of relativity,
this out come would not have been a happy one for Einstein. For his path would have
led him to a theory which entailed the existence of coordinate systems in which the
speed of light was globally constant. That is, the theory had resurrected the special
coordinate systems of special relativity.

16. THE FALL OF NORDSTRÖM’S THEORY OF GRAVITATION

Revealing as Einstein and Fokker’s formulation of the theory had been, Nordström
himself clearly did not see it as figuring in the future development of his theory.
Rather, Nordström embedded his 1913 formulation of his gravitation theory in his
rather short lived attempts to generate a unified theory of electricity and gravitation
within a five dimensional spacetime (Nordström 1914c, 1914d, 1915). Other work on
the theory in this period was devoted to developing a clearer picture of the behavior
of bodies in free fall and planetary motion according to the theory. Behacker (1913)
had computed this behavior for Nordström’s first theory and (Nordström 1914a) per-
formed the same service for his second theory. In both cases the behavior demanded
by the theories was judged to be in complete agreement with experience.

Nordström also had to defend his theory from an attack by Gustav Mie. Mie had
made painfully clear in the discussion following Einstein’s Vienna lecture of 1913
(published in Physikalische Zeitschrift, 14, 1262–66) that he was outraged over Ein-
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stein’s failure even to discuss Mie’s own theory of gravitation in the lecture. Einstein
explained that this omission derived from the failure of Mie’s theory to satisfy the
requirement of the equality of inertial and gravitational mass. Mie counterattacked
with a two part assault (Mie 1914) on Einstein’s theory. In an appendix (§10) Mie
turned his fire upon Nordström’s theory, claiming that it violated the principle of
energy conservation. Nordström’s (1914b) response was that Mie had erroneously
inferred the contradiction within Nordström’s theory by improperly importing a
result from Mie’s own theory into the derivation. Laue (1917, 310–13) pointed to
errors on both sides of this dispute.

However it was not Mie’s theory that led to the demise of Nordström’s theory.
Rather it was the rising fortunes of Einstein’s general theory of relativity. Einstein
completed the theory in a series of papers submitted to the Prussian Academy in
November 1915. Within a few years, with the success of Eddington’s eclipse expedi-
tion, Einstein had become a celebrity and his theory of gravitation eclipsed all others.
One of the papers from that November 1915 (Einstein 1915) reported the bewitching
success of the new theory in explaining the anomalous motion of Mercury. This suc-
cess set new standards of empirical adequacy for gravitation theories. Prior to this
paper, the pronouncements of a gravitation theory on the minutia of planetary orbits
were not deemed the ultimate test of a new theory of gravitation. Einstein’s own Ent-
wurf theory failed to account for the anomalous motion of Mercury. Yet this failure is
not mentioned in Einstein’s publications from this period and one cannot even tell
from these publications whether he was then aware of it. Thus the treatment in (Nor-
dström 1914a) of the empirical adequacy of his theory to observed planetary motions
was entirely appropriate by the standards of 1914. He showed that his theory pre-
dicted a very slow retardation of the major axis of a planet’s elliptical orbit. Comput-
ing this effect for the Earth’s motion he found it to be 0.0065 seconds of arc per year,
which could be dismissed as “very small in relation to the astronomical perturbations
[due to other planets]” (p.1109) Thus he could proceed to the overall conclusion (p.
1109) that

 ... the laws derived for [free] fall and planetary motion are in the best agreement with
experience [my emphasis]

Standards had changed so much by the time of Laue’s (1917) review article on the
Nordström theory that even motions much smaller than the planetary perturbations
were decisive in the evaluation of a gravitation theory. Einstein’s celebrated 43 sec-
onds of arc per century advance of Mercury’s perihelion is less than a tenth of the
perihelion motion due to perturbations from the other planets. Laue (p. 305) derived a
formula for the predicted retardation—not advance—of a planet’s perihelion. With-
out even bothering to substitute values into the formula he lamented

Therefore the perihelion moves opposite to the sense of rotation of the orbit. In the case
of Mercury, the impossibility of explaining its perihelion motion with this calculation
lies already in this difference of sign concerning the perihelion motion.
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Through this period, Nordström’s theory had its sympathizers and the most nota-
ble of these was Laue himself.73 He clearly retained this sympathy when he wrote the
lengthy review article, (Laue 1917). Einstein’s theory had become so influential by
this time that Laue introduced the review with over four pages of discussion of Ein-
stein’s theory (pp. 266–70). That discussion conceded that Einstein’s theory had
attracted the most adherents of any relativistic gravitation theory. It also contained
almost two pages of continuous and direct quotation from Einstein himself, as well as
discussion of the epistemological and empirical foundations of Einstein’ s theory. His
discussion was not the most up-to-date, for he reported Einstein’s Entwurf 0.84 sec-
onds of arc deflection for a ray of starlight grazing the sun, rather than the figure of
1.7 of the final theory of 1915. All this drove to the conclusion that there were no
decisive grounds for accepting Einstein’s theory and provided Laue with the opportu-
nity to review a gravitation theory based on special relativity, Nordström’s theory,
which he felt had received less attention than it deserved.

