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1. INTRODUCTION
1.1 The Incomplete Revolution

The relativity revolution was far from complete when Einstein published his path-
breaking paper on the electrodynamics of moving bodies in 1905. It started with his
reinterpretation of Lorentz’s theory of electromagnetism in what may be called a
“Copernicus process” in analogy to the transition from the Ptolemaic to the Coperni-
can world system or to the transition from preclassical to classical mechanics.! In
such a transition the formalism of an old theory is largely preserved while its seman-
tics change.2 Einstein’s special theory of relativity of 1905 had altered the semantics
of such fundamental concepts like space and time, velocity, force, energy, and
momentum, but it had not touched Newton’s law of gravitation. Since, however,
according to special relativity, physical interactions cannot propagate faster than
light, Newton’s well-established theory of gravitation, based on instantaneous action-
at-a-distance, was no longer acceptable after 1905. The relativity revolution was
completed only when this conflict was resolved ten years later in November 1915
with Einstein’s formulation of the general theory of relativity.

Neither the emergence of the special theory of relativity nor that of the general
theory of relativity were isolated achievements. The virtual simultaneity of the begin-
ning of the relativity revolution with Einstein’s other breakthrough discoveries of
1905 indicate that his non-specialist outlook and, in particular, his youthful pursuit of
atomistic ideas enabled him to activate the hidden potentials of highly specialized
nineteenth-century physics that others, such as Henri Poincaré, had also exposed.3 In
1907, Einstein first attempted to address the issue as to how to modify Newton’s law
of gravitation according to the new kinematic framework of special relativity, as did
others, like Hermann Minkowski and Henri Poincaré.* But Einstein began to tran-
scend the very special-relativistic framework in light of Galileo’s insight that in a
vacuum all bodies fall with the same acceleration. In 1912, to the amazement of col-
leagues like Max Abraham.” he abandoned the scalar gravitational potential of New-
tonian physics in favor of a ten-component object—the metric tensor—the
mathematics of which he subsequently began to explore with the help of his mathe-
matician friend Marcel Grossmann. And he was able to formulate clear-cut criteria
which a field equation for the metric tensor acting as a gravitational potential would
have to satisfy. However, in the winter of 1912-1913, Einstein and Grossmann dis-

1 Cf.(Damerow et al. 2004, Renn 2004).

2 Such a change of semantics may be illustrated with the example of Lorentz’s concept of local time.
Originally merely a peripheral aspect of his theory, this auxiliary variable was reinterpreted by Ein-
stein as the time actually measured by clocks in a moving reference system, thus assuming a central
role in the new kinematics of special relativity. For an extensive treatment of the first phase of the rel-
ativity revolution compatible with this view, see, e.g., (Janssen 1995).

3 See (Renn 1993, 1997). For the parallelism between Einstein and Poincaré, see also (Galison 2003).

See Scott Walter’s “Breaking in the 4-vectors ...” (in vol. 3 of this series) and (Katzir 2005).

5  See (Cattani and De Maria 1989a) and “The Summit Almost Scaled ...” (in vol. 3 of this series).

A~
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carded generally-covariant field equations based on the Riemann tensor, an expres-
sion that included second-order derivatives of the metric tensor. Einstein even
believed to have a proof that such field equations had to be ruled out, although in
hindsight these were the only acceptable mathematical solution. In spite of the skepti-
cism of many of his physics colleagues but supported by the critical sympathy of
mathematicians like Tullio Levi-Civita and David Hilber’[,6 Einstein stood by his
original agenda and in late 1915 returned to field equations based on the Riemann
tensor, finally formulating the general theory of relativity, a theory which became the
basis of all subsequent developments in physics and astronomy.

Einstein’s Zurich Notebook represents a uniquely valuable and, as it turns out,
surprisingly coherent,’ record of his thinking in an intermediate phase of the emer-
gence of general relativity. The entries begin in mid-1912 and end in early 1913. His
aim during this period was to create a relativistic theory of gravitation that makes
sense from a physical point of view and that, at the same time, corresponds to a con-
sistent mathematical framework based on the metric tensor. Central to his thinking
was the problem of interpreting the physical knowledge on gravitation in terms of a
generalization of the mathematical representation associated with Minkowski’s four-
dimensional spacetime. The main challenge he faced was to construct a field equa-
tion, on the one hand, that can be reduced by an appropriate specialization to the fa-
miliar Newtonian law of gravitation, and, on the other hand, that satisfies the
requirements resulting from his ambitious program to formulate a relativistic theory
of gravitation.

There is perhaps no single episode that better illustrates the conceptual turn asso-
ciated with the genesis of general relativity than the fact that, in the Zurich Notebook,
Einstein first wrote down a mathematical expression close to the correct field equa-
tion and then discarded it, only to return to it more than three years later. Why did he
discard in the winter of 1912—-1913 what appears in hindsight to be essentially the
correct gravitational field equation, and what made this field equation acceptable in
late 1915?% Our analysis of the Zurich Notebook has made it possible not only to
answer these questions but, more generally, to resolve what might be called the three
epistemic paradoxes raised by the genesis of general relativity:

The paradox of missing knowledge. How was it possible to create a theory such as
general relativity that was capable of accounting for a wide range of phenomena
which were only later discovered in the context of several revolutions of observa-
tional astronomy? If neither the expansion of the universe, black holes, gravita-
tional lenses, nor gravitational radiation were known when Einstein set up the
gravitational field equation, how could he nevertheless establish such a firm foun-

6  See Einstein’s correspondence with Levi-Civita and Hilbert in (CPAE 8). For further discussion, see
also (Cattani and De Maria 1989b) and (Corry 2004).

7  See the “Commentary ...” (in vol. 2 of this series) and especially our reconstruction in section 6 of the
present chapter.

8  For further discussion of these two questions, see also “Commentary ... sec. 5, and “Untying the
Knot ...” (both in vol. 2 of this series).
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dation for modern cosmology? Which knowledge granted such stability to a theory
that did not initially seem superior to its competitors, since no phenomena were
known at the time which could not also be explained with traditional physics?

The paradox of deceitful heuristics. After a tortuous search in the course of which
he even temporarily abandoned hope of ever solving his problem, how was Ein-
stein able to formulate the criteria for a gravitational field equation years before he
established the solution? How could he establish a heuristic framework that would
quickly lead him to a correct mathematical expression, and then to the conclusion
that it was unacceptable, only to bring him back to essentially the same expression
three years later?

The paradox of discontinuous progress. How could general relativity with its non-
classical consequences—such as the dependence of space and time on physical
interactions—be the outcome of classical and special-relativistic physics although
such features are incompatible with their conceptual frameworks?

Addressing the challenges which these paradoxes formulate requires taking into
account all of the following dimensions that are crucial to a historical epistemology
of scientific knowledge: the long-term character of knowledge development, the com-
plex architecture of knowledge, and the intricate mechanisms of knowledge dynam-
ics. In order to resolve these paradoxes and to adequately describe the reorganization
of knowledge occurring between 1912 and 1915, we shall, in particular, make use of
concepts from cognitive science, adapted to the description of the structures of shared
knowledge resources such as those Einstein adopted from classical and special-rela-
tivistic physics. These concepts will be used to analyze the architecture of the knowl-
edge relevant to Einstein’s search for a gravitational field equation and to explain its
restructuring as a result of the interaction with the mathematical representation of this
knowledge.

We intend to show in the following that the history of Einstein’s search for a grav-
itational field equation can, against the background of the Zurich Notebook, be writ-
ten as that of a mutual adaptation of mathematical representation and physical
meaning. The eventual success of this adaptation becomes intelligible only if it is
conceived of as part of a long-term process of integrating intellectual resources rele-
vant to Einstein’s problem that were rooted in the shared knowledge of classical and
special-relativistic physics.

Only by analyzing the complex architecture of these shared knowledge resources is
it possible to understand in which sense classical and special-relativistic knowledge
about gravitation and inertia, energy and momentum conservation, and the relation
between different reference frames, was turned into a heuristic framework for Ein-
stein’s search. In the course of his work, elements of this heuristic framework crystal-
lized into a double strategy that shaped his search in an essential way until he succeeded
in formulating the definitive field equation of general relativity in November 1915.

The identification of the two components of this double strategy has not only
allowed us to reconstruct Einstein’s notes and calculations in the Zurich Notebook as
traces of a surprisingly coherent research process, but also to analyze the dynamics of
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this process. It has become clear, in particular, how a combination of knowledge
resources rooted in classical and special-relativistic physics could give rise to the the-
ory of general relativity whose conceptual foundation is no longer compatible with
the knowledge that formed the starting point of Einstein’s search. In this way, the
genesis of general relativity can be understood as resulting from a transformation of
shared resources of knowledge, while Einstein’s search for the gravitational field
equation appears as an investigation of pathways out of classical physics.

In this introduction, we shall briefly recapitulate the essential elements of our
story.9 We begin with a review of the principal steps taken by Einstein towards a rela-
tivistic theory of gravitation between the years 1907 and 1912 before his research is
documented in the Zurich Notebook.!” Here our aim is to show that each of these
steps highlighted knowledge resources that were relevant for addressing the chal-
lenge of constructing a relativistic theory of gravitation. The heuristics at work in the
Zurich Notebook were the result of this prior research experience. We shall then offer
a first description of the crucial role played by Einstein’s double strategy for his heu-
ristics and finally introduce the epistemological framework for our analysis of how
exactly this strategy worked.

In the second section, we shall discuss what we will call Lorentz model, as the
conceptual framework for Einstein’s construction of a relativistic field theory of grav-
itation. In the third section, we shall examine the essential elements of his heuristics,
showing in which sense these elements turned knowledge resources of classical and
special-relativistic physics into key components of Einstein’s search. In the fourth
section, we shall analyze how this search process was structured by the way in which
the Lorentz model functioned as a mental model in the sense of cognitive science. In
the fifth section, we shall examine how the candidates for a gravitational field equa-
tion that Einstein considered in the course of his search fared in the light of the heu-
ristic criteria he had established on the basis of his prior research experience. This
discussion will help to understand why one and the same candidate fared differently
depending on the depth to which Einstein had explored the implications of the math-
ematical representation. In the sixth section, we shall reconstruct Einstein’s pathway,
as documented in the Zurich Notebook, as a learning experience in which he passed
from one candidate field equation to the other, building up strategic devices that
would guide him until he reached his final result in 1915. In the seventh section, we

9  For Einstein’s own account, see (Einstein 1933). The history of general relativity has been an inten-
sive subject of research in the last decades, see, in particular, the contributions in (Stachel and Howard
1989-2006). Especially with respect to Einstein’s own path, early contributions were (Hoffmann
1972, Lanczos 1972, Mehra 1974, Earman and Glymour 1978, Vizgin and Smorodinski 1979, Pais
1982, sec. 1V., Stachel 1980, 1982), a groundbreaking paper was (Norton 1984). See also (Capria
2005, Howard and Norton 1992, Janssen 1999, 2005, Maltese 1991, Maltese and Orlando 1995,
Miller 1992, Norton 1992a, 1992b, 1999, 2000, Renn 2005b, 2005¢c, Renn and Sauer 1996, 1999,
2003a, Sauer 2005b, Stachel 1987, 1989b, 1995, 2002, Vizgin 2001).

10 For detailed analyses of this part of the story, see “The First Two Acts” and “Classical Physics in Dis-
array ...” (both in this volume).
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shall turn to Einstein’s elaboration of the so-called Entwurf theory, published in 1913
as the result of the research documented in the Zurich Notebook. It will be shown, in
particular, how the work on this problematic theory created the preconditions for the
conceptual changes of the final theory of general relativity. In the concluding eighth
section, we shall review our reconstruction with a view to pinpointing the essential
structures of this scientific revolution.

1.2 The Emergence of a Heuristic Framework

The incompatibility between Newton’s theory of gravitation and the special theory of
relativity of 1905 presented Einstein and his contemporaries with the task of con-
structing a relativistic theory of gravitation. Special relativity, for the purpose of our
account, arose from the confrontation of classical mechanics and classical electrody-
namics as two major knowledge blocks, i.e. from the confrontation of two highly
elaborated, individually consistent, and empirically well-confirmed systems of
knowledge whose simultaneous validity had nevertheless produced inconsistencies
and contradictions. The newly established mathematical and conceptual framework
of special relativity added to the physical knowledge available for dealing with the
problem of a relativistic theory of gravitation. The knowledge blocks of classical
mechanics and electrodynamics and of special relativity offered various points of
departure for the continuation of the relativity revolution in coming to terms with the
problem of gravitation.

The new spatio-temporal framework of special relativity suggested a plausible
mathematical procedure for adapting the classical theory of gravitation to the require-
ments of a relativistic field theory. In classical physics, the Poisson equation deter-
mines the Newtonian gravitational potential by a given distribution of the masses that
act as the sources of the gravitational field (which in turn can be derived from the grav-
itational potential).11 This equation is not invariant with respect to the Lorentz trans-
formations of special relativity. But the Poisson equation can easily be extended in a
formal way to a relativistic field equation by adding a differential operator involving
the time coordinate. The problem with this obvious generalization was that the result-
ing theory of gravitation no longer incorporates Galileo’s principle according to which
all bodies fall with the same acceleration. The most obvious way of bringing gravita-
tion within the purview of the relativity revolution therefore came at the price of hav-
ing to give up one of the fundamental insights of classical mechanics.

At this point, classical mechanics provided knowledge resources that were turned
into an alternative heuristic starting point for the continuation of the relativity revolu-
tion. In 1907 Einstein formulated his principle of equivalence as a heuristic device

11 The Poisson equation, being an equation for the gravitational potential, should properly be called a
potential equation. However, since the Einstein equations are commonly referred to as “field equa-
tions” rather than “potential equations,” we will in the following loosely also refer to the Poisson
equation as a “field equation.”
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that allowed him to incorporate Galileo’s principle into a relativistic theory of gravi-
tation.!? The equivalence principle asserts that it is not possible to distinguish
between a uniformly and rectilinearly accelerated reference frame without gravita-
tional fields and an inertial system with a static and homogeneous gravitational field.
Accordingly, the problem of a revision of the classical theory of gravitation became
associated with that of a generalization of the relativity principle to accelerated
motion, which henceforth constituted another heuristic guideline for Einstein’s fur-
ther research.'?

Between 1907 and 1911 Einstein used the equivalence principle to derive several
consequences of his yet to be formulated new gravitation theory.14 By the spring of
1912, he made a first attempt at formulating a theory for a static but otherwise arbi-
trary gravitational field."> The gravitational field equation of this theory was a
straightforward modification of the Poisson equation of classical physics. Since the
Poisson equation embodies the classical knowledge of gravitation from Newtonian
theory, it formed a crucial asset for Einstein’s heuristics. The further elaboration of
Einstein’s theory of the static field met with great difficulties. He found that this the-
ory was incompatible with the conservation of energy and momentum, another pillar
of classical physics. This led to another key element of his heuristic framework, the
requirement that the conservation laws must be fulfilled.

The various heuristic requirements serving as different starting points for the
search for a relativistic theory of gravitation could lead into different directions, con-
fronting it with different obstacles and different intermediate results, as well as lead-
ing perhaps to different solutions to the original problem. After finding a more or less
satisfactory theory of the static field, Einstein further pursued the heuristics embodied
in the equivalence principle and in the knowledge about field theory available in clas-
sical physics. This approach led him to consider uniformly rotating reference
frames.'® As with linearly accelerated motion, he sought to interpret the inertial
forces occurring in such reference frames as generalized gravitational forces. This
interpretation was made plausible by Mach’s critical analysis of classical mechanics.
But the conceptual and technical difficulties implied by the inclusion of rotating ref-
erence frames prevented, for the time being, the formulation of a gravitation theory
that covered this more general case as well. In hindsight, it is clear that a response to
the difficulties which Einstein encountered required the introduction of more sophis-
ticated mathematical tools. The heuristics based on the equivalence principle led to

12 See (Einstein 1907). For historical discussion, see (Miller 1992).

13 For a discussion of the problematic relation between the equivalence principle and the generalization
of the relativity principle, see, for instance, secs. 1.1.1-1.1.2 of “Commentary” (in vol. 2 of this
series) and (Janssen 2005, 61-74).

14 See (Einstein 1911).

15 See (Einstein 1912b) and, for historical discussion, (CPAE 4, 122).

16 The crucial role of rotating reference frames in recognizing the role of non-Euclidean geometry was
first discussed in (Stachel 1980), see also (Maltese and Orlando 1995).
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substantial but isolated physical insights, and not to the kind of coherent mathemati-
cal framework necessary for formulating a relativistic field theory of gravitation.

A different path had meanwhile been followed by Max Abraham, who exploited
heuristic clues of the four-dimensional mathematical framework established by
Minkowski for special relativity.17 Abraham succeeded in developing a comprehen-
sive theory of gravitation through an ad-hoc modification of this framework. Einstein
soon discovered weaknesses in Abraham’s theory. After a controversy with Abraham,
he realized that a successful application of Minkowski’s formalism to the problem of
gravitation called for a mathematical generalization of this formalism. In late spring
1912 Einstein found the appropriate starting point for such a generalization of
Minkowski’s formalism. In the appendix to the last paper he published before the
considerations documented in the Zurich Notebook, he formulated the equation of
motion in a static gravitational field in a form that suggested that a generalization of
his theory of gravitation would involve non-Euclidean geometry as had been formu-
lated by Gauss for curved surfaces. As early as summer 1912 Einstein succeeded in
formulating a generally-covariant equation of motion for a test particle in an arbitrary
gravitational field. In this equation, the gravitational potential is represented by a
four-dimensional metric tensor, which became the key object for Einstein’s further
research in the following years.

The search for a relativistic gravitational field equation, which occupied Einstein
for the following three years, also involved a new role of the heuristic clues that had
so far guided the research of Einstein and his contemporaries. Initially, these heuristic
clues were more or less isolated hints. They gradually turned into elements of a more
systematic research program, characterized by what we have called Einstein’s “dou-
ble strategy.” This double strategy allowed him to attack the problem of finding a
gravitational field equation by bringing to bear on this problem the entire range of
knowledge resources embodied in the various heuristic elements sketched above.

1.3 The Double Strategy

The mathematical difficulty of finding a field equation for the ten-component metric
tensor representing the gravitational potential showed Einstein that he needed much
more sophisticated mathematical methods than those available to him at that point. A
mathematical formalism providing what Einstein’s generalized theory of relativity
required had been developed in the second half of the 19th century by Gauss, Rie-
mann, and Christoffel. In a paper published in 1901 by Ricci and Levi-Civita on the
so-called absolute differential calculus, the work of these mathematicians had been
extended to an elaborate mathematical apparatus.18 However, among physicists, the
absolute differential calculus remained largely unknown for a considerable time. Ein-
stein was certainly not familiar with it until mid-1912.1 Only after his move from

17 For a more detailed treatment, see “The Summit Almost Scaled ...” (in vol. 3 of this series).
18 See (Ricci and Levi Civita 1901).
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Prague to Zurich did he gain access to these mathematical methods through his con-
tact with Marcel Grossmann. In October 1912, he wrote to Arnold Sommerfeld:

I am now working exclusively on the gravitation problem and believe that I can over-
come all difficulties with the help of a mathematician friend of mine here. But one thing
is certain: never before in my life have I troubled myself over anything so much, and I
have gained enormous respect for mathematics, whose more subtle parts I considered
until now, in my ignorance, as pure luxury! Compared with this problem, the original
theory of relativity is child’s play.20

The mathematical difficulty of finding a satisfactory relativistic field equation also
gave a new role to the physical requirements that such an equation had to satisfy.
These physical requirements had to be translated into mathematical conditions to be
satisfied by candidate field equations. They were thus also brought into systematic
relations with each other. This translation was by no means unambiguous, since Ein-
stein was exploring an as yet largely unknown territory of knowledge. At the same
time, the theory had to preserve the physical knowledge on gravitation already avail-
able, and its relation to other parts of physics, and it had to be formulated as a mathe-
matically consistent theory built, according to Einstein’s insight of 1912, around the
four-dimensional metric tensor. This combination of relatively clear-cut conditions
and the incompleteness of the information needed to turn the situation into a fully
determined mathematical problem was characteristic of Einstein’s situation when he
began the search for a field equation as documented in the Zurich Notebook. The
search strategy that gradually emerged enabled a mutual adaptation of mathematical
representation and physical concepts, and provided a heuristic device that eventually
turned out to be the adequate response to this situation.

What conditions to be imposed on a relativistic gravitational field equation for the
metric tensor had emerged from Einstein’s prior research experience? From the math-
ematical point of view, the task was to find a differential operator of second order for
the metric tensor covariant with respect to the largest possible class of coordinate
transformations. The requirement that the candidate differential operator has to be of
second order follows from the analogy with the classical theory of gravitation: the
Poisson equation for the Newtonian gravitational potential is a differential equation
of second order. The requirement of the covariance of this differential operator under
a broad class of coordinate transformations represented for Einstein the goal of a gen-

19 The works by Bianchi (1910) and Wright (1908) probably served as Einstein’s mathematical refer-
ence books. For historical discussion, see (Reich 1994).

20 “Ich beschiftige mich jetzt ausschliesslich mit dem Gravitationsproblem und glaube nun mit Hilfe
eines hiesigen befreundeten Mathematikers aller Schwierigkeiten Herr zu werden. Aber das eine ist
sicher, dass ich mich im Leben noch nicht annidhernd so geplag[t] habe, und dass ich grosse Hochach-
tung fiir die Mathematik eingeflosst bekommen habe, die ich bis jetzt in ihren subtileren Teilen in
meiner Einfalt fiir puren Luxus ansah! Gegen dies Problem ist die urspriingliche Relativititstheorie
eine Kinderei.” Einstein to Arnold Sommerfeld, 29 October 1912, (CPAE 5, Doc. 421). Unless other-
wise noted, all translations are based on the English companion volumes to the Collected Papers of
Albert Einstein.
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eralized relativistic theory in which, if possible, all reference frames would be equiv-
alent.2! A further requirement was that the classical field equation emerge as a special
case of the relativistic field equations under appropriate restrictive conditions, such as
for weak and static fields. The heuristic framework furthermore included general
physical principles such as Galileo’s principle and the laws of energy and momentum
conservation applying to the energy and momentum of the gravitational field as well.

These requirements formed the relatively stable framing conditions shaping Ein-
stein’s search for the gravitational field equation from its beginning in summer 1912
to the formulation of the eventual solution in late 1915. His main problem was to
ensure the compatibility of these different heuristic components by integrating them
into a coherent gravitation theory represented by a consistent mathematical frame-
work. It turned out that again and again, in the course of his investigations, only some
of Einstein’s heuristic goals could be fully realized while others had to be given up or
at least modified. If not all of his goals could be satisfied, the appropriate balance
between the different heuristic requirements for a gravitational field theory could not
be decided a priori. Their relative weight could only be judged by their concrete
embodiment in candidate gravitational field theories.

Physical properties or mathematical statements could each be looked upon either
as principles of construction for the building blocks of the theory or as criteria by
which the acceptability of such building blocks could be checked. It is this double
perspective that provided the basis for the double strategy that emerged in the course
of Einstein’s search for the gravitational field equation, as documented in the Zurich
Notebook. Earlier the choice between physically or mathematically motivated expres-
sions had been a choice between entirely different approaches to the problem of grav-
itation. Einstein’s 1912 theory of static gravitational field was, for instance, motivated
by physical considerations based on the equivalence principle, while Abraham’s the-
ory started from mathematical considerations related to Minkowski’s formalism. In
the course of Einstein’s work documented in the Zurich Notebook, the two
approaches gradually grew closer and turned into complementary strategies of a more
or less systematic research program. In this research program the two approaches
were distinguished mainly by the sequence in which the building blocks of the theory
come into play. Einstein’s “physical strategy” took the Newtonian limiting case as its
starting point, then turned to the problem of the conservation of energy and momen-
tum and only then examined the degree to which the principle of relativity is satisfied.
His “mathematical strategy,” took the principle of relativity as its starting point and
only then turned to the Newtonian limiting case and the conservation of energy and
momentum. The reconstruction of Einstein’s notes in the Zurich Notebook has made
it evident that his search for the gravitational field equation is to a large extent deter-
mined by the exploration of the possibilities offered by these alternatives.

21 See (Norton 1999) for a discussion about Einstein’s ambiguity regarding the difference between
invariance and covariance during this period.
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Einstein’s oscillation between these two strategies is characteristic not only of his
approach in the notebook but of his entire struggle with the problem of gravitation
between 1912 and 1915, a struggle that brought him from his 1912 static theory, via
the Entwurf theory of 1913, to the final theory of general relativity.22

This oscillation between the physical and the mathematical strategy suggests that
his search for the gravitational field equation was not just a matter of resolving a
well-defined mathematical problem, but involved an interaction between mathemati-
cal representation and physical concepts that affects the structures of the mathemati-
cal and physical knowledge. Why else did Einstein’s first attempts along the
mathematical strategy in the winter of 1912—1913 fail, while his pursuit of the physi-
cal strategy seemed to be essentially successful, at least until the demise of the Ent-
wurf theory in late 1915923 As we will show in detail, the completion of the general
theory of relativity required, in addition to the appropriation of the available mathe-
matical knowledge, a revision of foundational concepts of physics, the extent of
which Einstein could hardly have foreseen at the beginning of his search. He initially
believed that classical physics would provide the appropriate context for the theory to
be found and attempted to formulate a gravitational field equation by immediate gen-
eralization of familiar Newtonian concepts. It eventually turned out to be more suc-
cessful to construct a field equation corresponding to Einstein’s program of
integrating gravitation and relativity than to relate them to the conceptual foundations
of classical theory.

1.4 The Epistemological Framework of the Analysis

How was it possible for Einstein to formulate a theory involving conceptual novelties
on the basis of knowledge that was still anchored in the older conceptual foundation
of classical physics? Such a development can hardly be described in terms of formal
logic. As Einstein’s investigative pathway illustrates, scientific conclusions can result
in a reconceptualization of the premises on which these conclusions were based. Even
in cases involving major restructuring of knowledge, science never starts from
scratch. In fact, not only scientific knowledge but also the knowledge of large
domains of human experience transmitted over generations is not simply lost when
new scientific theories replace the old ones. In the case at hand, the knowledge of
classical physics had to be preserved and exploited in a conceptual revolution, the
outcome of which was a relativistic theory of gravitation whose far-reaching physical
implications were largely unknown when it was created. But they eventually changed
our understanding of the universe. An adequate description of the cognitive dynamics
of the genesis of general relativity therefore requires an account of the knowledge that

22 Very similar characteristics of a physical and mathematical double strategy have also been identified
in Einstein’s later work on unified field theory, see (van Dongen 2002, 2004) and (Sauer 2006) for fur-
ther discussion. See also the discussion in (Norton 2000).

23 And, as is argued in “Untying the Knot ...” (in vol. 2 of this series), beyond the demise of this theory
as well.
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makes it understandable. We have to understand, first, how past experiences can enter
inferences about matters for which only insufficient information is available, and, sec-
ond, how conclusions can be corrected without eventually having to start from scratch
each time a premise is found to be wanting, with the possibility that the whole deduc-
tive structure changes in the process. Such an approach is offered by an historical
epistemology that integrates the methodology of historical analysis with a theoretical
framework informed by philosophical epistemology and cognitive science.

In order to adequately account for the features of Einstein’s search for the gravita-
tional field equation described above, we will in the following make use in particular
of the concept of a “mental model” and the concept of a “frame 24 A mental model
for us is an internal knowledge representation structure serving to simulate or antici-
pate the behavior of objects or processes. It possesses “terminals” or “slots” that can
be filled with empirically gained information, but also with default assumptions
resulting from prior experience. The default assumptions can be replaced in light of
new information, so that inferences based on the model can be corrected without
abandoning the model as a whole. Information is assimilated to the slots of a mental
model in the form of “frames.” These are chunks of knowledge which themselves are
equipped with terminals and which have a well-defined meaning anchored in a given
body of shared knowledge.

Mental models can, as a rule, be externally represented by material models which
also serve as the element of continuity in their transmission from one generation to
the next. The basic features of the field-theoretical model of distant causation, which
will play a central role in our analysis, may, for instance, be represented by the mate-
rial model of a magnet setting a piece of iron into motion by affecting the state of its
environment. In addition, it may be represented by symbolic representations making
use of natural and formal language. The internal architecture of a system of knowl-
edge is constituted by a network of mental models and frames that can be linked by
operations in the sense of mental acts typically corresponding to handling external
representations, be they material arrangements or symbolic expressions. A sequence
of such operations constitutes a procedure which typically has a goal, for instance of
creating an ad hoc knowledge representation structure, which is called a “real-time
construction” in cognitive science. A real-time construction may be exemplified by
the geometrical construction typically accompanying the Euclidean proof of a geo-
metrical theorem or by a set of mathematical expressions corresponding to checking
a candidate field equation according to one of Einstein’s heuristic principles.

Two fundamentally important types of mental acts are “chunking” and “reflec-
tion.” By chunking different knowledge representation structures are combined into a
unity. This often leads to a linguistic representation of the resulting chunk by a tech-
nical term designating, for instance, a particular procedure. By reflection, the usage

24 For the concepts of frame and mental model, see (Minsky 1975, 1987; Damerow 1996; Gentner and
Stevens 1983; and Davis 1984). For a view on the potential of cognitive science and cognitive psy-
chology for the history of science to which the present work is much indebted, see (Damerow 1996).
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of knowledge representation structures becomes the object of reasoning; it typically
presupposes an external representation of these structures, for instance by a technical
term. Reflection obviously plays a crucial role in accommodating a system of knowl-
edge to new experiences by changing its architecture. An example is what we call a
“Copernicus process” in which the internal network of a system of knowledge is
essentially preserved while originally peripheral elements take on a central role in the
deductive structure. The status of such elements as being either peripheral or central
is prescribed by a “control structure.” A control structure is constituted by any knowl-
edge representation structure serving to control the operation and to order other such
structures. In this sense, Einstein’s heuristic principles as well as his double strategy
may be considered examples of such control structures. These elements of the archi-
tecture of knowledge can partially be captured by traditional epistemological termi-
nology. A concept, for instance, may be understood as the linguistic representation of
a mental model, a frame, or a particular terminal of a frame, while a theory is just one
example of many conceivable control structures. We shall also use of these traditional
terms, specifying their meaning in the context of the epistemological framework we
have introduced whenever appropriate.

We claim that the shared knowledge of classical and special-relativistic physics
can be conceived of in terms of this richer epistemological framework, and that it
then becomes understandable how this knowledge could serve as a resource for Ein-
stein’s search for the gravitational field equation. We will argue that essential rela-
tions between fundamental concepts such as that between field and source remain the
same to a great extent even though the concrete applications of these concepts differ
considerably from their applications to a classical or a relativistic field equation. This
structural stability turned the concepts and principles of classical and special-relativ-
istic physics into guiding principles when Einstein entered unknown terrain, for
instance, when he encountered a new expression generated by the elaboration of a
mathematical formalism. None of these expressions by themselves constituted a new
theory of gravitation. Only by complementing them with additional information
based on the experience accumulated in classical and special-relativistic physics, as
well as in the relevant branches of mathematics did such expressions become candi-
dates for a gravitational field equation embedded in a full-fledged theory of gravita-
tion. In the language of mental models, such past experience provided the default
assumptions necessary to fill the gaps in the emerging framework of a relativistic the-
ory of gravitation. Because of their nature as default assumptions, they could be given
up again in the light of novel information without making it necessary to abandon the
underlying mental models, which thus continue to play their heuristic role.

In this way we hope to render understandable how a gradual process of knowl-
edge accumulation could overcome the very conceptual foundations that had formed
its starting point. The concepts of classical physics shaped Einstein’s search at its
beginning, and made the physical strategy the most natural approach to exploit his
heuristic principles for finding the gravitational field equation. In the context of the
physical strategy, the default assumptions of the relevant mental models were sup-
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plied by the knowledge of classical and special-relativistic physics. The mathematical
strategy, on the other hand, drew on default assumptions based on prior mathematical
knowledge and led to candidate field equations whose compatibility with established
physical knowledge was problematic. The gradual accumulation of knowledge fos-
tered by both of these approaches enriched the network constituted by the mental
models and frames relevant to a relativistic theory of gravitation. Eventually, the reor-
ganization of this network by a Copernicus process became feasible.

In the following, we shall discuss in detail the essential aspects and phases of this
process, Einstein’s heuristic framework, the gradual accumulation of knowledge in
the course of his research, the successive replacement of one candidate gravitational
field equation by another, the switches back and forth between the physical and the
mathematical strategy, and finally the reinterpretation of the results acquired in this
way as aspects of one and the same transformation leading from the system of knowl-
edge of classical to that of general-relativistic physics.

2. THE MENTAL MODEL OF FIELD THEORY

2.1 The Poisson Equation of Classical Mechanics and the
Field Equation of General Relativity

The revision of Newton’s theory of gravitation confronted Einstein with two funda-
mental problems. He needed to find an equation of motion for bodies in a gravita-
tional field (the analogue of Lorentz’s equation of motion of a charged body in an
electromagnetic field) and to find a field equation determining the gravitational field
itself (the generalization of the Poisson equation and the analogue of Maxwell’s
equations relating the electromagnetic field to its sources). These two problems pre-
sented themselves in terms of basic concepts and structures of classical physics and
the special theory of relativity. These concepts and structures also provided an essen-
tial part of the intellectual resources for solving these problems.

The most fundamental structures of knowledge relevant to Einstein’s search for a
new theory of gravitation were incorporated in the understanding of an equation of
motion and of a field equation in classical physics and in the special theory of relativ-
ity. This understanding involves concepts such as force, energy, momentum, poten-
tial, field, source, and mass.2> Above all, however, it involves the mental model of
field theory which had emerged, in its most mature, successful, and widely accepted
form, in Lorentz’s electron theory of electrodynamics and hence may also be referred
to as the Lorentz model 2 This model actually comprises two mental models with
more ancient roots in the history of physics; one for a field equation and one for the
equation of motion. The Lorentz model of a field equation, which will be at the center

25 For Einstein’s account of the emergence of fundamental concepts of physics, including that of field,
see (Einstein and Infeld 1938).

26 See (Lorentz 1895), and for historical discussion (Whittaker 1951, ch. XIII, 1953, ch. II, Buchwald
1985, Janssen 1995, Darrigol 2000, Janssen and Stachel 2004).
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of our analysis of Einstein’s search for the gravitational field equation, has slots for
the source, the potential, and a differential operator acting on the potential. Default
settings for these slots are provided by the classical theory of gravitation which
describes the relation between gravitational source and gravitational potential in
terms of the Poisson equation. In the classical case, the source-slot and the potential-
slot of the frame are filled by scalar functions that can be subsumed under what we
might call the potential-frame and the mass-density-frame, respectively. The default
setting for the differential-operator-slot is the Laplace operator.

Before we come back to a more detailed examination of the structure of the
Lorentz model, we want to justify the introduction of this model by examining some
of the basic concepts and knowledge structures relating the Poisson equation in clas-
sical mechanics to the Einstein field equation of general relativity. We claim that
these common features played an important role in the historical development linking
the two equations so that their description by an overarching structure makes histori-
cal sense.

The Poisson equation of classical gravitation theory describes how gravitating
matter generates a gravitational potential. This potential can then be related to the
gravitational field and to the force acting on material particles exposed to it. The Pois-
son equation is

2 2 2
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where the gravitational potential is denoted by ¢ = @(x, y,z), which is a function
of spatial coordinates x, y, z, where p = p(x,y,z) denotes the density of gravitat-
ing matter, and where K is a constant. A is a linear second-order differential opera-
tor, known as the Laplace operator.

The gravitational interaction between material bodies in classical physics can, of
course, also be treated directly on the basis of Newton’s law of gravitation. This law
states that an attractive force between two point particles acts instantaneously along
the direction defined by the two bodies and its strength varies inversely proportional
to the squared distance between the particles. This action-at-a-distance force can also
be calculated from a local potential function ¢ which is then determined by the Pois-
son equation introduced above.?” While the Poisson equation thus appears only as an
alternate description of the same physical content as Newton’s law, this equation sug-
gests, at the same time, a different physical interpretation of gravitation. According to
this interpretation, gravitation—represented by the potential ¢ and produced by
some matter distribution p which acts as its source —fills the entire space and exerts
its influence on matter locally as a force. By virtue of this interpretation, the Poisson
equation can be considered as a first hint at a gravitational field theory, in particular at
a time when the field theoretic framework established by Maxwell’s electrodynamics

27 Recall (see note 11) that we are loosely referring to the Poisson equation as a “field equation” even
though it should properly be called a “potential equation.”



PATHWAYS OUT OF CLASSICAL PHYSICS 131

suggested a field-theoretic revision of Newtonian gravitation. Nevertheless, the New-
tonian gravitational potential lacks two essential features required by a genuine phys-
ical field theory. First, the gravitational field does not propagate with a limited speed,
a field-theoretical feature that became mandatory after the advent of the theory of
special relativity. It also does not describe some expected dynamical effects of gravi-
tation such as dragging effects due to moving masses (‘“gravitational induction™) or
gravitational waves.

The Einstein equation stands at the end of a historical process in which the wish
to conceive of the gravitational interaction in a truly field-theoretic manner played a
significant heuristic role. The Poisson equation and the Einstein equation share a
number of common features, in spite of the long and sometimes circuitous discovery
process separating the two. In general relativity, the gravitational interaction is also
determined by a second-order partial differential equation —the Einstein equation—
which relates the gravitational potential to its source.

The Einstein field equation

G" = R”V—%ng = k7" 2)

written in terms of the Ricci tensor R*Y and the Riemann scalar R can also be writ-
ten explicitly as
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where the gravitational potentials are denoted by g,,, and g"¥, which are functions of
. . . _ K .
the spacetime coordinates x; (i) = 1,2, 3,4, and where ¥ = —8% is a constant.

Like the left-hand side of the Poisson equation, the Einstein tecnsor G"" is a sec-
ond-order differential operator applied to the gravitational potential, even though the
operator in this case is much more complicated than the Laplace operator. T""
denotes the so-called stress-energy or energy-momentum tensor and corresponds to
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another element familiar from the Poisson equation, the role of matter as gravitating
source. The mass density p which functions as the gravitating source in the Poisson
equation reappears, for instance, in the following example of an energy-momentum
tensor:

dx"dx’
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which describes a dust-like cloud of material particles acting as the source of the

gravitational field where p stands for the mass-density of the swarm and dx"/ds
denotes the special-relativistic four-velocity of the dust particles.

2.2 The Lorentz Model of a Field Equation

In our introduction of the Poisson equation as the point of departure in classical phys-
ics for a development eventually leading to the Einstein equations, we have empha-
sized their common features. One such basic feature is that both equations establish a
relation between matter and gravitational potential; a second feature is that both
equations relate the action of gravitation to its source by second-order partial differ-
ential equations. Such common features are more than distant mathematical similari-
ties or analogies perceived only in hindsight. We claim that such similarities guided
the historical development linking the two equations. These similarities, we believe,
correspond to structural properties following from the basic mental model shaping
the thinking process connected with this development. This interpretation is corrobo-
rated by the historical observation that the development from the Poisson to the Ein-
stein equation went through a number of intermediate field equations of the same
fundamental structure. We will show that they can all be interpreted as instantiations
of the mental model of a field equation, which was modified, again and again, in
response to inconsistencies by replacing a minimal number of specific features, while
all other components retained their “default” settings. In spite of the inherently con-
servative structure of this development its outcome entailed fundamental changes in
the conceptual structure of classical physics including the original mental model of a
gravitational field equation itself.

We will write the basic structure of the mental model of a field equation imple-
mented in the context of gravitational theory symbolically as:

OP(POT) = SOURCE. @

This equation is meant to symbolize a structure of shared physical knowledge accord-
ing to which a source SOURCE generates a potential POT, related to each other by a
differential equation with a second-order differential operator OP acting on the
potential. We justify the introduction of our symbolic notation by the observation that
the same knowledge structure can be found in such different cases as the Poisson
equation, Einstein’s intermediate equations for the gravitational potential, the
Laplace equation for the electrostatic potential, and the four-dimensional potential



PATHWAYS OUT OF CLASSICAL PHYSICS 133

formulation of Maxwell’s equations. Correspondingly, OP, POT, and SOURCE can
be instantiated in many different ways, such as the Laplace or the d’ Alembert opera-
tors for OP, mass density or the energy-momentum tensor for SOURCE, Newton’s
gravitational potential or the metric tensor for POT. Notwithstanding the different
contexts for each of those instantiations, we find an overarching conceptual structure
relevant for each of them. It is the role of these overarching structures in guiding
physical reasoning in a qualitative way that we wish to describe in terms of mental
models and frames and that we wish to capture in our symbolic notation. We discuss
the relevant instantiations for the frame of the field equation in somewhat greater
detail.

Before the crucial phase of Einstein’s search for a gravitational field equation in
the years 1912 — 1915, the mental model of a field equation essentially covered two
physical structures, that shaped Einstein’s conceptual background in his search: the
Poisson equation of classical mechanics and the potential equations of electrodynam-
ics. In the latter, the structure even appears twice, once in electrostatics, in a simple
form analogous to that in classical mechanics, and once in a more complex version
extended to cover the dynamical aspects of the electromagnetic field as well. In elec-
trostatics, the electrostatic potential ¢, is generated by an electric charge density p,
according to?8

Ag, = —4np,. 5)
The more extended version, which covers this equation as a special case under certain
conditions, is the four-dimensional potential formulation of Maxwell’s equations at
the core of classical electrodynamics. The four-dimensional, special-relativistic for-
mulation of electrodynamics was developed beginning in 1908 by Minkowski, Laue,
and Sommerfeld” and was quickly established as a standard.>" In this framework,
the iglPomogeneous Maxwell equations can also be written in a potential formula-
tion:
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28 The minus sign which does not appear in the Poisson equation of classical mechanics given in eq. (1)
reflects the fact that the gravitational interaction is attractive whereas the electrostatic interaction of
two charges of equal sign is repulsive.

29 See (Minkowski 1908, Laue 1911, and Sommerfeld 1910a; 1910b).

30 For historical studies, see (Reich 1994, Walter 1999).

31 See,e.g., (Laue 1911; 1913 § 19). The potential formulation of Maxwell’s equation given in eq. (6)
presupposes a gauge fixing of the form

d
Low 199,
9,9 —d1VA+Ea =0

(Lorentz gauge). Together with this gauge condition eq. (6) represents a fully equivalent representa-
tion of Maxwell’s equations.



134 JURGEN RENN AND TILMAN SAUER

where [0 is the d’Alembert operator, ¢" = (¢, A) the electromagnetic four-
potential composed of a scalar electric potential ¢,, and a vector magnetic potential
A = (A, A, A%), and j* = (p,c, p,v) is the four-current, composed of the elec-
tric charge density p, and the velocity vector v = (v*,v’, v°) acting as a source of
the potential.

As we shall discuss in more detail below,32 the relation between electrostatics and
electrodynamics provided Einstein and his contemporaries with a basis for an under-
standing of how Newton’s theory of gravitation might be elaborated into a field the-
ory satisfying the requirements of the relativity theory of 1905. Einstein explicitly
compared the task of building a relativistic theory of gravitation to the task of devel-
oping the entire theory of electromagnetism knowing only Coulomb’s law, and found
it just as formidable >3

Concrete instantiations of the general structure (I) make it clear that there are pro-
found differences between them that are not represented by the simple symbolic
equation. A major difference between the gravitational or electrostatic Poisson equa-
tion (1) resp. (5) and the full electrodynamic wave equation (6) concerns, for
instance, the behavior of the equations under coordinate transformations. The simple
mathematical form of those two equations is valid only if specific systems of coordi-
nates are used. The same equations rewritten for a different coordinate system would,
in general, change their appearance, unless the new system of coordinates is related
to the old one by a coordinate transformation of the appropriate covariance group.
This group of admissible coordinate transformations is a mathematical feature of the
equation, that is, of the differential operator as well as of the source-term appearing in
the equation. It also expresses the validity of a relativity principle for the relevant
physical theories, be they those of classical or special-relativistic physics. Coordinate
systems can be associated with observers in different locations and in different states
of motion, and covariance with regard to coordinate transformations can be associ-
ated with the independence of physical phenomena of the perspectives of these differ-
ent observers.>*

The Laplace operator, appearing in the electrostatic as well as in the gravitational
Poisson equation, retains its form if Galilean coordinate transformations are used

32 See section on “correspondence principle,” p. 148.

33 See (Einstein 1913). For more evidence that Einstein conceived the problem of gravitation in analogy
with electrodynamics, consider e.g. the title of (Einstein 1912a): “Is there a Gravitational Effect
Which Is Analogous to Electrodynamic Induction?” (“Gibt es eine Gravitationswirkung, die der elek-
trodynamischen Induktionswirkung analog ist?”) or a number of references to the analogy with elec-
trodynamics in Einstein’s contemporary correspondence; see, e.g., Einstein to Paul Ehrenfest, before
20 June 1912: “A rotating ring does not generate a static field in this sense, even though it is a tempo-
rally invariant field. [...] My case corresponds to the electrostatic field in the theory of electricity,
whereas the more general static case would also include the analogue of the static magnetic field. I
haven’t got as far as that yet.” (“Ein sich drehender Ring erzeugt nicht ein statisches Feld in diesem
Sinne, obwohl es ein zeitlich unverdnderliches Feld ist. [...] Mein Fall entspricht in der Elektrizitts-
theorie dem elektrostatischen Felde, wogegen der allgemeinere statische Fall noch das Analogon des
statischen Magnetfeldes mit einschliessen wiirde. So weit bin ich noch nicht.”) (CPAE 5, Doc. 409).
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which relate the inertial reference frames of classical mechanics to each other; these
inertial transformations express a symmetry of Newtonian spacetime. The d’Alem-
bertian operator appearing in special relativistic electrodynamics, on the other hand,
is invariant under the Lorentz transformations which relate inertial reference frames
of special relativity to each other and express a symmetry of four-dimensional
Minkowski spacetime.

This illustrates that there can still be profound differences between various instan-
tiations of the structure (I). But whatever these differences may be, insofar as the rela-
tion between OP, POT, and SOURCE is cancelled, the corresponding frames enter
the same network of relatively stable relations to other physical concepts such as field
and force. The concept of a field, in particular, is related to the concept of potential
appearing in this mental model by a structure according to which a field FIELD is
derived from a potential POT by some differential operation GRAD. This relation
can be written in symbolic notation as

FIELD = - GRAD(POT). an

In classical mechanics the equation relating the gravitational potential ¢ to the grav-
itational field g is given by

g = —gradg. @)

In electrostatics a similar equation holds for the electric field E derived from the
electrostatic potential ¢, by

E = —gradg,. 3

In the case of electrodynamics the same structural relation reappears, albeit in a
somewhat more complex form. The components of ¢, and A of the four-potential
@" are related to the electric field E and the magnetic field B by

E = —gradp - %A, )

and
B = curlA. (10)

These equations can be combined in a tensor equation for the electromagnetic field
tensor F,

34 We add a note of caution here. From the point of view of modern coordinate-free descriptions of phys-
ical theories, the covariance of a particular equation under a specific group of coordinate transforma-
tions can be understood as expressing a symmetry property of the underlying spacetime manifold, if
the coordinate systems related by the transformations are those associated with so-called geodesic
observers. In this case, the geodesic observer field is also a Killing vector field of the manifold, see
(O’Neill 1983,358-362). See also the discussion in (Salmon et al. 1999, chap. 5) and (Norton 1992b).
At the time, however, the validity of a physical principle of relativity was directly associated with the
covariance of the corresponding equations under coordinate transformations, without considering the
symmetry properties of a manifold independently from its coordinate representation.
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P 90, 99, (11
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which may be considered as another instantiation of (I).

The discussion of the foregoing examples should make it clear that any concrete
meaning of our symbolic equations is context-dependent as is only fitting for rela-
tions between frames in the sense introduced above. Entities such as OP, POT,
SOURCE, FIELD, GRAD but also operations such as multiplication can take on
entirely different mathematical meanings in different contexts. These symbolic oper-
ators may inherit different default-settings from different frameworks of reasoning.
There is no a priori guarantee that the resulting concrete expressions can still be sub-
sumed under one overarching theory. If one looks, however, at the function of these
frames as heuristic devices that guided Einstein’s pathway out of classical physics,
this obviously was precisely their strength.