The fall of Nordström’s theory was complete by 1921. By this time even Laue had
defected. In that year he published a second volume on general relativity to accom-
pany his text on special relativity (Laue 1921). On p.17, he gave a kind appraisal of
the virtues and vices of his old love, Nordström’s theory. However he was firm in his
concluding the superiority of Einstein’s theory because of the failure of Nordström’s
theory to yield any gravitational light deflection—a defect, he urged, that must trou-
ble any Lorentz covariant gravitation theory. Laue never lost his affection for the the-
ory and years later took the occasion of Einstein’s 70th birthday to recall the virtues
of Nordström’s theory (Laue 1949). The theory’s obituary appeared in Pauli’s ency-
clopedic distillation of all that was worth knowing in relativity theory (Pauli 1921,
144). He pronounced authoritatively

The theory solves in a logically quite unexceptionable way the problem sketched out
above, of how to bring the Poisson equation and the equation of motion of a particle into
a Lorentz-covariant form. Also, the energy-momentum law and the theorem of the equal-
ity of inertial and gravitational mass are satisfied. If, in spite of this, Nordström’s theory
is not acceptable, this is due, in the first place, to the fact that it does not satisfy the prin-
ciple of general relativity (or at least not in a simple and natural way ...). Secondly, it is
in contradiction with experiment: it does not predict the bending of light rays and gives
the displacement of the perihelion of Mercury with the wrong sign. (It is in agreement
with Einstein’s theory with regard to the red shift.)

He thereby rehearsed generations of physicists to come in the received view of Nord-
ström’s theory and relieved them of the need to investigate its content any further.

73 In a letter of October 10, 1915, to Wien, Mie had identified Laue as an adherent of Nordström’s the-
ory, explaining it through Laue’s supposed failure to read anything else! I am grateful to John Stachel
for this information.
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17. CONCLUSION

The advent of the general theory of relativity was so entirely the work of just one per-
son— Albert Einstein—that we cannot but wonder how long it would have taken
without him for the connection between gravitation and spacetime curvature to be
discovered. What would have happened if there were no Einstein? Few doubt that a
theory much like special relativity would have emerged one way or another from the
researches of Lorentz, Poincaré and others. But where would the problem of relativ-
izing gravitation have led? The saga told here shows how even the most conservative
approach to relativizing gravitation theory still did lead out of Minkowski spacetime
to connect gravitation to a curved spacetime. Unfortunately we still cannot know if
this conclusion would have been drawn rapidly without Einstein’s contribution. For
what led Nordström to the gravitational field dependence of lengths and times was a
very Einsteinian insistence on just the right version of the equality of inertial and
gravitational mass. Unceasingly in Nordström’s ear was the persistent and uncompro-
mising voice of Einstein himself demanding that Nordström see the most distant con-
sequences of his own theory.

APPENDIX: NORDSTRÖM’S MODEL OF THE ELECTRON

Nordström’s (1913b) development of his second theory contains (§ 3) a model of the
electron which accounts for the effect of gravitation. The electron is modelled as a
massless spherical shell of radius  carrying charge  distributed uniformly over its
surface.74 Three types of matter are present: an electric charge and its field; the shell
stressed to balance the repulsive electric forces between different parts of the charge
distribution; and the gravitational field generated by all three types of matter. See Fig-
ure 4. Taking each in turn, we have

74 “Rational” units of charge are used, which means, in effect, that the electrostatic field equation is
 for charge density 

a e

Ψ∆ ρ ,–= ρ .
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Figure 4: Nordström’s Model of the Electron

Electric Charge and its Field

Using familiar results of electrostatics in the rational system of units, the electric
charge  generates an electric potential  at radius  from the center of the shell,
for the case of  which satisfies

The latter value is all that is required to compute the Maxwell stress tensor at an arbi-
trary point on the shell which is representative of all its points due the rotational sym-
metry of the shell. We choose convenient coordinates  for this
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point. We set the origin at the center of the shell, align the  axis with a radial arm
and consider a point on the surface of the shell at which  Writ-
ing  for  we have that the Maxwell stress tensor is75

We read directly from the coefficients of this tensor that the charges of the shell (at
position  are subject to an outwardly directed pressure of magnitude

 which seeks to cause the shell to explode radially outwards. That is, these
charges are subject to a net electric force density given by the negative divergence of
this stress tensor,  With  this force density is of magnitude

 directed radially outward.