In summary, the stability of the mental model of a field equation is a consequence
of its embedding in a network of physical concepts covering a broad spectrum of
physical knowledge. Specifically, the concepts of potential and mass have stable rela-
tions to such concepts as field, force, energy, momentum, and motion. Furthermore,
all instantiations of the Lorentz model we have encountered in classical and special-
relativistic physics include a second-order differential operator OP and can be char-
acterized by symbolic relations between the associated physical concepts such as (II).
For each instantiation, the mental model of a field equation acquires local stability
also through the representation in terms of mathematical concepts that in themselves
are interconnected in an elaborated network allowing for formal manipulations of the
mathematical expressions using well-known formal rules.

The various slots in our symbolic equations can be filled with objects of very dif-
ferent mathematical character, POT and SOURCE may be instantiated by scalar or
vectorial objects, which behave differently under coordinate transformations; the cor-
responding differential operator OP may be the Laplacian or the d’ Alembertian oper-
ator. Physically, potential and mass enter the stable conceptual relation described
above, but are at the same time connected with quite different physical concepts and
hence quite different physical phenomena. Thus, the potential POT could be instanti-
ated to the potential of gravitational, electrostatic, or electrodynamic interaction, and
the source-term SOURCE could be gravitating mass-density, electric charge-density,
or electric current.

The Einstein equation introduced in the beginning of this section emerged, as we
shall see, in a process that started from the Poisson equation of classical mechanics
and proceeded via intermediate field equations that are all structured by what we
have called the Lorentz model of a field equation. It is therefore no accident that the
Einstein equation also displays features of this model. We shall show that the Einstein
equation came about only as the result of a complicated process of adaptations of the
original mental model demanding a number of variations (“changes of default set-
tings”) that at each step had to fulfill different, and often conflicting requirements. A
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consistent solution for meeting those requirements was reached only with the final
theory of general relativity. In this theory, however, the field equation has implica-
tions that, as we shall see, challenge the original mental model.

2.3 The Lorentz Model of an Equation of Motion

The field-theoretic model comprises not only a structure shaping the understanding
of a field equation but also a scheme determining the meaning of an equation of
motion. In classical physics a field equation must be complemented by an equation of
motion. Their complementarity derives from the way in which interactions are split
into cause and effect in the Lorentz model. In classical mechanics, the concept of
force allows one to separate the generic features of the action of some agent, to be
described in terms of a general force law, from its specific effect on a given physical
object, to be described in terms of a change of its state of motion. A similar structure
is characteristic of Maxwellian electrodynamics, especially in Lorentz’s electron the-
ory. The field equation describes how sources, represented in our symbolic equation
by the SOURCE-frame, affect the state of the surrounding space, represented by the
POT-frame or the FIELD-frame. The equation of motion describes the effect of the
thus affected space on physical objects in it. From the perspective of classical
mechanics, a field equation is therefore nothing but a specific way of prescribing a
general force law. What is required is a bridge between the concept of field and that
of force.

According to classical mechanics, the effect of a force is a deviation (to be
observed within an inertial frame of reference) from a state of rest or a state of uni-
form rectilinear motion described in terms of an ACCELERATION-frame. The
magnitude of the acceleration depends not only on the force (characterized in the fol-
lowing by a FORCE-frame) but also on the reactive properties of the physical object
exposed to it; these properties will be summarily described by the inertial mass
frame, MASSy. In short, an equation of motion according to classical and special-
relativistic physics, complies with a mental model of causation that may be called the
“acceleration-implies-force model” and takes the form:

FORCE = MASSy x ACCELERATION. I

In classical mechanics this relation corresponds to Newton’s
F =m-a, (12)

where m is the inertial mass of a material particle, a its acceleration in three-space
and F a classical force. The special relativistic generalization of this relation is

F!.u _ du“

=ma (13)

where m is the rest mass, u" the four-velocity and s the proper time. Here F"
denotes the force as a four-vector.



138 JURGEN RENN AND TILMAN SAUER

The structure of the symbolic equation (IIT) also complies with that of a much
more general and much older mental model of causation rooted in intuitive physics,
the “force-implies-motion model,” which thus serves as a “higher-order model” for
the Newtonian relation (III):35 According to this higher-order model of causation, the
effect of an action (here ACCELERATION), depends on the strength of the action
(here FORCE) as well as on the resistance to the action (here MASSy).

How can the acceleration-implies-force model belonging to the core of Newto-
nian mechanics be integrated with the concept of field at the center of the field-theo-
retical model? In order to bridge the two models one needs a specification of the
relation between POT or FIELD, describing the local state of the surrounding space,
and FORCE, describing the role of this space as an agent determining the motion of
matter. In classical field theory, this bridge relation is given by the notion that the
field is tantamount to a local force. The force experienced by a particle in a field is
proportional to the strength of the field at the point of the particle in space and time. It
is also proportional to that quality of the particle that responds to the particular field,
be it its gravitational mass, its electric charge, or its magnetic moment. We capture
the relation between FORCE and FIELD by the symbolic relation

FORCE = CHARGE x FIELD av)

At this point, our symbolic relations allow us to describe a possible inference on the
level of qualitative physical reasoning. We may use relation (II) between FORCE
and POT, to derive a relation between FIELD and POT

FORCE = - CHARGE x GRAD(POT). \%)

From a different perspective, one may also look at the set of relations (II), (IV), and
(V) as the expression for a conceptual network on the level of qualitative physical
reasoning in which the frames FORCE, FIELD, CHARGE and POT are related to
each other.

In electrostatics the CHARGE-frame is instantiated by the charge density p, ,

electrostatics
CHARGE = p,, (VI)

and the force density acting on p, and determined by an electric field E derived
from the electrostatic potential ¢, is given by:

F, = peE = _pegradcpe‘ (14)

e

In Newtonian gravitational theory the default setting of the CHARGE frame is the
so-called “passive gravitational mass”:

35 For the force-implies-motion model, see (Gentner and Stevens 1983; Renn 2000), and also “Classical
Physics in Disarray ...” (in this volume).
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Newtonian

CHARGE gravitation = m, resp.p,. (VID)

Accordingly, the force density acting on a mass density p due to a gravitational
field g that can be derived from a gravitational potential ¢ is given by:

F = pg = —p gradg. (15)

In the case of electrodynamics the same structural relation holds in terms of the elec-
tromagnetic field tensor F" expressed in terms of a generalized electrodynamic
potential in (11). The four-force density K" is given by

K" = j F". (16)

This equation again exhibits the structure FORCE = CHARGE x FIELD, even
though the multiplication of our symbolic equation is realized in this case by a four-
dimensional contraction.

The discussion of the bridge relation required to integrate the acceleration-
implies-force model with the field concept makes the intrinsic complexity of the
Lorentz model particularly evident. This complexity stands in striking contrast to cer-
tain elementary features of gravitational interactions. It is mainly due to the fact that
the Lorentz model results from the integration of mental models referring to two
kinds of physical substances, the model of an extended, space-filling physical
medium traditionally labelled as “aether” and the model of matter constituted by par-
ticles. The relation between field and force given by (IV) mediates between these
models and at the same time points to the conceptual intricacies resulting from their
integration. For instance, what at first sight merely seems to be a problem of two bod-
ies moving about their common center of gravity, say of the sun and a planet, appears,
from the perspective of the Lorentz model as the consequence of a field generated by
one body which is then felt by the other body as a force that in turn is the cause of its
motion.

As a consequence of this construction, both the concept of force and the concept
of mass take on connotations, which they did not possess independently in the more
elementary models. In classical mechanics, for instance, the concept of force com-
prises actions at a distance, typically between particles. In the context of the field-the-
oretical model, it applies exclusively to local interactions, a rather artificial limitation
from the point of view of Newtonian physics. Similarly, while the Newtonian concept
of force entails a reciprocity of the interaction it describes, expressed in Newton’s
actio = reactio, such a reciprocity is less evident for an interaction that is conceived
to relate a state of space, characterized by the FIELD-frame or the POT-frame, to
changes of the state of motion of a physical object, characterized by the ACCELER-
ATION-frame. As a matter of fact, theories such as Lorentz’s electron theory violate
this reciprocity and actio = reactio no longer holds for the interaction between ether
and charged matter.
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The conceptual intricacies implied by the Lorentz model for the concept of mass
are even more serious. Mass may be conceived as a “source” causing changes of the
state of space or of the “aether” according to (I). We thus have “active gravitational
mass” in the case of gravitational interaction:

gravitation
SOURCE = m, resp. p,. (VIID)

Mass may also, according to (V) and (VII), be conceived as a passive property of a
physical object exposed to the resulting field, determining the degree to which the
field locally acts as a force (CHARGE or “passive gravitational mass” in the case of
gravitation); it may finally be conceived, according to (III), as “inertial mass”
MASS|n, ie., as resistance to ACCELERATION. In classical electrostatics, these
magnitudes are represented by electrical charge and inertial mass, respectively, and
can vary independently from each other. In classical gravitation theory, gravitational
and inertial mass happen to coincide empirically. In this case we are thus entitled to
introduce a generic MASS-frame for which we have:

MASS = MASSIN, (IX)

which may hence be instantiated by inertial, or active gravitational, or passive gravi-
tational mass.

The integration of different mental models within the field-theoretical model pro-
duces conceptual distinctions that may actually not be warranted by the available
knowledge of the interactions it describes. The emergence of conceptual distinctions
as an artefact of a theoretical framework was visible, in the case of the gravitational
interaction, even from a less sophisticated perspective than that offered by the field-
theoretical model. When the gravitational action is described not in terms of a field
theory but simply using the Newtonian force law, the distinction between mass as a
property of matter that causes gravitation and mass as a reactive property of matter
that resists the acceleration caused by a gravitational force is rather artificial. Indeed,
it has long been known that all bodies fall with the same acceleration in a gravita-
tional field whatever their mass (Galileo’s principle). Within the context of the field-
theoretical model this insight suggests far-going consequences for the understanding
of an equation of motion.

In fact, since in classical mechanics the CHARGE-frame and the SOURCE-
frame instantiate to the passive and active gravitational mass resp. mass density
according to (VII) and (VIII), we may identify these two frames with each other and
with the general MASS-frame:

SOURCE = CHARGE = MASS (X)

Recalling the relations that the FORCE-frame enters with the ACCELERATION-
frame and the FIELD-frame according to (III) and (IV), our symbolic equations
entail

ACCELERATION = FIELD. XI)
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This symbolic equation translates Galileo’s principle to the assertion that in a gravita-
tional field theory the local acceleration actually represents the gravitational field.
This makes it possible to interpret the effect of gravitation, namely ACCELERA-
TION, directly as a representation of the local force, i.e. as a FIELD, independently
of the properties of the object exposed to it. We emphasize that we introduced our
symbolic notation in order to be able to represent this kind of inference which can be
made largely on the level of qualitative physical reasoning independent of any con-
crete representation. It also expresses the fact that the identification of the ACCEL-
ERATION-frame and the FIELD-frame is a general relation between two frames
that is not tied to the concrete conceptualization of the gravitational interaction. It
may hence guide the physical reasoning also in situations where new ways of mathe-
matical representation or else new conceptual relations within a gravitational theory
are being explored.

Eq. (XI) no longer contains FORCE. This insight crucial for the development of
general relativity. It suggests that it should be possible to set up a theory where field
phenomena are equivalent to acceleration phenomena. This, of course, is exactly the
idea at the core of Einstein’s equivalence principle.36 In such a theory Galileo’s prin-
ciple would find the conceptual justification it lacked in classical mechanics, where it
appeared as a mere empirical coincidence.

The insight that in a gravitational field theory the acceleration is directly equiva-
lent to the field, symbolically represented by eq. (XI), also suggests the formulation
of an equation of motion in a gravitational field that does not make use of the inter-
mediate concept of force. The idea of eliminating the concept of force was familiar
from classical physics and had been elaborated in the context of the Lagrange formal-
ism of analytical mechanics. In elementary situations of classical mechanics the Lan-
grangian or Lagrange function at the center of this formalism is simply the difference
between the kinetic and the potential energy of a physical system:

L=T-V. a7

The Lagrange formalism provides an alternative way of obtaining equations of
motion. In this formalism the trajectory of a material body is selected from the set of
all kinematically possible trajectories satisfying given constraints. The criterion for
the selection is that the action, defined as the same integral of the Langrangian along
a given trajectory is stationary, i.e., takes on either a maximum or a minimum value,
for the actual trajectory. This criterion is known as Hamilton’s principle. Saying that
the action is stationary is the same as saying that its variation vanishes:

36 See the discussion below. Cf. in this context Einstein’s use of the word “Beschleunigungsfeld” (accel-
eration field) in (Einstein 1912b): “the hypothesis that the “acceleration field” is a special case of the
gravitational field [...]” (“die Hypothese, dal das ‘Beschleunigungsfeld’ ein Spezialfall des Gravitati-
onsfeldes sei [...]” (p. 355).
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6{det} = 0. (18)

The situation is similar to the problem of finding the shortest path connecting two
points on a curved surface. This problem can be solved by looking for an extremal
value among the lengths of all possible paths connecting these points.

The Lagrange formalism yields the explicit equation of motion for a particle in
the form of the so-called Euler-Lagrange equations, which follow from Hamilton’s
principle:

d(oL) 0L
ol [l e B 19
dt(a)’ci) 0x; (9)

Under appropriate circumstances, these equations may be assimilated to the relation
F = dp/dt (20)

between a force F and the change of momentum p familiar from classical mechan-
ics. We capture the qualitative physical content of equations (19) and (20) by the
symbolic equation

DIFF(MOMENTUM) - FORCE =0, (XII)

introducing, at the same time, a MOMENTUM-frame and a DIFF-frame, the latter
being in the present case instantiated by time-derivatives. The advantage of the
Lagrange formalism compared to the explicit specification and use of forces becomes
clear if one considers motion under geometrical constraints, such as the motion of a
point particle on the surface of a sphere. Using the acceleration-implies-force model
such geometrical constraints are realized by constraining forces which are defined
only by their effect, i.e., if a body moving under geometric constraints departs from
uniform rectilinear (inertial) motion this deviation is assumed to be caused by the
constraining forces. The precise magnitude and direction of these forces are generally
unknown and hence cannot be explicitly specified in order to obtain an equation of
motion by instantiating the acceleration-implies-force model. The Lagrangian for-
malism uses the fact that these constraining forces do not perform work. They play no
role in the interplay between kinetic and potential energy as captured by the Lagrange
function if the latter is expressed solely in terms of those generalized coordinates that
describe possible motions under the given constraints, without losing information
about the physical situation.

The significance of the Lagrange formalism for Einstein’s research on gravitation
was twofold. For one, it represented a generalizable formalism that was applicable in
cases where a force or a momentum was not easily identified. It therefore also applied
in a geometrized theory by expressing the Lagrange function in terms of a geometry
adapted to the physical situation at hand.>’ Describing motion in a gravitational field
with the help of the Lagrange formalism, as we shall see, naturally suggests to con-
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ceive of gravitation as a consequence of geometry, rather than of force. And this con-
ception of gravitation in turn suggests adopting the Lagrange formalism as the natural
framework for formulating the equation of motion in a gravitational field.

3. THE ELEMENTS OF EINSTEIN’S HEURISTICS

In the course of the first period of Einstein’s research on gravitation—between 1907
and 1912 —specific components of the heuristics had crystallized as relatively stable
structures which would guide his search for the gravitational field equation in the sec-
ond period —documented in the Zurich Notebook. To some of them Einstein even
attached labels, such as the “equivalence hypothesis,”38 making their outstanding role
for his heuristics evident, while other heuristic requirements were so obviously inter-
woven with canonical expectations from classical physics, such as the requirement of
energy conservation, that they did not receive a special name. For ease of reference,
we shall nevertheless introduce standard names.

Einstein’s equivalence principle, which in the first period mainly served to find
properties of special cases of gravitational fields, became in the second period a stan-
dard criterion for checking whether or not candidates for a general gravitational field
equation incorporated his earlier insights about the intimate relation between gravita-
tion and inertia. The generalized relativity principle, a closely related result of Ein-
stein’s research in the first period, was applied in the second period either as a starting
point in the context of the mathematical strategy for choosing appropriate candidates
for the gravitational field equation or as a validation criterion by which a candidate
constructed in the context of the physical strategy was examined. The conservation
principle, inherited from classical physics, played a crucial role in developing the the-
ory of the static gravitational field and was similarly used in the second period both as
a touch stone and as a building block. This was also the case for what we will call the
correspondence principle. This principle represents the demand to incorporate in a
new theory of gravitation the knowledge about Newtonian gravitation by requiring
that the basic relations of the latter be recovered from the former in some approxima-
tion or as some special case. Its implementation as a component of Einstein’s heuris-
tics took clues from the relation between electrostatics and electrodynamics. Einstein
thus expected that the generalized theory should be connected to the Newtonian the-
ory via the intermediate case of the weak and static gravitational field.

37 Its significance for expressing the equation of motion in special relativity was realized by Max Planck
(Planck 1906, 1907).

38 Although Einstein referred to the equivalence principle as a “hypothesis” in (Einstein 1907) and in
(Einstein 1911), the terms “Aequivalenzhypothese” and “Aequivalenzprinzip” were used for the first
time in (Einstein 1912b).
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3.1 The Equivalence Principle and the Generalized Relativity Principle

According to Einstein’s equivalence principle the effects of a homogeneous static
gravitational field are equivalent to those in a uniformly and linearly accelerated ref-
erence frame. The equivalence principle, which establishes a connection between the
gravitational field and inertial forces, is closely related to Galileo’s principle that all
bodies fall with the same acceleration in a gravitational field, independent of their
constitution. While neither Galileo’s principle nor the equivalence principle are part
of the foundational structure of classical physics, they are part of the knowledge con-
tained in it, as expressed by our symbolic equation (XI). Einstein established a mean-
ingful connection between acceleration and the gravitational field by integrating two
mental models of classical physics which originally belonged to different domains of
knowledge, the mental model of a system with a homogeneous static gravitational
field, familiar from everyday physics in local terrestrial laboratories, and the model of
a system in uniformly accelerated motion (Einstein’s famous elevator experiment),
which was analyzable using standard tools of classical mechanics. The indistinguish-
ability of motions in these two systems makes it possible to identify the terminals of
these models and thus to establish an equivalence between gravitational and inertial
forces as well as between an accelerated frame of reference and an inertial frame.
These identifications turned out to have far-going consequences for the organization
of physical knowledge. Such consequences can be spelled out if further elements of
the knowledge of classical and special relativistic physics are taken into account and
are combined, for instance, with simple mental models of ray optics leading to the
conclusion that light is curved in a gravitational field >

Einstein’s “elevator model,” admits an extension to a more general class of gravita-
tional fields and accelerated motions. Such an extension was suggested, in particular,
by the Machian idea to interpret the inertial forces occurring within a uniformly rotat-
ing system as due to the interaction with distant masses rather than due to “absolute
space” Mach had compared an accelerated system—Newton’s famous rotating
bucket—with a system at rest in which an interaction with distant masses, the stars
revolving around the bucket, accounts for the same physical phenomena as are pro-
duced by the inertial forces in the accelerated system. This thought experiment pro-
vided a blueprint for the elevator-thought-experiment, which is at the heart of
Einstein’s “principle of equivalence.” In analogy to the “elevator model,” a “bucket
model” could thus be conceived as one in which the inertial forces occurring in a rotat-
ing reference frame are interpreted as the effects of a generalized gravitational field.

The elevator and the bucket models may both be considered as special cases of a
general “gravito-inertial model” in which inertial forces resulting from arbitrarily
accelerated motions are interpreted as coming from a “dynamic” gravitational field.
This gravito-inertial model made it plausible to assume that inertial frames of refer-
ence play no privileged role in a theory that adequately describes such a generalized

39  See the discussion in “Classical Physics in Disarray ...” (in this volume).
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gravitational field. It also suggested that the generic properties of gravitational fields
that can be thought of as resulting from accelerated motions are shared by arbitrary
gravitational fields. It suggests, for instance, that the laws governing the motion of
bodies are the same in both types of fields. More generally, the gravito-inertial model
made it plausible that physical interactions taking place in a gravitational field are
essentially equivalent to those taking place in a gravitation-free system that is
described from the point of view of an accelerated observer. In hindsight, the equiva-
lence principle—and the gravito-inertial model structuring the reasoning on which
this principle is based —thus introduced four more or less distinct requirements into
the search for a theory of general relativity:

— the theory should satisfy a “generalized principle of relativity” and eliminate as
much as possible the privileged a priori structures which in the classical theory
are associated with such notions as absolute space and inertial frames of refer-
ence;

— the theory should describe motion in a gravitational field as a “free fall” indepen-
dent of the structure of the moving body;

— the theory should treat gravitation and inertia as aspects of one more general
interaction; and

— the theory should describe non-gravitational physical interactions essentially in
the same way as special relativity if an appropriate reference frame (local inertial
frame) is chosen for that description.

These requirements are directly related to general relativity as we know it today. His-
torically, the impact of the equivalence principle on the search for a new theory of
gravitation was much less straightforward than it may appear in hindsight. A number
of conceptual and technical problems had to be resolved or at least disentangled
before such a clear relation could emerge.40 In particular, Einstein was convinced that
the demand for a generalized relativity principle could be satisfied by requiring the
equations of his theory to be generally covariant (Norton 1994, 1999). He lacked the
modern notion of spacetime symmetries. Similarly, the description of motion in a
gravitational field as “free fall” along a geodesic trajectory is closely related today to
the understanding of the affine structure of spacetime. But Einstein did not have the
concept of affine connection at his disposal and still saw the need to interpret the
equation of motion in terms of a classical gravitational force 4!

The equivalence principle and the generalized relativity principle did not give rise
to requirements which the new theory had to satisfy as a set of fixed axioms; they
acted in a more general and diffuse way as heuristic guiding principles which, in dif-
ferent contexts, had a variety of concrete implications not necessarily covered by
their modern counterparts. The generalized principle of relativity, in particular, moti-
vated Einstein to consider the absolute differential calculus as the appropriate lan-

40 See (Norton 1985), “Classical Physics in Disarray ...”" and “The First Two Acts” (both in this volume).
41 See “The Story of Newstein ...” (in vol. 4 of this series).
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guage for his new theory of gravitation but also to construct mathematical objects
which are covariant merely under much more limited classes of coordinate transfor-
mations. The equivalence principle led him to identify qualitative consequences of
general relativity such as light deflection even before the formulation of the definitive
theory, albeit with numerically different results. It led Einstein to adopt the geodesic
equation of motion as the law of motion appropriate for general gravitational fields
but also to systematically check whether candidate field equations are covariant at
least under transformations to linearly accelerated systems and to uniformly rotating
systems.

In the context of Einstein’s systematic search for the gravitational field equation
documented in the Zurich Notebook the adoption of the generalized relativity princi-
ples amounted to a check of the covariance properties of a candidate field equation.
But even the way in which this check was implemented—by the introduction of a
generally-covariant differential operator along the mathematical strategy or by
explicitly checking the behavior of a candidate under coordinate transformations
along the physical strategy —depended on the specific perspective guiding the imple-
mentation. At the beginning of Einstein’s search it was not at all clear whether he
would eventually succeed in finding a generally-covariant field equation of gravita-
tion incorporating the equivalence principle. From the outset it was unclear whether
the ambitious aim of a generalized relativity principle and perhaps even the equiva-
lence principle would be realizable or whether these postulates had to be restricted or
modified in order to be able to satisfy other requirements to be imposed on such a
field equation, such as the conservation principle.

3.2 The Conservation Principle

According to the conservation principle as it functioned in Einstein’s heuristics, it
should be possible to establish a balance of energy and momentum in a gravitational
field, resulting in a conservation law if all contributions to the balance, including that
of the gravitational field itself, are taken into account. This expectation was motivated
by the experience of classical physics where such a balance of energy and momentum
could indeed be obtained for all physical processes if only appropriate concepts of
energy and momentum were identified for all relevant subdomains, such as mechan-
ics, thermodynamics, and electrodynamics. This expectation had been both amplified
and modified by the advent of special relativity, and in particular that of special rela-
tivistic continuum physics, which had shown that several distinct conservation laws
of classical physics, such as those of mass, energy, and momentum actually had to be
integrated into a single all-encompassing conservation law referring to a complex
new entity, the stress-energy or energy-momentum tensor. Against this background,
the conservation principle, understood as part of the heritage of classical and special-
relativistic physics, introduced three more or less distinct requirements into the
search for a theory of general relativity:
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— the theory should take into account the close relation between mass and energy
established by special relativity and consider not just mass but more generally
mass and energy as embodied in the energy-momentum tensor (or some entity
derived from it) as the source of the gravitational field;

— the theory should contain some generalization of the special-relativistic law for
the conservation of energy and momentum; and, in particular,

— the gravitational field equation should be compatible with this generalized
requirement of energy and momentum conservation.

From the perspective of today’s understanding of general relativity, these require-
ments considerably restrict the choice of an acceptable gravitational field equation.
But historically, just as with the generalized relativity principle, Einstein’s heuristic
expectations could not simply be turned into iron-clad axioms for the formulation of
his new theory. Precisely because the requirements listed above were rooted in the
knowledge of classical and special-relativistic physics, they were still embedded in a
conceptual framework that was eventually overturned by general relativity. Further-
more, there were, at the outset of his search, still numerous possibilities for instantiat-
ing the general relations suggested by Einstein’s classical expectations. It was, for
instance, conceivable that not the energy-momentum tensor itself but its trace acts as
the source of the gravitational field. For some time, Einstein assumed that he had to
find a generally-covariant energy-momentum tensor of the gravitational field in anal-
ogy to the one for matter, while such a tensor does not exist according to the final the-
ory. He also assumed that the conservation principle would play the role of an
additional postulate of the theory, whereas it is implied by the correct gravitational
field equations. Such conceptual novelties of general relativity could not have been
anticipated on the basis of the knowledge of classical physics informing Einstein’s
heuristics. They were the eventual outcome of his heuristic schemes in the course of
concrete and often futile attempts to identify a gravitational field equation compatible
with criteria such as the conservation principle.

The effect on Einstein’s search of the requirements here summarized under the
label “conservation principle” depended on the specific questions he pursued and on
the level of sophistication of the techniques at his disposal. At one point he errone-
ously convinced himself, for instance, that a gravitational theory based on a single
scalar potential was incompatible with the conservation principle but then had to
retract that argument in the light of a closer analysis of such a scalar theory.42 The
clear-cut function which the conservation principle eventually assumed as a compati-
bility requirement for an acceptable field equation in his search for such an equation
documented in the Zurich Notebook was the result of his learning experience with the
theory for static gravitational fields in 19124 This experience demonstrated to Ein-
stein the crucial significance of the conservation principle for his search. He became
aware step by step of the full scope of the network of relations it implies. In the

42 See (Norton 1992a).
43 See “The First Two Acts” (in this volume) and the discussion below.
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course of his research documented in the Zurich Notebook, involving the mathemati-
cally much more complex tensorial formalism, these relations combined to form a set
of standard expectations for a field equation that had to be systematically checked for
each candidate. Only towards the very end of this phase of his research did Einstein
recognize the possibility of turning this network into a recipe for constructing a grav-
itational field equation satisfying the conservation principle —albeit as a requirement
essentially still conceived within a classical framework.

3.3 The Correspondence Principle

The correspondence principle requires that the new relativistic theory of gravitation
incorporate the empirically well-founded knowledge about gravitation contained in
the classical Newtonian theory. Ideally, it should be possible to obtain the Newtonian
theory as a limiting or special case from the new theory under appropriate conditions,
such as low velocities and weak fields.** In contrast to the generalized relativity prin-
ciple of which it was not clear at the outset to what extent it could be implemented in
the new theory, the correspondence principle was a much less negotiable, if not abso-
lutely necessary requirement for any acceptable theory of gravitation. It also seemed
clear from the beginning how this principle would have to be implemented in con-
crete attempts to create a relativistic theory of gravitation. The classical theory
offered a model for a gravitational field equation, the Poisson equation, even if this
model does not take into account the relativistic demand of a finite speed of propaga-
tion of the gravitational action as would a field equation based on the d’ Alembertian
operator as in (6). But the Poisson equation did not only serve as a model for the
structure of the new field equation. Einstein also expected it to emerge from a limit-
ing process by which a relativistic field equation should touch base, via the interme-
diate case of a special-relativistic field equations based on the d’Alembertian
operator, with the classical Newtonian theory. Einstein’s theory of the static gravita-
tional field provided another such base-line. Since it represents an intermediate situa-
tion between the full relativistic theory and the Newtonian case, he expected that the
general theory would, under appropriate limiting conditions, first reproduce the
results of the static special case and then, under further constraints, those of the New-
tonian theory. A relativistic theory with this limiting behavior clearly would cover the
full range of physical knowledge covered by the more specialized theories. Since the
constraints imposed by the correspondence principle were embodied not just in
abstract requirements but in well-developed theories, it follows that this heuristic
principle could act not only as a compatibility condition for an acceptable gravita-
tional field equation but also as a starting point for its construction.

44 For a discussion of the Newtonian limit of general relativity from a modern point of view, see (Kuen-
zle 1976, Ehlers 1981, 1986). For a discussion of the relation between Newtonian gravitation theory
and general relativity from an axiomatic point of view as a case of reduction, see (Scheibe 1997, 1999,
esp. ch. VIII).
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As with the other criteria, there is a perspective from which the correspondence
principle, together with a few other conditions, singles out general relativity as the
only acceptable solution to Einstein’s problem. But as we saw with the other heuristic
principles, this hindsight-perspective tends to obscure rather than clarify the actual
role of the correspondence principle in the creation of general relativity. This process
involved conceptual innovations that could not have been anticipated on the basis of
classical physics. From hindsight, we would rather have to say it could not even be
anticipated that (let alone how) the definitive solution of his problem would yield the
Newtonian theory since the classical limit of the final theory —which in some sense
must exist for the reasons pointed out above —might not resemble the familiar Newto-
nian formulation of the classical knowledge about gravitation. Vice versa, the classi-
cal expectations concerning the relation between Newtonian and relativistic theory
might impose restrictions on the choice of admissible candidates that could effec-
tively rule out a satisfactory realization of Einstein’s other heuristic requirements, in
particular, of the generalized principle of relativity. The dilemma, in short, was that
the correspondence principle represented, in view of its roots in the classical knowl-
edge about gravitation, the most weighty of Einstein’s heuristic principles but also the
one most likely to be entangled with physical assumptions that would have to be given
up if the new, relativistic theory of gravitation were to challenge those classical roots.

This dilemma could hardly be avoided. At the beginning of his search, Einstein
sought to extrapolate the classical knowledge about gravitation into the new territory
of a relativistic field theory. From his perspective, that territory, fortunately, was
mapped out nicely by the implications of the Lorentz model. As we have seen, his
model also determined the conceptualization of the relation between a generic field
theory and the special case of a static field. In Maxwell’s theory of the electromag-
netic field that relation was well understood, so it could serve as a guide for exploring
the analogous relation in the case of the relativistic gravitational field. The mental
model of a field theory and the knowledge of classical physics it incorporates had
governed Einstein’s seemingly inductive procedure all along in examining special
cases such as that of the static field* It was clear to him from the outset that the
static gravitational field corresponds to the electrostatic field while the field of a rotat-
ing reference frame corresponds to the magnetostatic field. The theory of electromag-
netism also suggested that and how a many-component tensorial object representing
the field in general turns into a much simpler object for the special case of a static
field, which can be derived from a scalar potential. The fact that in classical physics
both the electrostatic and the gravitational potential are represented by a scalar poten-
tial lent support to the assumption that a reduction to a scalar potential also takes
place in a relativistic theory of gravitation, at least in the limit of weak static fields.
Although this assumption eventually turned out to be wrong, it was backed by a long
tradition in classical field theory to which no alternative was known and it initially
prevented Einstein from accepting the Einstein tensor as a viable candidate for the
left-hand side of the field equation.
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Just as Einstein’s other heuristic principles the correspondence principle did not
act as an isolated axiom which in the end turned out to be either compatible or not
with general relativity as we know it today. It was not an isolated statement at all but
part of a network of arguments, affecting his heuristics in the context of a variety of
considerations. The correspondence principle comprised, in particular, the demands
that:

— the differential operator on the left-hand side of the gravitational field equation
should, for weak fields, reduce to the d’ Alembertian operator as in (6);

— the field equation, for weak static fields, should reduce to the Poisson equation for
the scalar potential of classical physics;

— the same scalar potential should determine the behavior of a particle in a gravita-
tional field, via the equation of motion.

The correspondence principle was also subject to modifications as Einstein’s
experience with attempts to implement this principle in concrete candidate field equa-
tions grew. The paradoxical fluid yet firm character of Einstein’s qualitative reasoning
on the level of his heuristic principles, which we have tried to grasp by describing it
in terms of mental models and frames, allows it to first exclude and then support the
correct field equations of general relativity. The correspondence principle thus left
room for learning experiences as when Einstein found out that it was possible to meet
the requirements of this principle with the help of additional constraints on the choice
of the coordinate system.

While the technicalities of its implementation were subject to reconsideration and
improvement, the basic structure of Einstein’s understanding of the correspondence
principle was stabilized by a wider context of arguments rooted in classical physics.

45 Compare the following equations from Einstein’s correspondence: “I finished the investigations on
the statics of gravitation (point mechanics electromagnetics gravitostatics) and am very satisfied with
them. I really believe that I discovered a piece of truth. Now I ponder the dynamic case, going again
from the more special to the more general.” (“Die Untersuchungen iiber die Statik der Gravitation
(Punktmechanik Elektromagnetik Gravitostatik) sind fertig und befriedigen mich sehr. Ich glaube
wirklich, ein Stiick Wahrheit gefunden zu haben. Nun denke ich iiber den dynamischen Fall nach,
auch wieder vom spezielleren zum Allgemeineren iibergehend.”) Einstein to Ehrenfest, 10. March
1912, (CPAE 5, Doc. 369); “Lately I have been working like mad on the gravitation problem. Now I
have gotten to the stage where I am finished with the statics. I do not know anything yet about the
dynamic field, that will come only now. [...] You see that I am still far from being able to conceive of
rotation as rest! Each step is devilishly difficult, and what I have derived so far is certainly still the
simplest of all.” (“In der letzten Zeit arbeitete ich rasend am Gravitationsproblem. Nun ist es soweit,
dass ich mit der Statik fertig bin. Von dem dynamischen Feld weiss ich noch gar nichts, das soll erst
jetzt folgen. [...] Du siehst, dass ich noch weit davon entfernt bin, die Drehung als Ruhe auffassen zu
konnen! Jeder Schritt ist verteufelt schwierig, und das bis jetzt abgeleitete gewiss noch das einfach-
ste.”) Einstein to Michele Besso, 26. March 1912, (CPAE 5, Doc. 377); “My case corresponds to the
electrostatic field in the theory of electricity, whereas the more general static case would also include
the analog of the static magnetic field.” (“Mein Fall entspricht in der Elektrizititstheorie dem elektro-
statischen Felde, wogegen der allgemeinere statische Fall noch das Analogon des statischen Magnet-
feldes mit einschliessen wiirde.”) Albert Einstein to Paul Ehrenfest, Prague, before 20 June 1912,
(CPAE 5, Doc. 409).
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Precisely because of this wider context, the modifications of Einstein’s understanding
in the course of his search for the field equation had the potential of challenging not
only the technical aspects but also the conceptual framework of his heuristics.

3.4 Einstein’s Heuristic Principles and his Double Strategy

Einstein’s heuristic principles, as we have seen, did not constitute a set of axioms
from which a theory of gravitation could be derived in a straightforward way. These
principles yielded both too much and too little knowledge to find a new theory of
gravitation—too little, because they were not sufficient to determine the new theory
uniquely, too much, because they imposed requirements on the new theory that could
not be maintained all at once. As we mentioned in the introduction, these principles
initially even acted as competing approaches toward a relativistic theory of gravita-
tion. In addition, their interpretation in concrete attempts to realize such a theory
depended on the specific formalism applied and on the form other requirements took
within that formalism. In the course of Einstein’s work documented in the Zurich
Notebook, these principles nonetheless developed together to become elements of a
heuristic double strategy. Earlier research on the problem of a relativistic theory of
gravitation, Einstein’s own as well as that of others, had not only suggested the math-
ematical tools to be employed but had also circumscribed the requirements such a
theory had to satisfy. As a consequence, the problem of identifying an acceptable
gravitational field equation had become the task of constructing, as if in a theoretical
laboratory, a more or less well-defined but never-tried device from a set of given
building blocks.

Each of Einstein’s heuristic principles against which constructions would have to
be checked could be used either as a construction principle or as a criterion for their
validity. The sequence in which the heuristic principles were used essentially deter-
mined their function. The approach we have labelled the “physical strategy” starts
from the correspondence principle, i.e., from a candidate field equation which by
inspection is seen to yield the Newtonian limit in the expected way. Such a candidate
field equation is thus firmly rooted in classical physics. Typically, only mathematical
knowledge familiar from the context of classical and special-relativistic physics was
used in its construction. The compatibility of such a “physical candidate” with other
criteria was, as a rule, less obvious and needed to be checked explicitly. If the primary
goal was to stay as close to the familiar territory of classical physics as possible, the
first thing to check was the conservation principle, which could turn out to be satis-
fied, give rise to modifications, or lead to the rejection of the candidate altogether. If
the candidate survived this test, it was to be explored to what extent it complied with
the generalized relativity principle, i.e., under how broad a class of coordinate trans-
formations it would retain its mathematical form. For candidates that were not gener-
ally covariant, it had to be determined under which class of transformations the
candidate was covariant and whether or not the restriction of this class was acceptable
on physical grounds. In particular, it made sense to check whether at least the situa-
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tions at the core of the equivalence principle, i.e., transformations to reference frames
in uniform linear and rotational accelerated motion, were included in this class.

The approach we have labelled the “mathematical strategy” starts from the gener-
alized relativity principle, i.e. from a candidate field equation which by inspection is
seen to be covariant under a broad enough class of coordinate transformations. Since
such a general principle of relativity was not part of classical physics, it was much
less obvious than in the case of the correspondence principle what “by inspection”
meant in this case. The expert mathematical knowledge of the time, however, pro-
vided him with a certain reservoir of suitable objects. Their relation to any meaning-
ful physics was much less obvious than for a candidate of the physical strategy. It had
to be checked explicitly whether such a “mathematical candidate” could be brought
into agreement with the requirements of the correspondence principle. Failure to
comply with the correspondence principle could lead to immediate rejection of the
candidate, or generate additional conditions amounting to a restriction of the relativ-
ity principle. It could even trigger the discovery of a new way to obtain the Newto-
nian limit. It could also suggest how a given candidate was to be modified in order to
pass the test. The situation was similar for the conservation principle, which repre-
sented another necessary condition for a physically meaningful theory. Since both the
correspondence and the conservation principles could neither be circumvented nor
substantially weakened, they tended, in turn, to impose restrictions on the generalized
relativity principle or suggest modifications of the candidates.

/_\ B - o /_\
shared Generalized C : hared
3 3 onservation Correspondence share
athematical Relativity Pn'nciplla Priﬁ(c)iple physical
knowledge Principle knowledge

\\\-/// =/

Figure 1: Einstein’s double strategy arose from the different roles of the heuristic requirements of
Generalized Relativity, Conservation, and Correspondence.

The two strategies are illustrated in Fig. 1 above. The physical and the mathemat-
ical strategy work with the same heuristic principles, draw on the same knowledge
base of classical and special-relativistic physics, and essentially use the same mathe-
matical representations. Why did they nevertheless produce, as we will see, different
results in the course of Einstein’s research? An answer is suggested by noting that the
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candidate solutions he examined are not determined directly by the two strategies but
only through the concrete representations in which he attempted to embody his heu-
ristic criteria. The two strategies did not act as an algorithm for producing solutions
but rather as different channels for filling the Lorentz model with concrete mathemat-
ical and physical content. In other words, the two strategies constituted alternative
ways for bringing to bear the available physical and mathematical knowledge on the
problem of finding a gravitational field equation.

The notions of mental models and frames are helpful, we believe, for describing
this process of knowledge assimilation. Because of its character as a mental model,
the Lorentz model does not just represent an abstract scheme, but carries with it the
experience of previous implementations. This prior experience includes the model’s
default settings enabling it to generate concrete candidate field equations even in the
absence of sufficient knowledge about the properties of a relativistic gravitational
field. The default settings make it possible to deal with the problem of insufficient
knowledge by supplementing missing information drawn from prior experience.
Moreover, since the experience of classical and special-relativistic physics entered
the Lorentz model in the form of default settings, Einstein could give up prior
assumptions in the course of his research without shattering his entire heuristic
framework.

One and the same mental model may come with different sets of default settings,
depending on prior experience, applications, knowledge resources, and higher-order
models in which it is embedded. Default-settings depend on knowledge contexts. Clas-
sical field theory, the knowledge about Newtonian gravitation, the insights opened up
by the elevator and the bucket models, the Machian interpretation of classical mechan-
ics—all constitute different knowledge contexts relevant to the default assumptions of
the Lorentz model when implemented in attempts to create a relativistic field theory of
gravitation. The same is true for the mathematical resources of Gaussian surface the-
ory, vector calculus, the theory of invariant forms, and the absolute differential calcu-
lus. Einstein’s double strategy can be understood as a way of dealing with this problem
of overabundant knowledge by consciously selecting alternate knowledge contexts
dominating the default settings of the model. In this sense, the physical strategy, in par-
ticular, starts not just from the correspondence principle but from candidates embody-
ing the classical knowledge about gravitation. The mathematical strategy likewise
starts, not just from the generalized relativity principle but from candidates embodying
the prior mathematical knowledge, in particular about generally-covariant, second-
rank tensors of second order in the derivatives of the metric.

The selection of such different approaches dominating the default settings of the
Lorentz model occurred initially, of course, in the hope that one or the other knowl-
edge context would be more relevant or turn out to be more suitable to yield a full
solution of the problem. Effectively, however, the alternation between different
knowledge contexts led to a systematic exploration of resources that could not have
been assimilated to the model all at once. The double strategy was not an astute plan
for attacking the problem of finding field equations from two sides, the physical and
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the mathematical side. It emerged only gradually as a result of learning more about
the implications of the field-theoretical model for gravitational field equations by
varying its default settings. To understand Einstein’s search for the gravitational field
equation, it is therefore not enough to examine his heuristic principles as we have
done in this chapter. We also have to reconstruct the default settings for the Lorentz
model in different contexts of this search.

4. DEFAULT SETTINGS AND OPEN SLOTS IN THE LORENTZ MODEL
FOR A GRAVITATIONAL FIELD EQUATION IN 1912

In this section we will introduce the principal entities figuring in Einstein’s search for
the gravitational field equation in the period documented by the Zurich Notebook.
His research in this period focused on the problem of formulating a field equation for
gravito-inertial phenomena, which had to satisfy all heuristic requirements, both
those embodied in the mental model of a field equation and those that had emerged
from his work between 1907 and 1912. The experience of these years had largely
shaped the default assumptions that formed the starting point of Einstein’s explora-
tion of the mental model represented by the symbolic equation OP(POT) =
SOURCE, cf. (I).

In particular, the metric tensor, which we will represent by the frame METRIC,
was adopted as the representation of the gravitational potential and became the
canonical instantiation of POT in the Lorentz model:

POT =pppp METRIC, (XIII)

where “=pgpr” is meant to express that the right-hand side of the equation represents
the default-setting of the left-hand side. Similarly, we will refer to the energy-
momentum tensor of matter and of the electromagnetic field, by the frame ENEMO,
which became the new standard setting for SOURCE:

SOURCE =pgpy ENEMO. (XIV)

These two key components of the gravitational field equation were generally-covari-
ant tensors and thereby nurtured the expectation that the field equation itself would
take the form of a generally-covariant tensorial equation, thus allowing Einstein to
realize his ambition of creating a generalized relativity theory.

For the third component of the Lorentz model, the differential operator OP, the
situation was more complicated. At the beginning of his search, Einstein was largely
ignorant of the mathematical techniques necessary for constructing suitable candi-
dates. The many requirements to be imposed on acceptable candidates prevented the
selection of an obvious default assumption for the differential operator OP compati-
ble with all these requirements.

We summarize the situation in the following figure which we will further elabo-
rate in the following sections:
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Mental model: OP(POT) = SOURCE
Ap = 4nxp
Default settings: Q> 8uy 47 J] p—=T,,

Open slot: @—|> O(g,y) = KT,

Figure 2: The Lorentz model evolved by changing the default settings for the POT- and the
SOURCE-slots, leaving the question of an appropriate instantiation of the OP-slot.

4.1 The Metric as the Potential in the Gravitational Field Equation

In the middle of 1912 Einstein introduced the metric tensor as the new default setting
for the POT- slot of the Lorentz model. This step affected both the field equation and
the equation of motion. The grounds for this move had been prepared by his earlier
attempts to set up a theory for the static gravitational field and his awareness that such
a theory could only represent a special case within a wider framework suggested by
the model. In these attempts Einstein had also learnt that Minkowski’s spacetime
framework for special relativity could be useful but had to be generalized for use
within this larger context. This had been suggested, in particular, by Einstein’s con-
troversy with Abraham, pointing to the need for a generalization of the so-called “line
element” used in the Minkowski framework, as well as by Einstein’s insight into the
geometrical consequences of applying special relativity to an accelerated system such
as a rotating disk, pointing to the need for non-Euclidean geometry when describing
gravitation.

An appropriate generalization of Minkowski’s framework was found on the basis
of the mathematical work of Gauss, Riemann, Christoffel, Ricci, and Levi-Civita.
This led Einstein and Grossmann to the consideration of curvilinear coordinates and
the introduction of a metric tensor g, for a four-dimensional generalization of
Gauss’ theory of curved surfaces. Curvilinear coordinates are given by four functions
x" with w = 1,...,4, mapping a point of spacetime to four numbers representing its
coordinates similar to the use of coordinates in Gaussian surface theory. The general-
ized line element ds, giving the distance between two neighboring points in space-
time separated by coordinate differentials dx", expresses a generalization of the
Pythagorean theorem:

ds® = Y g, dx"dx". (21)
2

In the usual representation of Minkowski spacetime in Cartesian coordinates, this
expression reduces to the four-dimensional form of the Pythagorean theorem in
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which the metric tensor g, is given by the four-by-four matrix (¢ being the speed of
light):

-10 00

0-100
= . 22
8uv 00 -10 (22)

00 0¢

According to the gravito-inertial model inertial forces resulting from arbitrarily
accelerated motions can be interpreted as being equivalent to effects of a “dynamic”
gravitational field. In the generalized formalism, this model then suggests a natural
default setting for the POT slot of the frame as well as a natural candidate for the
equation of motion in a given gravitational field. The generalized principle of relativ-
ity finds a natural expression in terms of the admissibility of arbitrary (smooth) curvi-
linear coordinate systems representing accelerated reference frames. The inertial
motion of a particle in such a reference frame can, on the basis of the gravito-inertial
model, be interpreted as motion in a special kind of gravitational field. In the general-
ized Minkowski formalism such a motion can be described by a geodesic curve, in
complete analogy to Gaussian surface theory where geodesic curves represent the
natural generalization of straight lines in Euclidean geometry. Combining these two
perspectives, it becomes plausible to assume that the motion of a particle under the
influence of any gravitational field is represented by a geodesic line in a curved
spacetime.

Mathematically, a geodesic line can be described as an extremal curve in space-
time determined by a given metric tensor:

6{fds} - 0. (23)

From a physical perspective, this equation can be seen as Hamilton’s principle (cf. eq.
(18)) for the Lagrangian of a free particle of mass m :

ds

L= . (24)
The Euler-Lagrange equations (cf. eq. (19)) then suggest to consider the metric tensor
8.v as representing the gravitational potential, i.e. POT =pgpr METRIC, as in eq.
(XII). The combination of the default setting (XIII) and the equation of motion (23)
was compatible with the special case of Minkowski spacetime of special relativity
where the metric tensor is given by eq. (22) and where the equation of motion of the
form of eq. (23) had been developed well before Einstein had begun to work on the
problem of gravitation. It was also supported by the special case a static gravitational
field, as developed by Einstein in 1912, which could be integrated into the general-
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ized Minkowski formalism in a special and seemingly natural way. Thus one could
say that the POT-frame specializes to a POTgpar-frame in the context of Einstein’s
theory of static gravitation:

static

—_—1=
POT gravitation POTgrar - (XV)

and that the default setting for the POTgpar-frame was given by the following metric:

-1 0 O 0
0-10 0
POTgstAT =DEFT 8409 = 0 0 _1 0 , (25)

00 0 c(x,2)

Here c(x,y, z) is the gravitational potential in Einstein’s static theory. In the following
we shall refer to this metric as the “canonical metric for a static field.” It represents
Einstein’s default setting for representing a static gravitational field, This default set-
ting mediated between a generic field and the Newtonian case, and was crucial to the
heuristics of the correspondence principle.