Gravitational Field

The stresses in the shell will generate a gravitational field. For the moment, we shall
write the total gravitational mass as  and note that it must be distributed uniformly
over the shell. Since the source gravitational mass is all located in the shell over
which the gravitational potential is constant, the field equation and stress tensor of the
gravitational field reduce to the analogous equations of electrostatics, excepting a
sign change. Thus the gravitational potential for  satisfies

where  is the external gravitational potential. Choosing the same point and coordi-
nate system as in the analysis of the electric field, we find that the gravitational field
stress tensor, as given by the spatial parts of the gravitational stress-energy tensor
(39) is

75 The nonstandard minus sign follows the convention Nordström used in paper of requiring that (force
density) =—(divergence of stress tensor). See (Nordström 1913b, 535, eq. 7).
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This reveals an inwardly directed pressure  which seeks to implode
the shell. That is, the shell is subject to a net gravitational force density given by the
negative divergence of this stress tensor,  With  this force density is of
magnitude  directed radially inwards.

Stressed Shell

The combined effect of both electric and gravitational forces is a net outward pres-
sure on the shell of magnitude

(59)

Mechanical stability is maintained by a tensile stress  in the shell. At the point con-
sidered above in the same coordinate systems, this stress will correspond to a stress
tensor  given by

where  will have a negative value. If this tensile stress is integrated across the thick-
ness of the shell, we recover the tensile force  per unit length active in the shell

The condition for mechanical stability is76

(60)

76 This standard result from the theory of statics can be derived most easily, as Nordström points out, by
considering the pressure forces due to  acting on a hemisphere of the shell. A simple integration
shows this force is  This force must be balanced exactly by the tensile force  along the rim of
the hemisphere. That rim is of length  so the total force is  Setting 
entails the result claimed.
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Computation of gravitational mass  and inertial mass  of the electron

The as yet undetermined gravitational mass  of the electron is now recovered by
combining the results for the three forms of matter. The source density  is deter-
mined by the stress-energy tensor  through equation (38). By assumption, there
is no energy associated with the tensile stress in the shell in its rest frame. Thus in a
rest frame  The spatial components of  are given by the stress tensor

 above. Therefore

We can now recover the gravitational mass  from (41) by integrating over the
shell

We now substitute  in this expression with the condition (60) for mechanical stabil-
ity and thence for  with the condition (59). By means of (42), we can also express

 in terms of  using

After some algebraic manipulation, we recover an implicit expression for 

Since this gravitational mass  of this complete stationary system resides in an
external potential  the total mass of the system satisfies  so that we
have for the rest mass  and rest energy  of the electron

(61)

As Nordström points out of this final result of § 3 of his paper is an extremely satis-
factory one. The total energy of his electron is made up solely of the sum of an elec-
tric component  and a gravitational component  These two
components agree exactly with the corresponding classical values. This agreement is
not a foregone conclusion since the gravitational mass of the electron arises in an
entirely non-classical way: it derives from the fact that the electron shell is stressed.
Presumably this agreement justifies Nordström’s closing remark in his § 3, “Thus the
expression found for m contains a verification of the theory.”

Mg m

Mg
v

T µν

T uu 0.= T µν
T ik

ν
1
c2
----- T xx T yy T zz T uu+ + +( )–

1
c2
-----2 p .–= =

Mg

Mg g Φ( )ν vd∫
g Φ( )

c2
------------8πa2S .= =

S
P

g Φ( ) g Φa( ) ga=

g Φ( )
ga

1
ga

c2
----- Φ Φa–( )+

-------------------------------------
ga

1
ga

c2
-----

Mg

4πa
----------–

------------------------- .= =

Mg

Mg

ga

c2
-----

e2 Mg
2+

8πa
------------------- .=

Mg
Φa, Mg gam,=

m E0

m
E0

c2
------

e2 Mg
2+

8πc2a
------------------- .= =

e2 8πa⁄ Mg
2 8πa.⁄



72 JOHN D. NORTON

In his § 4, Nordström proceeded to use his expression (61) for the mass  of an
electron to introduce the dependence of length on gravitational potential. In accor-
dance with (46), derived in his § 2, the mass  must vary in proportion to the exter-
nal field  in the appropriate gauge. However it was not clear how one could
recover this same variability from the quantities in the expression (61) for  He had
found in § 2 that  is independent of the gravitational potential and he asserted that
the same held for  according to the basic equations of electrodynamics. Thus he
concluded that the radius  of the electron must vary with gravitational potential
according to (45). He then turned to Einstein’ s more general argument for (45).
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