4.2 The Source-Term in the Gravitational Field Equation

In classical and special-relativistic physics, the relation between force and accelera-
tion (cf. eq. (III)) is not the only way to characterize the effect of a force on a physical
system. The effect can also be described in terms of a change in the momentum and in
the energy of the system. In classical physics, the force is equal to the rate of change
in time of the momentum, which can be symbolically expressed as (cf. eq. (XII)):
FORCE = DIFF(MOMENTUM). (XVI)

But the force is also equal to the rate of change in space of the energy, which can be
symbolically expressed as (cf. eq. (V)):

FORCE = - GRAD(ENERGY). (XVII)

These relations also express that whenever a system gains or loses momentum and
energy this must be due to the action of an external force. Note that we have here
again introduced new frames GRAD and ENERGY. As with the previous examples,
one could discuss different instantiations of these frames in the context of, say, classi-
cal point mechanics, special-relativistic point mechanics, or Maxwellian electrody-
namics. But from this point on, we will introduce and make use of our symbolic
notation in a more roundabout and indirect way, relying on an intuitive understanding
that we hope is conveyed by our choice of names for our symbolic notation
(ENERGY for energy, ENEMO for energy-momentum, etc.). At crucial junctures,
however, we will explicitly discuss the concrete instantiations of these frames in Ein-
stein’s research and thus provide a general argument for the impact of heuristic rea-
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soning on a qualitative level for Einstein’s concrete explorations of pathways out of
classical physics.

In special relativity, the concepts of energy and momentum are integrated into a
single new concept, the 10-component energy-momentum or stress-energy tensor,
which we symbolically represent by the frame ENEMO so that the relation between
force, energy, and momentum can now be written as:*0

FORCE = - DIV(ENEMO). (XVIID)

In his search for a relativistic gravitational field equation Einstein quickly realized
that the source-term, i.e. the instantiation of SOURCE in the Lorentz model, had to
be the energy-momentum tensor ENEMO. In our symbolic notation (cf. eq. (XIV)):

SOURCE =DEFT ENEMO.

Two lines of arguments, a mathematical and a physical one, made this default setting
almost inescapable. From a mathematical point of view —or alternatively, from the
point of view of filling the slots of the Lorentz model—something more complex
than the scalar mass density was required for SOURCE because the gravitational
potential is represented by a tensorial object. The slots on both sides of the field equa-
tion have to be filled by analogous mathematical objects. While it was in principle
conceivable to construct a scalar object out of the metric tensor, e.g. by forming its
determinant, and hence to have a scalar field equation, it was more plausible to Ein-
stein that the 10-components of the metric tensor enter into some many-component
field equation, just as with the many-component object representing the electromag-
netic field.*7

From a physical point of view—or alternatively from the point of view of the
default settings of the Lorentz model based on prior research experience—the
energy-momentum tensor had turned out to be the appropriate generalization of the
concept of mass in a four-dimensional spacetime setting, i.e.:

The elaboration of four-dimensional relativistic electrodynamics and hydrodynamics
had shown that the introduction of this tensor was necessary in order to adequately
describe the energetic and inertial behavior of an extended physical system.48 In view
of Einstein’s expectation that, in his relativistic theory of gravitation, energy and

46 For the sign compare (CPAE 4, Doc. 1, 92) and “Einstein’s Zurich Notebook” O5R (in this volume).
The significance of the sign becomes clear when considering the energy-momentum gained or lost by
a physical system, for instance in the case of a system with electromagnetic interactions. The diver-
gence of the energy-momentum tensor of the electromagnetic field at a point describes the increase of
the energy-momentum of the field at that point, which corresponds to the flow of energy-momentum
from the charges to the field. This in turn equals the negative flow of energy-momentum from the field
to the charges, which is given by the negative of the Lorentz force.

47 For attempts to build a scalar theory, see John Norton’s discussion of Nordstrom’s theory and Ein-
stein’s objections in “Einstein, Nordstrom, and the Early Demise of Scalar, Lorentz Covariant Theo-
ries of Gravitation” (in vol. 3 of this series).
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mass, as well as gravitational and inertial mass, would essentially be equivalent (cf.
eq. (IX)), the energy-momentum tensor was the natural candidate for the right-hand
side of the field equation. To sum up, the default setting for the source slot of the
Lorentz model of a field equation, eq. (XIV), was inherited from the default setting
for the mass slot, eq. (XIX), resulting from the special-relativistic generalization of
the mass concept of classical physics.

In order to make the choice of the default setting for SOURCE acceptable from
the broader point of view provided by eq. (XIX), it was necessary to check whether
ENEMO also satisfies further properties of MASS in classical and special-relativis-
tic physics. The field-theoretical model suggested using the same instantiation of
MASS both in the field equation and in the equation of motion.

The structure of an equation of motion in a gravitational field involving the
ENEMO-frame was suggested by the special-relativistic relation between force and
energy-momentum represented by eq. (XVIII). Combining this equation with the
relation between force and potential, eq. (V), and the appropriate default setting for
CHARGE, (see eqs. (VII) and (IX) one obtains:

GRAD(POT) x ENEMO = DIV(ENEMO). (XX)

Initially, this structural relation provided merely a heuristic hint of what a general
equation of motion involving the energy-momentum tensor would look like. To vali-
date this hint, Einstein used a default-setting for the energy-momentum tensor which
allowed him to establish a connection between the proper realm of the stress-energy-
momentum tensor, i.e. continuum mechanics, and the mechanics of point particles,
for which an equation of motion was well established (eq. (23)).49 In this way, he
built a bridge between the knowledge embodied in eq. (XX) and the knowledge that
the trajectory of a particle in a gravitational field is a geodesic.

The instantiation ENEMO that Einstein used to build this bridge and which, in
fact, became its default setting, was the energy-momentum tensor for a swarm of
independent particles (“dust”). In our symbolic notation:

ENEMO =DEFT DUST, (XXI)

where the energy-momentum tensor for DUST is mathematically represented by (cf.
eq. (4)):

48 See the discussion in “Einstein, Nordstrom, and the Early Demise of Scalar, Lorentz Covariant Theo-
ries of Gravitation” (in vol. 3 of this series). At some point in 1913 Einstein even convinced himself
that this consideration would altogether rule out a scalar theory of gravitation, which he believed to be
incompatible with the conservation laws, but then had to acknowledge that his choice of a tensorial
theory with the energy-momentum tensor as a source term was reasonable but not unavoidable. His
own subsequent exploration of a relativistic scalar theory of gravitation made it clear, however, that
such a theory was based on a priori assumptions about the geometry of spacetime, which Einstein
was not willing to accept. Hence even this apparently far-fetched consideration, based on Mach’s cri-
tique of Newton’s concept of space, contributed to stabilizing Einstein’s choice of the energy-momen-
tum tensor as the default-setting for SOURCE.

49 “Einstein’s Zurich Notebook” 05R, p. 43R (in this volume).
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T;w _ dx!'l@\,

In the Lagrangian formalism for a point particle in a gravitational potential given by
the metric tensor (cf. eq. (24)), Einstein obtained expressions for the momentum and
energy of a particle. He then applied these expressions to the energy-momentum ten-
sor for dust and interpreted the resulting terms. In this way he arrived at an equation
corresponding to the structural relation eq. (XX):50

1 T — 0
S8 5 T = —(J=88e,T"). 27)
Jx Jx

Introducing mixed tensor densities S(V, = A/—gg(mT‘w, we can write this equation
more compactly:

Land8ugy _ 9%

g = (28)
2 dx

o a axv
The agreement between this concrete result for the default setting DUST with the
general relation eq. (XX) supported the underlying physical heuristics and suggested
that this equation holds for an arbitrary symmetric energy-momentum tensor.” !
Equation (27) turned out to be very important for Einstein’s further research.
First, it supported the choice of the energy-momentum tensor as the source of a grav-
itational field equation and stabilized this instantiation of both SOURCE and MASS.
Second, it provided Einstein with one of the fundamental components for the Lorentz

50 “Einstein’s Zurich Notebook” 05R, (in this volume). In this form eq. (27) is valid only for a symmet-
ric tensor 7" . See also (CPAE 6, Doc. 9, 95).

51 The terms in eq. (27) are interpreted in (Einstein and Grossmann 1913) in the following way: “We
ascribe to equation (10) [i.e. our (27)] a validity range that goes far beyond the special case of the flow
of incoherent masses. The equation represents in general the energy balance between the gravitational
field and a arbitrary material process; one has only to substitute for [T"" ] the stress-energy tensor
corresponding to the material system under consideration. The first sum in the equation contains the
space derivatives of the stresses or of the density of the energy flow, and the time derivatives of the
momentum density or of the energy density; the second sum is an expression for the effects exerted by
the gravitational field on the material process.” (“Der Gleichung [(27)] schreiben wir einen Giiltig-
keitsbereich zu, der iiber den speziellen Fall der Stromung inkohérenter Massen weit hinausgeht. Die
Gleichung stellt allgemein die Energiebilanz zwischen dem Gravitationsfelde und einem beliebigen
materiellen Vorgang dar; nur ist fiir [T ] der dem jeweilen betrachteten materiellen System entspre-
chende Spannungs-Energietensor einzusetzen. Die erste Summe in der Gleichung enthélt die ortli-
chen Ableitungen der Impuls- bzw. Energiedichte; die zweite Summe ist ein Ausdruck fiir die
Wirkungen, welche vom Schwerefelde auf den materiellen Vorgang iibertragen werden.” p.11).
Indeed, except for the original derivation of eq. (27) in (Einstein and Grossmann 1913), in all later
publications up to 1916, this relation appears in a form where the two conceptually distinct terms of
the left-hand side are set equal, rather than in the form of eq. (27) which asserts the vanishing of a
generally-covariant object that only happens to be represented by the algebraic difference of two
terms as in eq. (27).



PATHWAYS OUT OF CLASSICAL PHYSICS 161

model, a general equation of motion which describes how material processes are
affected by the gravitational field. Third, this equation became, as we shall see, the
starting point for the formulation of the requirement of energy-momentum conserva-
tion that had to be satisfied by any candidate for the left-hand side of the gravitational
field equation. Fourth, its left-hand side suggested, in connection with the relation
between FIELD and POT in eq.(I), an instantiation of FIELD:

J ~
FIELD = - GRAD(POT) =pgpt —% g™ Buv Toy. (XXII)
]

o

This choice was plausible but not without alternatives. Eq. (28) can also be written as:

o Y as’;
_rcwga = v’ 29)
0x

with T, —in the following symbolically represented as CHRIST —defined as minus

the so-called Christoffel symbols (of the second kind):

Fa - _ (o3 — _lgau agpw+ aguc_%v (30)
ov oy 2% \ox, dx,  dx, |

As a consequence, one obtains an alternative instantiation of FIELD:

FIELD = DEFT — CHRIST = DEFT ng . (XXIII)

The familiar form of the relation between field and potential in classical field theory
made eq. (XXII) the natural first choice, and eq. (XXIII) only came into play when
this first choice turned out to lead to difficulties.

Equation (27) had one final important implication. Written in the form:

9 1 8y
(885, T"") — s4—g—2T" = 0, (31)
ax’ ! 2 ax°

its left-hand side could be conceived as a generic, generally-covariant differential
operator known as “covariant divergence,” here symbolically represented as DIV
cov(.), so that eq. (XX) can also be written as:)?

DIV :oy(ENEMO) = DIV(ENEMO) - GRAD(POT) x ENEMO =0. (XXIV)

Although Einstein interpreted eq. (31) primarily from a physical point of view i.e.
as a representation of the structure (XX), as we have seen, he knew, probably even
before he became acquainted with the absolute differential calculus, that this equa-

52 Note that the embodiment eq. (31) of the symbolic eq. (XXIV) holds only for symmetric tensors.
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tion involves a generic tensor operation which is generally covariant.>® He had thus
recognized the covariant divergence as a mathematical ingredient of his new theory
that was meaningful in its own right and could in principle be used for other pur-
poses. The formulation of eq. (31) is a prime example of how Einstein’s physical
strategy produced a result that turned out to be independent of the specifics of its der-
ivation, such as the choice of DUST for ENEMO. Einstein even attempted to use the
covariant divergence as a constituent of a candidate for the left-hand side of the grav-
itational field equation but failed because it vanishes when applied to the metric ten-
sor>* The fact that the equation of motion expressed in terms of ENEMO turned out
to be generally covariant must, in any case, have been an important confirmation of
his program to establish a generally-relativistic theory of gravitation, suggesting that
the other major constituent of the Lorentz model, the field equation, should also have
this property.

4.3 The Differential Operator in the Gravitational Field Equation

For the differential operator acting as OP in eq. (I), Einstein did not have an immedi-
ately satisfactory candidate or even a heuristic shortcut for finding one. Substituting
the metric tensor for the scalar gravitational potential quickly drove him out of any
familiar mathematical terrain. He had to find a second-order differential operator act-
ing on the metric tensor by relying either on attempts to directly construct such an
operator or on the mathematical literature in order to find suitable starting points.
One of Einstein’s earliest attempts5 > to construct a differential operator OP was to
mimic the way in which the classical Laplace operator was formed, that is, by com-
pounding the differential operations divergence and gradient familiar from three-
dimensional vector calculus. In this way he obtained a first, natural instantiation for

the differential operator on the left-hand side of the gravitational field equation:56

OP =pgpr LAP = DIV (GRAD) (XXV)

Applying LAP to the default setting for POT, we obtain what we will call the core
operator:

53 Einstein’s remark “I have now found the most general equations.” (“Ich habe nun die allgemeinsten
Gleichungen gefunden.”) in a letter to Ludwig Hopf, dated 16 August 1912 (CPAE 5, Doc. 416) in all
probability refers to this insight, cf. the editorial note “Einstein on Gravitation and Relativity: The
Collaboration with Marcel Grossmann” (CPAE 4, 294-301). The covariance of this equation was
demonstrated in terms of the absolute differential calculus of Ricci and Levi-Civita by showing that it
represents the covariant divergence of the (symmetric) contravariant stress-energy-tensor in Gross-
mann’s “mathematical part” of (Einstein and Grossmann 1913, 32).

54 See p. 05R of “Einstein’s Zurich Notebook™ (in this volume).

55 The following discussion relies heavily on the analysis of Einstein’s research notes contained in the
Zurich Notebook. Since the actual historical path will be discussed in chapter 6, we will here only
refer to the relevant pages of this notebook, without any further comments.

56 Cf.pp.07R and O8L of “Einstein’s Zurich Notebook™ (in this volume).

57 Cf. e.g.,p.07L of “Einstein’s Zurich Notebook” (in this volume).
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d ugag”v
LAP(POT) =pgr » — 8"~ |. (XXVI)
a p
ap ax

It has to be noted that this equation is only one of several possible instantiations
of the frame LAP. Alternative instantiations typically involve additional factors of the
determinant of the metric which typically affect the transformation behavior of the
particular version of the core operator under consideration.

As a symbolic equation, the resulting tentative field equation reads:

LAP(POT) = ENEMO. (XXVII)

This instantiation of OP was supported by several arguments based, in particular, on
the correspondence principle. The straightforward generalization of the Laplace oper-
ator was also plausible against the background of the field equation Einstein had
developed for static gravitational fields. This field equation resulted from a simple
instantiation of the Lorentz model obtained essentially by replacing the Newtonian
potential in the classical Poisson equation by the variable speed of light, a move sug-
gested by the equivalence principle:58

Ac = kep. (32)

The constant k is related to the gravitational constant K of the Poisson equation
through k = (4J'EK/C2).59

In the following, we discuss the implications of Einstein’s heuristic framework for
choosing and modifying the instantiations for the gravitational differential operator in
his field equation: We examine the implications coming from the correspondence
principle, the conservation principle, the generalized principle of relativity, and
examine the Lagrangian formalism, respectively. This discussion is not meant as a
substitute for a detailed account of Einstein’s pathway, but as preparation for such an
account by identifying the constraints under which it was pursued. These constraints

58 The explicit justification for this equation was follows. After noting that the variable velocity of light
fulfills the Laplace equation for the matter-free case, Einstein continues: “It is easy to establish the
presumably valid equation that corresponds to Poisson’s equation. For it follows immediately from
the meaning of ¢ that ¢ is determined only up to a constant factor that depends on the constitution of
the clock with which one measures [the time] 7 at the origin of [the accelerated coordinate system]
K. Hence the equation corresponding to Poisson’s equation must be homogeneous in ¢. The sim-
plest equation of this kind is the linear equation [eq. (32)] where k denotes the (universal) gravita-
tional constant, and p the matter density.” (“Es ist leicht diejenige vermutliche Gleichung
aufzustellen, welche derjenigen von Poisson entspricht. Es folgt ndmlich aus der Bedeutung von ¢
unmittelbar, da3 ¢ nur bis auf einen konstanten Faktor bestimmt ist, der davon abhingt, mit einer wie
beschaffenen Uhr man ¢ im Anfangspunkte von K mift. Die der Poissonschen Gleichung entspre-
chende muB also in ¢ homogen sein. Die einfachste Gleichung dieser Art ist die lineare Gleichung
[eq. (32)], wenn unter k die (universelle) Gravitationskonstante, unter p die Dichte der Materie ver-
standen wird.”) (Einstein 1912b, 360)

59 The relation is obtained by identifying ¢>/2 with the Newtonian potential ¢ and neglecting terms of
order (aic)z, cf. (Einstein 1912a, 362).
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were rooted in the knowledge of classical physics, which provided the default set-
tings for the frames with which Einstein operated. That these default settings often
led to conflicting results necessitating their modification or replacement lies in the
nature of Einstein’s search, whose outcome could not be anticipated.

4.4 Implications of the Correspondence Principle

A gravitational field equation based on the core operator as given by eq. (XXVI) is in
accordance with the correspondence principle, thus strengthening the role of this
operator as an instantiation for the left-hand side of the field equation. For weak fields
this differential operator reduces to the d’Alembertian operator, the default-setting
for OP in the weak-field limit. The transition to this limiting case can be represented
symbolically ag:%0

LIM(OP(.)) =pgpt LIM(LAP(.)) =pgrr

2 2 2 2
a( ) = iﬁiﬁ%—%iy (XXVIII)
ax~ dy- az" c ot

The weak-field equation thus takes on the canonical form:
Ogu = KTyy. (33)

uv

This equation can also be written as:

Ohyy = KT, (34)
where £, is defined by
Suv = Muv + iy, (35)
with ‘hw‘ « 1 denoting small deviations from the Minkowski metric:
-10 00
e |20
00 0¢

If the source is taken to first order as a pressureless, static cloud of dust of density p
(compare eq. (4)), one can neglect all terms of the energy-momentum tensor on the
right-hand side of eq. (33) except for the T, - term, which can be identified with the

60 Cf. (Einstein and Grossmann 1913, 13). Note that in contrast to the Entwurf operator, the core opera-
tor reduces to the Laplacian for a static metric of the form (25) for strong static fields as well. Einstein
never seems to have considered this case.
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gravitating mass density appearing in the classical Poisson equation. The neglected
terms in the energy-momentum tensor involve the velocity of the gravitating matter
which, in the Newtonian case, will be small compared to the velocity of light. If one
now considers the case of a static weak field, introducing LIMgrat and using the
static metric of the canonical form (25) on the left-hand side of the weak-field equa-
tion, one has:

LIMgpur(OP(POT)) =pgpr LIM(LAP(POTgpa1))- (XXIX)

This expression reduces to the Laplace operator acting on a single component of the
metric. Eq. (33) thus reduces to the familiar Poisson equation:

Ag4, = Kp orequivalently Ah,, = xp. (37)

The equation of motion in the Newtonian limit can be obtained from eq. (31) under
similar assumptions, i.e., small velocities and a weak static field. The result is:

2
d’x; 10844 10hyy .
7 = Thw, = aax, (b %)

This equation shows that g,,/2 resp. h,,/2 plays the role of the Newtonian gravita-
tional potential.

The assumption that the left-hand side of the field equation has the form of
eq. (XXVIII) is not independent from the assumption that the metric tensor for weak
static fields has the form (25). Under appropriate circumstances, a weak-field equa-
tion of this form gives rise to solutions precisely of this canonical form.®! In other
words, the most natural assumption for the form of a weak-field equation and the
most natural assumption for the metric of a static field supported each other. A further
argument supporting Einstein’s understanding of the correspondence principle as
implying a canonical metric of the form (25) was independent from the field equation
but also related to the roots of this principle in the framework of classical physics.62
This argument is based on Galileo’s principle, that is, the requirement that all bodies
fall with the same acceleration in a given gravitational field, and makes use of the
basic relations between force, momentum, energy, and acceleration as understood in
classical physics, with some additional ingredients from special relativity such as the
equivalence of mass and energy. Einstein argued that particles with different energy,
and hence different inertial mass, fall with different accelerations in a static gravita-
tional field, unless such a field is represented by a metric tensor of the canonical form
(25). As a criterion for the validity of Galileo’s principle he used the requirement that
the ratio of the force acting on a particle and its energy depend neither on the parti-
cle’s mass nor on its velocity.

61 See (Norton 1984, 120-121).
62 The following argument is based on a reconstruction of p. 21R of “Einstein’s Zurich Notebook™ (in
this volume).
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4.5 Implications of the Conservation Principle

The fact that the core operator was firmly anchored in knowledge about the familiar
cases of static and Newtonian gravitation made it the natural starting point for Ein-
stein’s “physical strategy.” The core operator, however, had to pass a number of fur-
ther checks, which could result in modifications. In particular, it remained to be seen
how the operator could be brought into agreement with the conservation principle
and the generalized relativity principle.

An acceptable field equation (I) had to be compatible with the equation of motion
and the related structural insight into energy-momentum conservation represented by
eq. (XX). This compatibility could be checked by replacing ENEMO in eq. (XX) by
the left-hand side of the field equation, i.e. by OP:

GRAD(POT) x OP(POT) = DIV(OP(POT)), (XXX)
or, in the notation of eq. (XXIV):
DIV coy(OP(POT)) = 0. (XXXI)

It was necessary to check whether this “conservation compatibility check” could be
satisfied for a given candidate field equation if need be by imposing extra conditions,
in addition to the field equation.

In the course of Einstein’s research documented in the Zurich Notebook it became
clear that the conservation compatibility check fails for a field equation based on the
core operator:

GRAD(POT) x LAP(POT) = DIV(LAP(POT)). (XXXII)

This problem may not have surprised Einstein as it was already familiar to him
from his theory of static gravitational fields. There he had also encountered the diffi-
culty that the first choice of a field equation for the static field (eq. (32)) turned out to
be incompatible with momentum conservation.®? To demonstrate this conflict, Ein-

63 Cf. Einstein’s second thoughts about the paper expressed in a letter to the editor of the Annalen der
Physik, Wilhelm Wien: “I asked you this morning to return my manuscript, and now I am asking you
to keep it after all. To be sure, not everything in the paper is tenable. But I think I should let the thing
stand as it is, so that those interested in the problem can see how I arrived at the formulas.” (“Heute
Morgen bat ich Sie, mir mein Manuskript zuriickzusenden und nun bitte ich Sie es doch zu behalten.
Es ist zwar nicht alles haltbar, was in der Arbeit steht. Aber ich glaube die Sache doch so lassen zu
sollen, damit diejenigen, welche sich fiir das Problem interessieren, sehen, wie ich zu den Formeln
gekommen bin.”) Einstein to Wien, 11 March 1912, (CPAE 5, Doc. 371). Since (Einstein 1912b),
which contains eq. (32) was received by the Annalen on February 26, and (Einstein 1912c) where the
problem with this equation is discussed, was received four weeks later, on March 23, the problem Ein-
stein refers to in the letter to Wien is most probably the incompatibility with the conservation princi-
ple discussed in the following. To the published discussion of the potential equation for ¢ in (Einstein
1912b) Einstein added a footnote reading: “A soon to be published paper will show that equation (5a)
and (5b) cannot yet be exactly right. However, they will be provisionally used in the present paper.”
(“In einer in kurzem nachfolgender Arbeit wird gezeigt werden, daB die Gleichungen [Ac = 0 ] und
[eq. (32)] noch nicht exakt richtig sein konnen. In dieser Arbeit sollen sie vorldufig benutzt werden.”)
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stein considered an assembly of masses fixed to a rigid, massless frame and showed
that this assembly of masses would set itself in motion if the field equation were
assumed to be (32). Following the logic underlying eq. (XXX), he substituted the
left-hand side of the field equation for the mass density p in the expression for the
force-density (compare eq. (V)):

F = —pgradc. 39

The integral of this expression over space (under the assumption that ¢ is constant at
infinity) should vanish on account of momentum conservation. However, the expression

1Ac
F = —zTgradc, (40)

resulting from this substitution cannot be transformed into a divergence expression,
and momentum conservation is violated. The rigid massless frame would start to
move, in contradiction with Newton’s principle actio = reactio.

It is easily seen that the Poisson equation of classical mechanics and electrostatics
does not present this problem. In a later paper Einstein himself explained how this
can be shown in a way that suggests a generalization of the argument to the case of a
relativistic gravitational field theory.64 In electrostatics the vth component of the
momentum conferred to matter per unit volume and time (or the force density, com-
pare (V)) is:

)
_a_ p S
'xV
where @ represents the potential and p the density of the electrical charge. It can
then be demonstrated that a field equation of the form (cf. eq. (5)):
2y _
£ 9 x2
satisfies the requirement of momentum conservation. This is done by showing that
the rate of change of momentum:

99 _ 99 Qe

ax, ©ox, n a_xﬁ

can be transformed into a divergence expression, i.e., an expression with the property
that the integral over a closed system vanishes so that the total momentum is con-
served.

The challenge resulting from the problem with Einstein’s first static theory was to
find an expression for the force, the momentum transferred from the gravitational

64 See (Einstein and Grossmann 1913, part 1, §5).
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field to material processes that can be written as a divergence. Let us try to capture
the heuristic behind his reasoning in our symbolic notation. We conceive of the
FORCE-frame as a divergence of some FIELDMASS-frame in an equation of the
form:

FORCE = DIV(FIELDMASS), (XXXIII)

where FIELDMASS represents, in the three-dimensional case, the momentum (or,
alternatively, the energy) and, in the four-dimensional case, the energy-momentum of
the gravitational field. Such a force expression had to be extracted from a revised
field equation in which the default setting LAP is replaced by a modified frame, let us
call it GRAV for OP:

OP(POT) =pppr GRAV(POT) = LAP(POT) + CORR(POT).  (XXXIV)

The correction term CORR introduced in the new choice for OP in eq. (XXXIV) had
to be compatible, of course, with the correspondence principle and in particular with
the default setting eq. (XXVIII) so that the condition

LIM(CORR(POT)) =0 (XXXYV)

follows. The correction term has to make sure that both eq. (XXX), the conservation
compatibility check, and eq. (XXXIII), the equivalent divergence condition for the
gravitational force, are satisfied:

FORCE =

— GRAD(POT) X GRAV = - DIV(GRAYV) = DIV(FIELDMASS). (XXXVI)

In view of the definition of GRAV as a sum of LAP and CORR (see eq. (XXXIV))
one thus obtains the following symbolic equation:

LAP(POT) x GRAD(POT) =
— DIV(FIELDMASS) — CORR(POT)) x GRAD(POT). (XXXVII)

The crucial result is that this relation suggests a generic operational procedure for
identifying the desired correction term, regardless of specific instantiations of the
frames involved. From the force expression for Einstein’s first field equation for static
fields, eq. (40), it follows that the term which serves as the starting point for such a
procedure, corresponding to LAP(POT) x GRAD(POT), is:6

%aiaicakc, @1)

By repeated application of the Leibniz rule for the differentiation of products, one
obtains an equation of the form (XXXVII):

65 In the following we assume summation over repeated (spatial) indices.
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1a,aicakc = aiTik+i26,»caichc (42)
¢ 2c
with
T —1808 c—=%9.co.c 43)
ik = 700k T 520,€9,¢
so that
9,T; = <1aiaic—lza,.ca,.c>akc (44)
¢ 2c

is a divergence term and corresponds to — DIV(FIELDMASS), while

Lococoe 45)
2¢

corresponds to — CORR(POT)) x GRAD(POT). Eq. (45) therefore gives the correc-
tion term necessary to satisfy the conservation principle. In other words, this princi-
ple not only served to refute the first static field equation (32), it also provided
Einstein with a procedure for constructing a modified field equation complying with
this principle.

Einstein thus arrived at a new field equation (Einstein 1912b), the core of his so-
called “second theory:”66

A_c_gradzc

< = ko. (46)
¢ 2¢

Since this revised equation no longer represents a direct analogue of the Poisson
equation, Einstein faced the challenge to find a plausible physical interpretation of it.
He had to reexamine both the equivalence principle and the role of energy and
momentum conservation. A remarkable feature of eq. (46) is that the first derivative
of the gravitational potential enters in a non-linear way so that the left-hand side of
eq. (46) may be symbolically expressed with the help of egs. (II) and (XXXIV) as:

GRAV =pgpr DIV(FIELD) + FIELD? (XXXVIII)

The second term had not been encountered before in working with the mental model
of a gravitational field theory. It also threatened one of Einstein’s key heuristic
assumptions, the principle of equivalence, which could only be upheld for infinitesi-
mally small fields 57 This restriction made it all the more pressing to provide a plausi-
ble physical justification for the correction term. Einstein found such a justification in
implications of both field theory and special relativity, i.e. in the fact that a field may

66 The theory advanced in this paper is commonly referred to as Einstein’s second theory of static gravi-
tation. Its main difference pertains to the amended field equation.
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carry energy and that any kind of energy, being equivalent to mass, should act as a
source of the gravitational field 8

The physical interpretation of the modified field equation (46) is brought out more
clearly by rewriting it as:

1 2
Ac = — . 4
c k<c0+ 2ckgrad c) “@n
This form of the equation suggests that the term

ﬁ gradzc,

which appears on the right-hand side on the same footing as the material source, be
interpreted as the energy density of the gravitational field acting as its own source.

This physical interpretation also supported the conclusion that the general field
equation would be non-linear, a conclusion which, after this experience with the spe-
cial case of the static field, became a standard expectation in Einstein’s further search.
In terms of our symbolic equations, the revised form of the generic field equation
could either be expressed with the help of the GRAV and CORR-frames (see eq.
(XXXIV)) or with the help of the FIELDMASS-frame, representing in the general,
four-dimensional case the energy-momentum of the gravitational field, as:%

NORM(POT) = ENEMO + FIELDMASS. XXXIX)

NORM(POT) thus represents a new setting of the differential operator slot OP
allowing the field equation (I) to be written in the “normal” form of eq. (XXXIX); we
thus define

oP =DEFT NORM, (XL)

with a corresponding new setting for SOURCE:

67 “Thus, it seems that the only way to avoid a contradiction with the reaction principle is to replace
equations (3) and (3a) with other equations homogeneous in ¢ for which the reaction principle is satis-
fied when the force postulate (4) is applied. I hesitate to take this step because by doing so I am leav-
ing the territory of the unconditional equivalence principle. It seems that the latter can be maintained
for infinitely small fields only.” (“Eine Beseitigung des genannten Widerspruches gegen das Reakti-
onsprinzip scheint also nur dadurch méglich zu sein, da man die Gleichungen [Ac = O] und
[eq. (32)] durch andere in ¢ homogene Gleichungen ersetzt, fiir welche das Reaktionsprinzip bei
Anwendung des Kraftansatzes [39] erfiillt ist. Zu diesem Schritt entschliele ich mich deshalb schwer,
weil ich mit ihm den Boden des unbedingten Aquivalenzprinzips verlasse. Es scheint, daB sich letzte-
res nur fiir unendlich kleine Felder aufrechterhalten 148t.”) (Einstein 1912c, 455-456)

68 The discussion referred to in the following is introduced in (Einstein 1912c) by the phrase: “The term
added in equation (3b) [cAc = %(grad c)2 = kczo] in order to satisfy the reaction principle wins
our confidence thanks to the following argument.” (“Das in Gleichung (3b) zur Befriedigung des
Reaktionsprinzipes hinzugesetzte Glied gewinnt unser Vertrauen durch die folgenden Uberlegun-
gen.”), p. 456-7.

69  For the following, see “Untying the Knot ...” (in vol. 2 of this series), sec. 3.
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SOURCE =pppy ENEMO + FIELDMASS. (XLI)

This form of the field equation clearly brings out the parallelism between the energy-
momentum of matter and the energy-momentum of the gravitational field.
Eq. (XXXIX) is the symbolic expression of what eventually became Einstein’s stan-
dard or normal expectation for the form of a field equation with the property that it is
compatible with the conservation principle and with the requirement that gravita-
tional energy and momentum enter the field equation on the same footing as the
energy and momentum of matter. With this normal form the conservation principle
takes on a particularly simple form. From the last equality in eq. (XXXVI) and the
field equation it follows that:

DIV(ENEMO) + DIV(FIELDMASS) =
DIV(ENEMO + FIELDMASS) = 0. (XLII)

This symbolic equation expresses the expectation that the conservation laws should
hold for gravitation and matter taken together. Accordingly, the conservation compat-
ibility check for NORM(POT) becomes

DIVINORM) =0, (XLIII)

(cf. eq. (XXXD))

It was natural to expect that NORM would take on the classical form of a diver-
gence of the field, generated both by material processes and the energy-momentum of
the gravitational field itself. The field operator might be brought into such a simple
form, resembling the familiar structure from electromagnetic field theory by some
appropriate mathematical manipulation, involving the source-term of the field equa-
tion as well. In other words, one would have the revised settings:

OP(POT)=prrrNORM(POT) ass = DIV(FIELD), (XLIV)
with a corresponding setting for SOURCE:
SOURCE =pgpr ENEMO + FIELDMASS. (XLV)

Note, however, that the requirement expressed by eq. (XLII) may not be compatible
with the requirement expressed by eq. (XXXIX) if the particular form eq. (XLIV) for
the left-hand side of the field equation is imposed. 0
In summary, Einstein’s experiences with implementing the conservation principle
in his theory for static gravitational fields turned out to be of crucial significance for
his further research, shaping the expectation for the differential operator in the
generic gravitational field equation. Reflecting on these experiences, he could con-
clude, in particular, that
— the field equation would probably be non-linear and contain a term representing
the gravitational field acting as its own source;

70 See the discussion in “Untying the Knot ...” (in vol. 2 of this series), secs. 3, §3.
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— just as with the static field equation, the field equation might have to be found in
two steps with a first step involving a linear second-order differential operator and
a second step involving the non-linear, first-order correction terms;

— the correction term might be identified by trying to establish an energy-momen-
tum balance, beginning with a linear, second-order differential operator as a first
step.

4.6 Implications of the Generalized Relativity Principle

When starting from an instantiation of the left-hand side of the mental model of a
gravitational field equation rooted in physical knowledge such as the core operator,
the most challenging problem was to identify its transformation properties and to find
out whether or not they allow the implementation of a generalized principle of rela-
tivity. Alternatively, one could start from an instantiation rooted in mathematical
knowledge. While the physical strategy automatically takes care of the correspon-
dence principle, the mathematical strategy automatically takes care of the generalized
relativity principle. In the latter case the main challenge was the implementation of
the correspondence and conservation principles, including a check of their mutual
compatibility. In the course of his research, Einstein developed a strategy for address-
ing this challenge. This strategy involved replacing one immediately given default
setting for OP by a more sophisticated one, better adapted to the purpose at hand. In
this respect, the strategy resembles the strategy discussed above for adapting a setting
suggested by the correspondence principle to the necessities implied by the conserva-
tion principle, i.e., for the transition from LAP(POT) to GRAV(POT).

Instantiations for OP suggested by the mathematical strategy typically have well-
defined transformation properties (e.g. are generally covariant). As his research pro-
ceeded Einstein familiarized himself with the relevant mathematical literature, in col-
laboration with his mathematician friend Marcel Grossmann.”! While the
mathematical horizon enlarged it came to include more and more sophisticated math-
ematical objects. At the beginning, the mathematical instrumentarium was limited to
that of linear vector and tensor analysis in four dimensions as developed by
Minkowski, Sommerfeld, and Laue.”? After a number of unsuccessful attempts to
employ these techniques in the construction of a suitable differential operator,73 the
core operator emerged as the most satisfactory candidate which could be obtained at
this level of mathematical sophistication. The core operator, however, was covariant
only under linear transformations and did thus not lead to a substantial generalization
of the relativity principle.

71 For a discussion of the Grossmann’s role in the search for and reception of pertinent mathematical lit-
erature, see (Pais 1982, chap.12c; Norton 1992b, appendix; Reich 1994, chap. 5.3; CPAE 4, 294).

72 Cf.note 30.

73 Cf. pp. 39L-40L of “Einstein’s Zurich Notebook” (in this volume).
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Einstein subsequently became familiar with the so-called Beltrami invariants.”*
These mathematical objects, in particular the second Beltrami invariant, could be
seen as a generalization of the ordinary Laplace operator and must have looked prom-
ising. They are generally covariant and thus provide a good starting point for pursu-
ing the mathematical strategy. It was difficult, however, to see how the second
Beltrami invariant, defined only for scalar functions, could be applied to a gravita-
tional potential represented by the metric tensor. Einstein thus had two plausible but
mutually incompatible default settings, the second Beltrami invariant for the differen-
tial operator, and the metric tensor for the gravitational potential. Einstein’s dilemma
at this point is illustrated in Fig. 3.
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Figure 3: The incompatibility of instantiating the operator slot of Einstein’s mental model of a
gravitational field equation with the Beltrami invariant, and the potential slot with the metric pro-
duced posed a dilemma for Einstein.

The breakthrough for the mathematical strategy came when Einstein got
acquainted with the Riemann tensor and its potential to produce suitable candidates
for the differential operator in the gravitational field equation. The Riemann tensor
represents a second-order differential operator on the metric and is generally covari-
ant. Moreover, by a general theorem any generally-covariant differential operator,
which consists of the metric components and its derivatives, and contains no higher
than second-order derivatives and is linear in those, can be constructed from the Rie-
mann tensor by tensor-algebraic operations.75 It must have been clear to Einstein
from the outset that the Riemann tensor itself could not play the role of an instantia-
tion for OP. First, since the energy-momentum tensor appearing on the right-hand
side of the field equation is a second-rank tensor with two indices, the differential
operator on the left-hand side was required to have the same property. The Riemann
tensor, however, is a fourth-rank tensor, with four indices. Second, a field equation
with the Riemann tensor on the left-hand side would be much too restrictive. It would
require that, outside the sources, the metric would be strictly Minkowskian so no

74 Cf.pp.06L-07L of “Einstein’s Zurich Notebook™ (in this volume).
75 See (Einstein and Grossmann 1913, part II, §4). See also (Bianchi 1910).
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non-trivial gravitational potential could exist, a conclusion, for instance, manifestly
wrong for the field of a point mass.

A second-rank tensor serving as a natural candidate for OP, however, could be
extracted from the Riemann tensor in various ways. Let us designate the frame of
such a candidate by RIEM:

OP(POT) =pppr RIEM(POT). (XLVI)

As was pointed out above, such candidates come with assurances about their behav-
ior under coordinate transformations (here designated as TRAFQO). They inherit
these transformation properties from their progenitor, the fourth-rank Riemann ten-
sor. The default setting for this property is general covariance (here designated as
GCOVARIANT):

TRAFO(RIEM) =pgpr GCOVARIANT. (XLVII)

When relating the frame RIEM to the default settings GRAV or NORM for OP
suggested by the correspondence and conservation principles (cf. eq. (XXXIV) and
eq. (XL)), one typically finds a relation of the form:

RIEM(POT) = GRAV(POT) + DIST(POT), (XLVIII)

where DIST(POT) represents “disturbing” terms incompatible with the requirements
of the correspondence and conservation principles. To obtain from RIEM(POT) a
“reduced” candidate satisfying these principles one has to impose the revised default
setting for the left-hand side of the gravitational field equation:

OP(POT) =pgrr RIEMREp(POT) = RIEM(POT) - DIST(POT),  (XLIX)
which can be obtained from RIEM either by requiring that
DIST(POT) = 0. L)

or by requiring that DIST(POT) behaves as a tensor under some group of coordinate
transformations, in which case it can be subtracted leaving a reduced candidate
invariant under this now restricted group of transformations:

TRAFO(RIEMggp) => TRAFO(DIST), (LD

Conditions such as (XLVII) can typically be derived from first-order conditions on

the metric tensor, corresponding to a restriction of the admissible coordinate systems
(here designated as COORD(POT)):

COORD(POT) = 0 => DIST(POT) = 0. (LID)

Such a coordinate restriction comes in turn with its own transformation behavior, but
typically is at least covariant at least under linear transformations:

TRAFO(COORD) =pppr LINEAR. (LIID)

Coordinate systems selected in this way assumed for Einstein the role of privileged
reference frames, similar to the distinguished role of inertial reference systems in
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classical physics. It is in these preferred coordinate systems that the physical laws are
supposedly valid in their usual form. The condition COORD(POT) = 0 represented
for him a true limitation of the generalized relativity principle and is therefore
referred to here as a “coordinate restriction.”

From a modern perspective, the relation between a generally-covariant candidate
for the left-hand side of the field equation and the condition expressed by eq. (LII)
can be interpreted in an entirely different way: Since the Newtonian theory clearly
does not hold in arbitrary coordinate systems, while generally-covariant field equa-
tions do, special coordinates have to be introduced to obtain the Newtonian limit. A
coordinate condition in the modern sense, however, does not have the meaning of an
overall restriction on the choice of admissible coordinates; it is only a tool adapted
for this specific purpose. This tool in no way imposes a restriction on the covariance
of the field equation, but is available precisely because of it. For the Einstein of the
Zurich Notebook, however, it was more natural to think of eq. (LII) as a coordinate
restriction, valid not only in the context of a special situation such as that of the New-
tonian limit but necessary in general to ensure that the candidate gravitation tensor
takes on the canonical form of eq. (XXXIV). The transformation properties of
RIEMgyp(POT) are thus constrained by those of the coordinate restriction, a rela-
tion we can express as:

TRAFO(RIEMgp) => TRAFO(COORD). (LIV)

An additional restriction of the generalized relativity principle typically follows from
the conservation principle, given that its mathematical implementation (e.g., by eq.
(XLIID)) does, in general, not lead to a generally-covariant equation:

TRAFO(DIV(NORM))=# GCOVARIANT. (LV)

Just as with the correspondence principle (cf. eq. (LII)), the condition DIV(NORM)
= 0 may be inferred from a simpler, possibly first-order condition representing the
restriction to coordinate systems in which the conservation principle holds:

ENERG(POT) = 0 => DIV(NORM) = 0. (LVI)

For the transformation properties of the gravitational field equation we thus have sim-
ilarly:
TRAFO(NORM) => TRAFO(ENERG), (LvID)

or, taken together with relation (LIV), replacing RIEMggp and NORM by GRAV:
TRAFO(GRAV) => TRAFO(COORD) + TRAFO(ENERG). (LVIII)

This relation expresses that the transformation properties of the left-hand side of the
gravitational field equation are restricted by the needs of the correspondence and the
conservation principles taken together. In summary:

TRAFO(GRAV) <=>
TRAFO(RIEM) + TRAFO(COORD) + TRAFO(ENERG). (LIX)
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What this symbolic equation says is that the transformation properties of the field
equation are known if those of the original default setting rooted in mathematical
knowledge are given together with those of the coordinate restrictions imposed to sat-
isfy the correspondence and the conservation principles.

The above considerations raise the more general problem of the compatibility
between the mathematical implementations of the correspondence and conservation
principles (the corresponding compatibility condition is designated here as CC-
COMP(GRAY)). While this question could typically be dealt with at the level of the
compatibility of the respective coordinate restrictions eq. (LII) and eq. (LVI), it was
conceivable that the compatibility requirement gave rise to new conditions with
implications not only for the transformation properties of the field equation but for
other questions as well, including the question of whether the given default setting for
GRAY was acceptable at all:

CC-COMP(GRAV) => (COORD = 0) + (ENERG = 0). (LX)

It was also conceivable that a conflict between a candidate for GRAV and the corre-
spondence and conservation principles arose because the default setting for the met-
ric of static gravitational fields eq. (25) was incompatible with one of the coordinate
restrictions following from these principles:

COORD(POTSTHT) * 0, (LXI)
ENERG(POTgqay) = 0. (LXII)

4.7 Implications of the Lagrange Formalism

At some point in his research, Einstein realized the significance of the Lagrange for-
malism not only for formulating the equation of motion but also for deriving the field
equation.76 Because of its earlier application in the context of classical electromag-
netic field theory this formalism came with its own default-settings, which played an
important role in Einstein’s search for the gravitational field equation. Classical field
theory suggested, in particular, to choose a Lagrangian quadratic in the field:

LAGRANGE =pgpr FIELD?. (LXTIT)
The Lagrangian for the free Maxwell field for instance is of this form (cf. eq. (11)):

1 wv
L= —F, " (48)
The use of the Lagrange formalism had two immediate advantages for Einstein. First,
when following the physical strategy, he could focus on a scalar object, the
Lagrangian, to explore the transformation properties of his theory rather than on the

76 The first paper in which he made use of the Lagrangian formalism for this purpose is (Einstein and
Grossmann 1914). This approach was fully developed in (Einstein 1914a).
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more complex tensorial objects representing candidates for the left-hand side of the
field equation:77

TRAFO(GRAV) <=> TRAFO(LAGRANGE). (LXIV)

Second, when following the mathematical strategy, he could rely on an expression for
FIELDMASS directly delivered by this formalism in terms of the Lagrangian to
explore the validity of the conservation principle. The formalism produces a field
equation which can easily be brought into a form corresponding to the default set-
tings eq. (XLIV) and eq. (XLV):

DIV(FIELD) = ENEMO + FIELDMASS. (LXYV)

It remains, of course, to be checked in each concrete case whether the resulting
expression for FIELDMASS is compatible with the expectation for such an expres-
sion following from the conservation principle and, in particular, with eq. (XLII) 78
The introduction of the Lagrange formalism had one further consequence for Ein-
stein’s search, which eventually turned out to be decisive for identifying the gravita-
tional field equation of general relativity. Due to the default setting eq. (LXIII), the
Lagrange formalism helped to highlight the importance of the FIELD-frame, point-
ing to the alternative between eq. (XXII) and eq. (XXIII), one leading to the non-
covariant Entwurf theory, the other to an essentially generally-covariant theory which
quickly opened up the pathway toward the field equation of general relativity.

5. TESTING THE CANDIDATES: EINSTEIN’S CHECK LIST FOR
GRAVITATION TENSORS

The reservoir of candidates for the left-hand side of the field equation OP available to
Einstein was determined by the mathematical knowledge available to him. Roughly
three levels of knowledge can be distinguished, each coming with its own set of can-
didates as shown in Fig. 4 below. Not all candidates played the same prominent role
in Einstein’s research. The four most important ones were the Entwurf operator, the
Ricci tensor, the Einstein tensor, and the November tensor (Einstein 1915a).

Einstein examined these four differential operators twice in the course of two
exploratory phases of his work. He first confronted them with his heuristic require-
ments in the period documented by the Zurich Notebook dating from the winter
1912-1913, and then once more in the fall of 1915, as documented by publications
and correspondence. He came to different conclusions in these two stages of his
work. Before we discuss in detail in which way his research experience led him to

77 Einstein’s point of view was, however, criticized by the mathematician Tullio Levi-Civita, who con-
tested that the Euler-Lagrange equations have the same covariance group as the Lagrangian in the
case of the Entwurf theory. See, e.g., Tullio Levi-Civita to Einstein, 28 March 1915 (CPAE 8,
Doc. 67).

78 For the detailed mathematical considerations, see “Untying the Knot ...” (in vol. 2 of this series), secs.
3.1 and 3.2.
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these different views, we shall systematically examine how the various candidates
fare when confronted with his heuristic requirements and give an overview of the
results of his checks. In this way, we shall be able to establish the potential of these
candidates independently of their actual role in the dramatic history of Einstein’s
search for the field equation. As a consequence, the twists and turns of this search
will become understandable as reactions to the epistemic constraints and potentials
inherent in the knowledge resources available to Einstein. These constraints are
largely embodied in the mental models and frames guiding his research, as well as
in their default settings and the instantiations of their open slots. But the conflicting
implications of these default settings and instantiations were only revealed in the
course of Einstein’s elaboration of his theory on the level of concrete mathematical

Vector Core
analysis Operator
Entwurf
Operator
Generalize

Beltrami for
tensorial POT

Beltrami
Invariants

Apply Beltrami
to scalar
function of POT

Ricci Tensor

Riemann Einstein Tensor

Tensor

November Tensor

Figure 4: A list of Einstein’s most important candidates for differential operators to fill
the operator slot of his mental model of a gravitational field equation.
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representation. As a matter of fact, the fate of a candidate not only depended on the
structural constraints of his heuristics but also on the order in which these structures
were implemented, on the exploration depth with which they were treated, and on the
perspective under which Einstein examined the answers to his questions. As we shall
show in more detail in the next section, in all three of these performative dimensions
of his evaluation of candidates, the situation of the winter of 1912—-1913 was very dif-
ferent from that of October and November 1915 when he once more examined these
candidates.

5.1 The Entwurf Operator and the Correspondence Principle
in the Winter of 1912—1913

The Entwurf operator, first written down in the Zurich Notebook and then published
by Einstein and Grossmann in the Spring of 1913, gives rise to the field equations:

1 9 8 aguv 6 ag.utagvp

o o v Y
ENTWURF =DEFT—a(g ,\/:gﬁ ) -8 g = K(T" + ") (49)
X X

«/—786)( “

with the following expression for the gravitational energy-momentum:

lgua vﬁ&pagrp_l uv uﬁipagrp

FIELDMASS =pgpr—«1"" = (50)

2 ax" 9x* 4 9x" 9x"
The Entwurf field equations satisfy the correspondence principle just as the core
operator does since the correction terms which distinguish the two vanish in the lim-
iting procedure for obtaining the Newtonian theory. One has, in particular, (cf. eq.
(XXIX)):

LIMgaAT(ENTWURF) = LIM(LAP(POTg1AT))- (LXVI)

5.2 The Entwurf Operator and the Conservation Principle
in the Winter of 1912—1913

By their very construction, the Entwurf field equations satisfy the conservation prin-
ciple since the correction terms distinguishing them from the core operator are gener-
ated in such a way that an identity of type (XXXVII) holds. Evidently, the field
equations (49) are of the form (XXXIX), while an equation of the form (XLII)
expresses the conservation principle:

2ty = o. (51)
ax
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5.3 The Entwurf Operator and the Generalized Relativity Principle
in the Winter of 1912—1913

The principal challenge for the Entwurf theory was the question of the transformation
properties of the Entwurf field equations and hence of the extent to which the theory
satisfies the generalized relativity principle. The Entwurf operator had not been
obtained from a generally-covariant object along the mathematical strategy, (cf. eq.
(XLIX)). By construction, the Entwurf operator is covariant only under linear trans-
formations (cf. eq. (LIID)):

TRAFO(ENTWURF) =pppp LINEAR. (LXVII)

In different stages of Einstein’s work during the reign of the Entwurf theory, i.e.,
between the winter of 1912—-1913 and the fall of 1915, he took different positions on
the question of whether or not the theory admits a wider class of coordinate transfor-
mations. These positions ranged from the acceptance that the Entwurf theory is cova-
riant only under linear transformations to the belief that it fully complies with the
demands of a generalized relativity principle. Einstein at first believed that the issue
of the transformation properties of the Entwurf equations was wide open and could be
settled only by an extensive mathematical investigation. In the summer of 1913, how-
ever, he came to the conclusion that a mere inspection of the form of eq. (51) was suf-
ficient to resolve the problem in favor of the claim that the Entwurf theory could only
be covariant under linear transformations.’”® He thus accepted that the conservation
principle requires a severe limitation of the generalized relativity principle.

5.4 The Entwurf Operator and the Correspondence Principle in the Fall of 1915

In the course of his elaboration of the Entwurf theory, Einstein succeeded in deriving
the field equations from a Lagrange formalism with the default setting for the field
given by eq. (XXII). The field then enters the Lagrangian in the form of eq. (LXIII).
After an initial attempt to select this default setting for the field with the help of a
consistency argument involving the conservation principle (see below), he returned to
the correspondence principle as the main argument for choosing, among several
options to specify the field variable, the default setting eq. (XXII), giving rise to the
familiar Entwurf field equation.

5.5 The Entwurf Operator and the Conservation Principle in the Fall of 1915

In the course of his elaboration of the Entwurf theory, Einstein succeeded in bringing
its field equation into the canonical form described by eqs. (XLIV), (XLV) with the
condition (XLIII), a form that was expected on the basis of classical field theory:

79 Cf. Einstein to H.A. Lorentz, 16 August 1913, (CPAE 5, Doc. 470, Norton 1984, 126).
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a ~
ENTWURF =pgpr @(«/—gg“ﬁrﬁﬁ) = k(Th +t)), (52)
with

FIELDMASS =pgey Kt = -/=g( ¢ T4, - %6&579‘1:&91:31). (53)

Here T, represents the default setting for the field as given by eq. (XXII). In 1914
Einstein erroneously believed that a compatibility requirement resulting from the
conservation principle and the generalized relativity principle (cf. eq. (87) below)
would uniquely fix the Entwurf Lagrangian. However, this requirement merely corre-
sponds to demanding the compatibility between FIELDMASS in the sense of
eq. (XLV) and FIELDMASS in the sense of eq. (XLII) and does not substantially
restrict the choice of possible gravitation tensors.

5.6 The Entwurf Operator and the Generalized Relativity Principle
in the Fall of 1915

Einstein quickly discovered that his argument based on the form of eq. (51) was falla-
cious since the energy-momentum expression of the gravitational field does not rep-
resent a generally-covariant tensor.! But he soon found another, seemingly powerful
argument in order to justify the Entwurf theory’s lack of general covariance, the so-
called hole argument.82 To identify the covariance group of the Entwurf field equa-
tions compatible with this argument, Einstein again made use of eq. (51) but now in a
different way which corresponds to the conservation compatibility check as repre-
sented by eq. (XLIII), i.e. he combined energy-momentum conservation with the
gravitational field equation in order to derive a condition for the class of admissible
coordinate systems. By exploring the transformation properties of the Lagrangian (cf.
eq. (LXIV), Einstein and Grossmann (1914) claimed to have shown that this condi-
tion is both necessary and sufficient (cf. eqs. (LV) and (XLIV)):

TRAFO(NORM( sss) <=> TRAFO(DIV(NORM Ass)) (LXVIII)
with
0’ = aps
DIV(NORMCLASS) =DEFT B.U- = 5 Va 0(( —ggaﬁr(\;ﬁ) =0. (54)
X 0Xx

These four third-order differential equations for the metric tensor complement the ten
gravitational field equations and embody the conditions enforcing the restriction of
general covariance characteristic of the theory. They were understood by Einstein and

80 See “Untying the Knot ...” (in vol. 2 of this series), sec. 3.

81 Cf. the footnote in (Einstein and Grossmann 1914, 218).

82 For historical discussion, see (Earman and Norton 1987, Stachel 1989b) and “What Did Einstein
Know ..” (in vol.2 of this series) as well as further references cited therein.
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Grossmann as determining the coordinate systems “adapted” to the Entwurf theory.83

It was difficult to see exactly which transformations to accelerated coordinate sys-
tems are admitted by these conditions.

5.7 The Ricci Tensor and the Correspondence Principle
in the Winter of 1912—1913

The generally-covariant Ricci tensor, first taken into consideration by Einstein in the
Zurich Notebook (see p. 22R), can be expressed in terms of the Christoffel symbols
(cf. egs. (30) and (XLVI)) as:

o o

or ar
RIEM =DEFT RICCI =DEFT RP«V = 67:\/ = 875(1 + I‘Eﬁrﬁa - Fﬁvrga. (55)
X X

The validity of the correspondence principle could be examined by bringing RICCI
into the form (cf. egs. (XXXIV) and (XLIX))
RIEM =pgpt RICCIggp = LAP(POT) + CORR(POT), (LXIX)
and by checking whether (cf. eq. (L))
DIST(POT) = 0.

In the Zurich Notebook Einstein identified the relevant terms as:

2 2 2
08 98 98va

DIST(POT) = - - .
( ) =pEFT dx,0x, 0x,0x, 0X,0x,

(56)

The vanishing of these disturbing terms can be achieved by imposing a set of four
first-order partial differential equations for the metric tensor which is given by (cf.
eq. (LID)):

COORD(POT) =DEFT COORDHARM(POT) =DEFT g“l“i]( = 0. (57)

83 This expression is chosen to resolve the ambiguity of German expressions which may be translated by
“condition” as well as by “restriction.” Cf. the formulations in (Einstein and Grossmann 1914):
“understood [...], that an acceptable theory of gravitation implies necessarily a specialization of the
coordinate system.” (“eingesehen [...], da} eine brauchbare Gravitationstheorie notwendig einer Spe-
zialisierung des Koordinatensystems bedarf [...]”, p.218); “restriction” (“Einschriankung”, p. 218,
note); “true condition” (“wirkliche Bedingung”, p. 219); “conditions [...], by which we restricted the
coordinate systems” (“Bedingungen [...], durch die wir die Koordinatensysteme eingeschriankt
haben.”, p. 225). In a letter to Michele Besso, ca. 10 March 1914, (CPAE 5, Doc. 514), Einstein com-
ments on eq. (54): “These are 4 third-order equations for the [...] or [...], which can be conceived as
the conditions for the special choice of the reference system.” (“Dies sind vier Gleichungen dritter
Ordnung fiir die 8uv [...], welche man als die Bedingungen fiir die spezielle Wahl des Bezugssystems
auffassen kann.”)
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These equations, representing the “harmonic” coordinate restriction, were interpreted
by Einstein as singling out a particular class of coordinate systems that were then
called “isothermal” and are now referred to as “harmonic” coordinates.

The reduced Ricci tensor RICCIggp suffered from yet another problem related
to Einstein’s understanding of the correspondence principle. It consists in a conflict
between the harmonic coordinate restriction and the canonical metric for a static
gravitational field POTgpat (cf. eq. (25)):

COORDHARM(POTSTAT) =0. (LXX)

However, as far as the available evidence from the Zurich Notebook and other con-

temporary sources show, this argument played no role in evaluating the reduced Ricci
84

tensor.

5.8 The Ricci Tensor and the Conservation Principle in the Winter of 1912—1913

As far as the conservation principle is concerned, the exploration depth reached in the
Zurich Notebook was characterized by the fact that Einstein examined only the weak-
field equation following from a gravitational field equation based on the Ricci tensor.
He considered, in other words, an equation of the type of eq. (33). For such a weak-
field equation in which the source is given by pressureless dust (cf. eq. (4)), Einstein
succeeded in representing the force exerted by the gravitational field as a divergence
expression in the sense of eq. (XXXVI)):

- GRAD(POT) X LIM(RICCI) = DIV(LIM(FIELDMASS)), (LXXI)

which in his notation reads:3>

y 8%, [0 (08in08in _11(82&,"2) 5
1;1 KK 9x2 0x, ];, x|\ dx, dxg | 20x,\ dx. /|

The conservation compatibility check similarly takes on a simpler form if consid-
ered for the weak field case. In first-order approximation the covariant derivative in
eq. (XXXI) can be replaced by an ordinary derivative and OP(POT) by LAP(POT)
with its default setting according to eq. (XXVIII) so that this condition can be writ-
ten, in Einstein’s notation, as:

LIM(DIV :oy(OP)) = DIV(LIM(LAP)= 0. (LXXII)

Interchanging the two differential operations,

84 See “Untying the Knot ...” (in vol. 2 of this series), fn. 12 for further discussion.

85 See p. 19R of “Einstein’s Zurich Notebook™ and sec. 5.4.2 of the “Commentary” (in vol. 2 of this
series), fn. 10 for further discussion. Einstein’s notation, which is somewhat sloppy, is explained in
detail in the commentary; note that he used an imaginary time coordinate and that the terms 8uv here
stand for the small deviations hIW from the covariant Minkowski metric.
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DIV(LIM(LAP(POT)) = LIM(LAP(DIV(POT))), (LXXIII)

which, in Einstein’s notation amounts to:

= —(Ogin) = D( g"’") =0, (59)

it becomes clear that the conservation compatibility check is satisfied at the weak-
field level if an appropriate set of first-order conditions hold in the sense of eq. (LVI):

LIM(ENERG) =pggr DIV(POT) = 0 => DIV(LIM(LAP)) = 0. (LXXIV)
More specifically, the conservation compatibility check works out in the weak field

limit if the condition:

agim
0x,,

LIM(ENERG) =DEFT COORDHERTZ = DIV(POT) =DEFT =0 (60)

is fulfilled. This condition was mentioned by Einstein in a letter to Paul Hertz from
22 August 1915% and will therefore be called the “Hertz condition” or the “Hertz
restriction” depending on the context. In the case at hand, it is appropriately referred
to as the “Hertz restriction” since it represents a restriction of the admissible coordi-
nates required by the conservation principle.

As it turned out, the combination of the two coordinate restrictions eq. (57) and
eq. (60), resulting from the correspondence and the conservation principle, and the
weak-field field equation imposed a restriction which Einstein considered to be unac-
ceptable. According to this condition, the trace of the source term has to vanish,
which can be expressed in terms of eq. (LX) as:

TRACE(SOURCE) = 0 => CC-COMP(LIM(LAP)). (LXXYV)

This condition was indeed incompatible with the default setting for the source term of
the gravitational field equation, pressureless dust (cf. eq. (XXI)). Combining restric-
tions eq. (57) and eq. (60) furthermore implies that the trace of the potential must be
constant which is obviously in conflict with the default setting for the metric of a
static field eq. (25).%7

5.9 The Ricci Tensor and the Generalized Relativity Principle
in the Winter of 1912—1913

Given the compatibility problem just described, the transformation properties of the
reduced Ricci tensor remained unexplored.

86 For a detailed discussion of this letter, see (Howard and Norton 1993).
87 See “Commentary ...” (in vol. 2 of this series), sec. 5.4.3 for detailed discussion.
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5.10 The Ricci Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the Ricci tensor in November 1915 both the perspective
and the exploration depth of his investigation had changed. He then considered the
Ricci tensor in coordinate systems with:

J-g =1 (61)
in which it takes on the simpler form:
o

oI, o
RICCI =DEFT 72 + FHUFVB' (62)
dx

Within this framework, the Ricci tensor could be brought into the appropriate weak-
field form eq. (XXXIV) by assuming the Hertz condition:

agim
axﬂl

COORDHERTZ = DIV(POT) =DEFT =0. (63)

In November 1915, Einstein was aware of the fact that it was sufficient for satisfy-
ing the correspondence principle to use such an equation (cf. eq. (LII)) in the modern
sense of a coordinate condition that simply makes use of the freedom within a gener-
ally-covariant framework to pick appropriate coordinate frames— without imposing
an overall restriction. In this sense, Einstein’s understanding of the correspondence
principle had been substantially enhanced by a greater exploration depth of his for-
malism. 38

In contrast to eq. (LXX) we now have:

COORDygRrz(POTg1AT) = 0, (LXXVI)

so that the conflict between the coordinate condition and the canonical metric for a
static field is apparently removed. This is, in any case, what Einstein at first must have
believed when he published, in November 1915, a gravitational field equation based
on the Ricci tensor. What he seems to have overlooked, however, was the fact that his
canonical metric given by eq. (25) was incompatible with the condition eq. (61) on
which his entire framework, including the coordinate condition eq. (63), crucially
depended. In other words, the available evidence suggests that Einstein had first pub-
lished his theory based on the Ricci tensor although it actually violates the correspon-
dence principle as he then conceived it.

He only realized the challenge represented by the choice of the Ricci tensor for
his understanding of the correspondence principle when he examined the implication
of this choice for the explanation of Mercury’s perihelion motion, an examination
that gave him a nearly perfect match with the observational data.® Einstein at first

88 See “Untying the Knot ...” (in vol. 2 of this series), secs. 1.5 and 6 for detailed discussion.
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interpreted this agreement as evidence in favor of his hypothesis of an electromag-
netic theory of matter which had made the proposal of a field equation with the Ricci
tensor as its left-hand side acceptable to him (see below).

5.11 The Ricci Tensor and the Conservation Principle in the Fall of 1915

By the fall of 1915, the exploration depth of Einstein’s investigation had been
increased, in particular, by the development of a technique allowing him to derive a
gravitational energy-momentum expression FIELDMASS for the full field equation
from the Lagrange formalism, if the coordinate condition eq. (61) is assumed and the
default setting for the field is given by eq. (XXIII). He was thus able to bring a field
equation based on the Ricci tensor into a form corresponding to eq. (XXXIX) with
the conservation equation (XLII):

1
NORM(POT) =pgpr (gVKFgV)’u - Eéﬁgpdr‘gpI‘go = —K(T&‘ + tﬁ), (64)
with
FIELDMASS =pppr K7} = %6ggwrgurgv - g-LWFﬁ‘O(FaV,)}‘ (65)
and
DIV(ENEMO + FIELDMASS) =pgrr (TZ; + t&))\ = 0. (66)

Einstein, however, did not manage to comply with the requirement expressed by the
default setting eq. (XLIV). Bringing the left-hand side of the field equation into the
form of eq. (XLIV) would result in a formulation in which the right-hand side no
longer satisfies the default setting eq. (XLI) for SOURCE:

NORM(POT)cy 555 = DIV(FIELD)=pgpr (8¥T8,) , = —K(TZ; +1h - %63:) (67)

with

SOURCE =DEFT ENEMO + FIELDMASS #“DEFT —K<Tﬁ + tl}‘j - %63}2‘) . (68)

Equation (66) could be used to perform the conservation compatibility check in a
straightforward manner. Einstein succeeded in showing that this check turned out
successful if the trace of the energy-momentum tensor vanishes (cf. eq. (LXXV))—
without imposing any further conditions on the admissible coordinate systems:

TRACE(SOURCE) = 0 => DIV(ENEMO + FIELDMASS) =0.  (LXXVII)

The odd assumption of a vanishing trace, violating the default assumption eq.
(XXT), was now acceptable to Einstein since both the exploration depth of his investi-

89 See (Einstein 1915b) and for historical discussion, (Earman and Janssen 1993).
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gation and his perspective had changed. He now reexamined the Ricci tensor from
the perspective of an electromagnetic theory of matter in which this condition was
fulfilled from the outset, given that the trace of the electromagnetic energy-momen-
tum tensor vanishes.”

5.12 The Ricci Tensor and the Generalized Relativity Principle in the Fall of 1915

The field equations based on the Ricci tensor as formulated by Einstein in the fall of
1915 represents, according to his heuristic criteria, a complete implementation of the
generalized principle of relativity. The conservation compatibility check for these
field equations had given Einstein, as we have seen, merely a condition on the trace of
the energy-momentum tensor which does not imply any restriction on the choice of
coordinate systems. As a consequence, there no longer was any conflict between the
conservation and the correspondence principles as he had encountered it in the winter
of 1912—-1913. It was thus possible to impose either the harmonic coordinate condi-
tion eq. (57) or the combination of eqs. (61) and (63) in order to reduce the Ricci ten-
sor to the canonical weak field form eq. (LXIX) from which the Newtonian limit
could be obtained —at least if the objection resulting from eq. (LXX) could be solved
or circumvented.

5.13 The Einstein Tensor and the Correspondence Principle
in the Winter of 1912—1913

The generally-covariant Einstein tensor, first taken into consideration, albeit only in
the weak-field approximation, in the Zurich Notebook, can be expressed in terms of
the Ricci tensor Ru and its trace R (cf. eq. (55)) as:

v

s 1
RIEM =DEFT Einstein =DEFT EMV = RMV - EngR' (69)
A field equation based on the Einstein tensor may also be written by shifting the trace
term to the right-hand side by a simple mathematical argument. The equation then
reads
1
R!.w = _K(Tp.v - Egpr> > (70)
where T is the trace of the energy-momentum tensor T, . Here the Ricci tensor
again appears on the left-hand side as the differential operator acting on the metric
tensor.

90 See (Einstein 1915d) where the consequence is called “introducing an admittedly bold additional
hypothesis on the structure of matter.” (“Einfiihrung einer allerdings kiihnen zusétzlichen Hypothese
iiber die Struktur der Materie”, p. 799).
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The exploration level of the first examination of the Einstein tensor in the winter
of 1912—-1913 was, just as that of Einstein’s analysis of the Ricci tensor, characterized
by a focus on the weak-field equations and the assumption that the correspondence
principle could only be satisfied by a coordinate restriction. Given that the Einstein
tensor results from a modification of the Ricci tensor according to eq. (69), it was nat-
ural to presuppose the harmonic coordinate restriction COORDgArm(POT) = 0 (cf.
eq. (57)). As a matter of fact, in the winter of 1912-1913 the Einstein tensor was
obtained directly by an ad hoc modification of the weak-field form of the gravita-
tional field equation eq. (33), resulting in:!

1
D<giK_§6iKU> = TiK (71)
with the trace term:
U= 38 (72
or alternatively as:
1
D8y = Ty 505 ST (73)

It surely would have been possible for Einstein to carry out the corresponding modifi-
cation on the level of the original Ricci tensor, turning it into what we now call the
Einstein tensor, by the subtraction of a trace term.

On closer inspection, however, the harmonic coordinate restriction does not
achieve the desired reduction of the field equation to the required standard form in the
sense of eq. (LII). Indeed, if the left-hand side is brought into the canonical form eq.
(XXVIII) so that eq. (73) is obtained, the right-hand side does obviously not repre-
sent the default setting for SOURCE as given by eq. (XIV):

SOURCEs=pgpr T, - %aij( ST (LXXVIII)

Instead an additional trace term appears which in general is not constant. If one
examines, in particular, a static mass distribution as the default setting for SOURCE
so that the 44 component is the only non-vanishing term of the energy-momentum
tensor, it follows from the weak-field equation (73) that all diagonal components of
the metric tensor will be variable so that one has in general:

gy =constfori = 1,...,4. 74

As a consequence, the weak-field equation (73) no longer admits the canonical metric
POTgrat defined by eq. (25) as a solution. At that point in time, Einstein saw no way
to avoid this default setting for the potential, and he rejected the Einstein tensor—lin-

91 See “Commentary” (in vol. 2 of this series), sec. 5.4.3.
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earized and reduced by the harmonic coordinate restriction—as a candidate for the
left-hand side of the gravitational field equation 22

5.14 The Einstein Tensor and the Conservation Principle
in the Winter of 1912—1913

At the weak-field level, the results of Einstein’s check of the conservation principle
turned out to be promising. In spite of the additional trace term it was possible to
write the gravitational force density in the required form of a divergence of the gravi-
tational energy-momentum density, which in Einstein’s notation reads (cf. egs.
(XXXVI) and (LXXTI)):

2
Ea(agmagm) _ 126((36%) )
&ox \0x, dx, | 2&0x
IQ 8 (AUUY  1a 8 ((3U\*
2D anlanny) T2 Zan\lan) )
24 0x\0x,0x,) 4L dx;\\0x,
At the level of the weak-field equation it was also immediately clear that the conser-
vation compatibility check is no longer in conflict with the correspondence principle,

in contrast to what he had found before for the Ricci tensor. In analogy with eq. (59)
one now obtains:

(75)

d _ ad _
E<D<gik 261KU>> - D<ax (gn( 261KU>> - 0» (76)
which, in symbolic notation, corresponds to (cf. eqs. (LXXII), (LXXIV)):
DIV(LIM(EINSTEIN)) = LIM(LAP(COORDgArM)) = 0. (LXXIX)

In other words, the conservation compatibility check is, in the weak-field limit, satis-
fied because of the harmonic coordinate restriction eq. (57) required by the corre-
spondence principle —without imposing any restriction on the trace of the energy-
momentum tensor.

5.15 The Einstein Tensor and the Generalized Relativity Principle
in the Winter of 1912—1913

Whether or not the generalized relativity principle was satisfied would, according to
Einstein’s understanding in the winter of 1912-1913, depend on whether the coordi-
nate restrictions necessary to fulfill his other heuristic criteria would leave him
enough covariance. In view of the clash between the Einstein tensor and the corre-

92  See “Commentary” (in vol. 2 of this series), sec. 5.4.6.
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spondence principle (see eq. (LXXVIII)), this issue remained unexplored at this point
in time.

5.16 The Einstein Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the Einstein tensor in November 1915 he focused on coor-
dinate systems with:

J-g = 1. (77)

The field equations based on the Einstein tensor then take on the form (cf. eqs (70)
and (62)):

FSV,O( + r[?ptrgv = _K<Tuv - %guvT) . (78)
In view of eqgs. (69) and (70), one could use, just as in the case of the Ricci tensor, the
harmonic condition eq. (57 to bring the left-hand side of the field equation into the
required form. This condition was now understood as a coordinate condition in the
modern sense. Proceeding in this way, one reduces the Einstein field equation for weak
fields to an equation of the form (73). The usual transition to the Newtonian theory
could now proceed by taking the energy-momentum tensor of dustlike matter as the
source and neglecting all terms except the T, -term, which can be identified with the
gravitating mass density p appearing in the classical Poisson equation (cf. eq. (37)).

What remained to be shown was that the canonical metric for a static field was
compatible with the non-standard form of the right-hand side of the weak-field equa-
tions (73). Even in 1915 this conflict remained, in a sense, unresolved. The additional
trace term on the right-hand side made it impossible to accept the canonical metric
for static fields as a solution of the weak field equations since the 11 ... 33 compo-
nents of the source term had to be retained in the transition to the Newtonian case (cf.
eq. (74)). Therefore the correction term in the Einstein tensor made the transition to
the Newtonian case a fortiori impossible following the procedure suggested by the
correspondence principle. All this had been known to Einstein in 1912°* and
remained, of course, true also in 1915, when he took up the Einstein tensor a second
time (Einstein 1915d).

But now Einstein was able to circumvent this problem. Even though the field
equation failed to satisfy the correspondence principle as hitherto understood, this did
not affect the equation of motion. In the weak-field limit of the equation of motion,
the non-standard character of the weak-field Einstein equation plays no role. For
weak static gravitational fields and for velocities negligible in comparison with that
of light, the general equation of motion (31) reduces, as we have seen, to eq. (38).

93 For a comment on the role of the Hertz condition in this context, see Albert Einstein to Karl
Schwarzschild, Berlin, 19 February 1916, (CPAE 8, Doc. 194).
94 Cf. pp. 20L-21R of “Einstein’s Zurich Notebook” (in this volume).
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This equation now implies that, under the conditions assumed, a gravitational field
equation based on the Einstein tensor is actually compatible with the experimental
data on gravitation that are adequately described by Newton’s theory if g,,/2 is, as
usual, identified with the Newtonian potential, while the other components of the
metric tensor play no role at this level of the weak-field limit of the Einstein equation.

5.17 The Einstein Tensor and the Conservation Principle in the Fall of 1915

When Einstein returned to the Einstein tensor in late 1915, the greater exploration
depth of his investigation made it possible to establish an energy-momentum expres-
sion for the gravitational field of the required form. Also the question of the conserva-
tion compatibility check could now be addressed in a straightforward manner. He
succeeded in bringing the field equation into a form corresponding to eq. (XXXIX)
with a conservation equation of the form of eq. (XLII):

NORM(POT) =pgpy (8'T%,) - %agx(t #T) = —(Th+12). (79)

The satisfaction of the conservation compatibility check (cf. eq. (XLIII)) now no
longer imposes any additional conditions interfering with the field equation as was
the case for the tensor where this check implied that the trace of both sides of the field
equation has to vanish.

In the field equation based on the Einstein tensor, the trace terms of the energy-
momentum of matter and of the gravitational field enter, in contrast to what happens
for the Ricci tensor (cf. eq. (67)), in complete parallel to each other. As a matter of
fact, the introduction of these trace terms corresponds to changing the default setting
eq. (XLI) for SOURCE into:

SOURCE =DEFT

(ENEMO - 1/2 TRACE(ENEMO)) +
(FIELDMASS — 1/2 TRACE(FIELDMASS)). (LXXX)

With this new instantiation for the source term, Einstein now also managed to comply
with the expectation for the left-hand side of the field equation expressed by the
default setting eq. (XLIV):

NORM(POT)p 555 = DIV(FIELD)=pggy (27T¢,) (80)
with
1 1
SOURCE =pgpy —K((T&—§6&T> + (rﬁ-iégt)). 81)

Note, however, that with this redefinition of the source-term the field equation no
longer corresponds with the canonical expectation for its right-hand side expressed
by the default setting eq. (XLII) suggested by the conservation principle. Even for a
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field equation based on the Einstein tensor it is simply impossible to satisfy all expec-
tations raised by the experience of classical field theory!

5.18 The Einstein Tensor and the Generalized Relativity Principle
in the Fall of 1915

Since neither the correspondence nor the conservation principle imposed any further
restrictions, field equations based on the Einstein tensor fully implement the general-
ized relativity principle.

5.19 The November Tensor and the Correspondence Principle
in the Winter of 1912—1913

The November tensor, first considered in the Zurich Notebook, can be obtained from
the Ricci tensor (cf. egs. (55) and (62)) by restricting the covariance group to unimo-
dular transformations and then splitting off a term:

Thy 6
RIEM =DEFT NOVEMBER =DEFT Nl“’ = F + FUO‘FVB . (82)
X

The exploration level of the November tensor in the winter of 1912-1913 was, in
general, characterized by a limitation to the weak-field equation and the expectation
that the implementation of the correspondence and conservation principles requires a
coordinate restriction. The correspondence principle, in particular, can be satisfied if
the Hertz restriction eq. (60) is imposed, bringing NOVEMBER into the form (cf.
egs. (XXXIV) and (XLIX)):

RIEM =pppr NOVEMBERggp, = LAP(POT) + CORR(POT),  (LXXXI)

so that also the weak-field equation takes on the canonical form of eq. (33) which can
be solved by the canonical metric for a static field given by eq. (25). One now also
has (cf. egs. (LXX) and (LXXVI)):

COORDyprrz(POTgrat) = 0. (LXXXII)

5.20 The November Tensor and the Conservation Principle
in the Winter of 1912-1913

The weak-field equation for the November tensor has the same form as that obtained
from a field equation based on the Ricci tensor since (cf. eq. (XXVIII)):

LIM(RICCI) = LIM(NOVEMBER) = LIM(LAP). (LXXXIII)

It is clear therefore that the conservation principle holds, at least in the weak-field
limit. It is possible to form a divergence expression such as that given by eq. (LXXI)
and to satisfy the conservation compatibility check as represented by eq. (LXXII) if
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the Hertz restriction eq. (60) is imposed. But contrary to the case of the Ricci tensor,
the coordinate restrictions required by the correspondence and the conservation prin-
ciples, respectively, now coincide (cf. eq. (LX)):

LIM(ENERG) = COORDyggrtz = 0. (LXXXIV)

5.21 The November Tensor and the Generalized Relativity Principle
in the Winter of 1912-1913

The check of the generalized relativity principle was eased by the fact that the trans-
formation behavior of the reduced November tensor (cf. eq. (XXXIV)) could be
inferred from the transformation properties of the restriction distinguishing it from
the original November tensor, the Hertz restriction. Indeed, if the Hertz restriction
remains covariant under a given unimodular coordinate transformation so must the
reduced November tensor (cf. eq. (LIX)). In the winter of 1912-1913, Einstein exam-
ined this transformation behavior for the two cases central to the heuristics governed
by the equivalence principle, the case of uniform acceleration (“the elevator”) and the
case of rotation (“the bucket”). To simplify matters, he considered the case of infini-
tesimal transformations and found that, while the Hertz restriction is satisfied by
infinitesimal rotations, it is not by infinitesimal transformations to a uniformly accel-
erated system.95 At least as far as the exploration level of his calculations (limited to
the weak-field case) allowed, Einstein could conclude that the reduced November
tensor clashes with the equivalence principle, even in the case of infinitesimal trans-
formations. He may well have found that transformations to finite rotations are
incompatible with the Hertz restriction as well.

5.22 The November Tensor and the Correspondence Principle in the Fall of 1915

When Einstein returned to the November tensor in 1915, he could make use of the
results he had established earlier, in particular with regard to the correspondence
principle and how to satisfy that principle by imposing the Hertz restriction (cf. eq.
(LXXXTI)). His reexamination was, on the other hand, characterized by an increased
exploration depth, which allowed him to treat this restriction as a coordinate condi-
tion in the modern sense. As we shall see, the conservation principle again leads to a
coordinate restriction following from DIV(INORM) = 0 (cf. eq. (XLIII)) which made
it necessary to recheck the compatibility of this condition with the correspondence
principle. As it turned out, the conservation compatibility check only gives rise to a
weak scalar condition in this case, which in the weak-field limit, can easily be satis-
fied if the Hertz condition is fulfilled (cf. eq. (LV])):

95 See “Commentary” (in vol. 2 of this series), sec. 5.5.3 and secs. 4.5.2-4.5.3.
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LIM(ENERG(POT)) =DEFT COORDHERTZ =0=>

LIM(DIV(NORM)) = 0. (LXXXYV)

Under these circumstances, the Hertz condition can thus be considered as a strength-
ening of the restriction DIV(NORM) = 0 following from the conservation principle.
But as this sharpening turned out to be necessary only for the purpose of implement-
ing the correspondence principle by choosing a class of coordinate systems suitable
for this purpose, the Hertz condition could now indeed be interpreted, for the first
time, as a coordinate condition in the modern sense.

5.23 The November Tensor and the Conservation Principle in the Fall of 1915

In the fall of 1915, Einstein succeeded in deriving a gravitational energy-momentum
expression FIELDMASS for the full field equation based on the November tensor
from a Lagrange formalism in which the default setting for the field is given by eq.
(XXIII). He brought the field equation into a form corresponding to eq. (XXXIX), thus
obtaining egs. (64), (65), and (66), familiar from our discussion of the Ricci tensor.

What remained was the check of compatibility with the conservation principle
and the question of which coordinate transformations it allowed. This question could
now be addressed not just on the weak-field level —where the transformation proper-
ties of the Hertz restriction had led to a disappointing answer—but on the level of the
full field equation. Einstein succeeded in expressing the conservation compatibility
check in terms of an equation of the form of eq. (XLIII) which now, however, has the
remarkable property that it represents not four equations but rather follows from a
single scalar condition (cf. eq. (LVI)):96

ENERG(POT) =pppr DIV(SCALAR(POT)) = 0 => DIV(NORM) = 0,(LXXXVI)

where:

2 gap
SCALAR(POT) =pgpy 3 2E S g Tl = 0. (83)
op ax ox otof

This condition clearly is much less restrictive than the Hertz restriction. As men-
tioned above, the Hertz restriction could therefore be reinterpreted as a coordinate
condition, obtained by strengthening the weak-field version of this scalar condition.

5.24 The November Tensor and the Generalized Relativity Principle
in the Fall of 1915

The November tensor was obtained from the generally-covariant Ricci tensor by
imposing a restriction to unimodular coordinate transformations. The conservation
compatibility check (cf. eq. (83)) gave rise to a further restriction of the choice of

96 See “Untying the Knot ...” (in vol. 2 of this series), sec. 6, eqs. (75)—(78), for detailed discussion.
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admissible coordinate systems, the “November restriction,” as it might be called.
Combining the trace of the full field equation with eq. (83), the following scalar equa-
tion results:”’
d ap d

—(g —logA/jg> = «T. (84)

ax® axP
This additional coordinate restriction requires, in particular, that the coordinate sys-
tem cannot be chosen in such a way that »/—~g = 1 since this would imply the physi-
cally implausible consequence that the trace of the energy-momentum tensor
vanish.”®

Since the November restriction was much weaker than the Hertz restriction, it

offered a way to overcome the latter’s fatal implications for the equivalence principle.
In particular, transformations of a given coordinate system to a rotating system or a
system whose origin moves in any given way were now allowed so that the general-
ized principle of relativity is amply, but not fully satisfied. Indeed if a given coordi-
nate system, for instance the usual representation of Minkowski space in Cartesian
coordinates, satisfies this coordinate restriction, any other system resulting from the
given one by a unimodular transformation must also fulfill this restriction, which is
covariant under unimodular transformations.

6. CHANGING HORSES: EINSTEIN’S CHOICE OF
GRAVITATIONAL TENSORS FROM 1912-1913

The checklist for candidates for the left-hand side of the field equations that we used
in the preceding section was based on the heuristic criteria that Einstein had essen-
tially established by the end of 1912. The decision as to which candidate fares best
given these heuristic criteria depends on the state of elaboration of the various mathe-
matical and physical consequences associated with that candidate. The relative arbi-
trariness of elaborating the consequences of a physical theory along various
conceivable pathways, which from the outset can never be overlooked in their total-
ity, therefore entails an element of historical contingency. As the comparison between
the Entwurf theory, maintained by Einstein essentially for three years, and his final
theory of general relativity shows, this contingency may take the form of different
physical theories with different empirical consequences, which, at the time, were
open to debate.

97 See (Einstein 1915a, p.785). Cf. “Untying the Knot ...” (in vol. 2 of this series), sec. 6, egs. (79)—(82).

98 “In writing the previous paper, I was not yet aware that the hypothesis E Tt = 0 is, in principle,
admissible.” (“Bei Niederschrift der fritheren Mitteilung [Einstein 1915a] war mir die prinzipielle
Zuldssigkeit der Hypothese ETE = 0 noch nicht zu Bewuftsein gekommen.”) (Einstein 1915b,
800).
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Furthermore, even if the more developed state of elaboration reached by Einstein
by the fall of 1915 is taken into account, it is as we have seen in the previous section
the November tensor rather than the Einstein tensor which fits Einstein’s original
heuristic criteria best. The November tensor had passed all tests of Einstein’s check-
list with only a minor adjustment of the generalized relativity principle while the Ein-
stein tensor had failed the test of the correspondence principle as originally conceived
by Einstein. This was all the worse for the Einstein tensor since the generalized rela-
tivity principle was an ambitious and idiosyncratic goal which was not shared by
many of Einstein’s contemporaries, while the correspondence principle had all the
support of classical physics and special relativity. That it was the Einstein tensor that
in the end won the race can only be understood by taking into account another aspect
of the historical process, which we have so far neglected, changes in the heuristic cri-
teria themselves as well as in their relative importance. We therefore need to take a
closer look at the actual development of Einstein’s thinking.

Why exactly did he turn from one candidate to the other? How did his judgement
of candidates evolve? What made him come back eventually to previously discarded
candidates after spending almost three years working out a more or less satisfactory
relativistic theory of gravitation based on one of them? These questions are the focus
of this and the next chapter dealing with what one might describe as Einstein’s dis-
covery process or better, as his “investigative pathway.”99 As we have argued, the
eventual success of Einstein’s research was based on applying shared knowledge
resources to the problem of gravitation. The actual mechanism of these applications
has so far been considered only from a single perspective, that of assimilating physi-
cal and mathematical resources to the basic model of a field equation. In the follow-
ing, we shall argue that focusing on the exploitation of these resources not only
allows us to understand the basic pattern of Einstein’s search, the alternation between
physical and mathematical strategy. It also allows us to reconstruct, to a surprising
extent, the actual course of his search, if we take into account an additional cognitive
process as well. While the assimilation of physical and mathematical knowledge to
the Lorentz model of a gravitational field equation is basically a top-down process
that is guided by the relatively stable high-level cognitive structures at the core of
Einstein’s heuristic criteria, a reflection on the experiences resulting from such an
assimilation, including its failures, could trigger a corresponding bottom-up process
of accommodating these high-level structures, including the very mental model itself,
to the outcome of these experiences. These two complementary processes were medi-
ated by the external representation of the mental model in terms of mathematical lan-
guage. The combination of these processes produced conclusions that evolved with
the elaboration of the formalism and with the accumulation of Einstein’s experience.
In order to substantiate this schematic account, we shall, in the following, review his
pathways, first in the period documented by the Zurich Notebook and then—in the
next chapter—in the period between 1913 and 1915. Relying heavily on the joint

99 See (Renn, Damerow and Rieger 2001; Holmes, Renn and Rheinberger 2003).
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work presented in this volume,'% we shall interpret these pathways as being gov-

erned by an interplay between assimilation and accommodation, mediated by the
mathematical formalism.

6.1 The Tinkering Phase in the Zurich Notebook

The earliest notes on gravitation in the Zurich Notebook represent a stage of Ein-
stein’s search for the field equation in which he had few sophisticated mathematical
tools at hand that would allow him to construct candidates fitting the framework pro-
vided by the Lorentz model. Even his knowledge of the metric tensor and its proper-
ties was still rudimentary. Only gradually did he find ways of exploiting his
knowledge of vector analysis for his search. Eventually he familiarized himself with
the scalar Beltrami invariants as another instrument that allowed him to investigate the
few building blocks at his disposal, that is, the metric as a representation of the gravi-
tational potential, the four-dimensional Minkowski formalism, and his theory of the
static gravitational field. In spite of the lack of mathematical sophistication character-
izing this early tinkering phase, not to mention the failure to produce promising candi-
date field equations, it is in this period that Einstein acquired essential insights
shaping his research in subsequent phases of work.

These insights consisted, first of all, in a number of concrete results that later
turned out to be useful, such as the identification of the core operator (cf. eq.
(XXVI)), the establishment of a repertoire of techniques for dealing with coordinate
transformations, results on the transformation properties of the Hertz restriction, and,
most importantly, the successful implementation of the Lorentz model of an equation
of motion in a generally relativistic framework (cf. eq. (XX)). The most far-reaching
insights of this period were, however, of a different nature. They consisted in more
general ideas resulting from a reflection on the experiences in the tinkering phase,
ideas that were largely independent from the concrete mathematical material to
which they were applied. Here we encounter a second function of reflection in this
context, beyond that of modifying one or the other of Einstein’s heuristic principles:
reflection could also result in higher-level structures operating on a strategic level,
that is, guiding the implementation of these heuristic principles. The most important
example is certainly the idea to first impose a coordinate restriction on an object of
broad covariance in order to satisfy the correspondence principle and then to explore
the transformation properties of this coordinate restriction in order to check the extent
to which the generalized principle of relativity is satisfied as well (cf. eq. (LIV)).
Even the alternation between more physically and more mathematically motivated
approaches emerged as a distinct pattern in this period, again with far-reaching impli-
cations for Einstein’s subsequent research. The reflection on the experiences of this
tinkering phase thus led to what one might describe as a “chunking” of Einstein’s

100 See, in particular, “Commentary” for this section and “Untying the Knot ...” for the next section (both
in vol. 2 of this series).
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heuristic principles in terms of procedures that interconnected them in such a way as
to ease their implementation as a whole.'% Such procedures could involve the subse-
quent translation of these principles into well-defined mathematical requirements on
a gravitational field theory (e.g., the choice of a generally-covariant candidate, fol-
lowed by the stipulation of a coordinate restriction) or they could consist in alternat-
ing between physical and mathematical default settings.

6.2 Assimilating Knowledge about the Static Gravitational Field
to a Metric Formalism (39L-39R)

When Einstein began systematically to explore a metric theory of gravitation, he was
confronted with the problem that the knowledge resources available to him for con-
structing such a theory presented themselves as more or less isolated building blocks
that could not easily be fitted together. On the page of the Zurich Notebook which
documents the point of departure of his exploration (p. 39L), he therefore started his
investigation simply by listing three such building blocks, the line element in terms of
the metric tensor representing the gravitational potential, the four-dimensional
Minkowski formalism, and his theory of the static gravitational field. How could they
be brought into relation to each other?

The principal challenge was to assimilate the knowledge about the special case of
a scalar, static gravitational potential to a tensorial formalism. If such an assimilation
were successful, the mental model of a field equation for a tensorial gravitational
potential would acquire a physically meaningful instantiation. Einstein’s first consid-
eration of the problem of gravitation that is recorded in the Zurich Notebook is pre-
cisely such an attempt to assimilate the static case to a metric formalism,
concentrating on two of the slots of the Lorentz model for a field equation, that for the
differential operator and that for the gravitational potential. For reasons that we have
discussed earlier, the default setting for the latter slot was given by the canonical met-
ric for a static field (cf. eq. (25)). Brought into proper mathematical form, Einstein’s
scalar field equation for the static gravitational field could therefore be conceived as a
second-order partial differential equation for the one variable component of this spe-
cial metric tensor, expressed in a special coordinate frame in which the metric takes on
its canonical form. Exploiting mathematical knowledge about the behavior of a tenso-
rial field equation under coordinate transformations, one should then be able to gener-
alize this equation for one component to a field equation for the full metric tensor.

By transforming the equation for the static field into a more general coordinate
system, Einstein made an observation that suggested a new pathway to him. He found
that, under linear coordinate transformations, the metric tensor behaves exactly the
same way as the second-order partial derivatives of a scalar function. This observa-
tion opened up a new possibility for drawing on hitherto unexploited mathematical

101 For the concept of “chunking” in cognitive science, see (Minski 1987).
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resources and thus for identifying a suitable differential operator acting on the metric
tensor.

6.3 Assimilating Knowledge about Scalar Differential Invariants
to a Metric Formalism (40L—41L)

Einstein’s key problem was that the default-settings for two of the slots of the mental
model for a gravitational field equation, suggested by his earlier experiences with
implementations of this model, could not be matched to each other (see Fig. 3,
p- 173). While the default setting for the gravitational potential was represented by
the canonical metric, the default setting for the differential operator was, at this point,
an object like the Laplace operator, applicable only to scalar functions and covariant
only under linear transformations. Was there a way of bridging this gap between a
scalar differential operator and a tensorial potential? Einstein’s insight into the anal-
ogy between the transformational properties of the metric tensor and those of the sec-
ond-order partial derivatives of a scalar function offered such a bridge, allowing him
to bring to bear on this problem mathematical knowledge about scalar differential
operators. It suggested the possibility of building some higher-order differential oper-
ator acting on a scalar function, which could then be translated into a differential
operator acting on the metric tensor. All that was needed for such a translation was
the replacement of a second-order partial derivative term by the corresponding com-
ponents of the metric tensor; the remaining partial derivatives could then be consid-
ered as a differential operator acting on the metric.

What could be gained by such a roundabout procedure? If the scalar differential
operators involved are just linearly covariant, like the Laplace operator, relatively lit-
tle. If, however, scalar differential invariants are taken as the building blocks of such a
construction, it could lead to the formulation of a generally-covariant differential
operator for the metric tensor. There is some indication in the Zurich Notebook that
this may have been Einstein’s hope. In any case, he systematically checked whether
various higher-order scalar differential operators would yield, after translation, a suit-
able candidate for the left-hand side of the gravitational field equations. But appar-
ently he was unable to single out a candidate promising to fulfill his other heuristic
criteria as well, and did not pursue this investigation for the time being. As is clear
from later pages of the notebook, however, Einstein did not consider the potential of
scalar differential invariants for his project to be exhausted. The purpose of a some-
what obscure calculation on the immediately following pages (pp. 40R-41L), dealing
with linear transformations of an algebraic quadratic form, might well have been to
learn more about such invariants and their properties.

6.4 Implementing the Lorentz Model of the Equation of Motion (O5R)

At some later point, Einstein made a new beginning in his research on a theory of
gravitation. He now turned to the other element of the field-theoretical model, the



200 JURGEN RENN AND TILMAN SAUER

equation of motion. He probably had realized by this time that the equation of motion
for a point particle in a gravitational field corresponds to the equation for a geodesic
curve in a four-dimensional curved spacetime (cf. eq. (23)).192 But he probably also
had realized that an equation of motion in this sense was not quite the match of the
gravitational field equation for which he was looking. The default-setting for the
source-slot of the Lorentz model for the field equation was not a point particle but the
energy-momentum tensor (cf. eq. (XIV)). The mental model of a field equation
together with special relativistic continuum theory now suggested what such an equa-
tion should look like in terms of the energy-momentum tensor (cf. eq. (XX)).103 Such
an equation would provide, at the same time, an expression for energy-momentum
balance in the presence of a gravitational field.

When Einstein studied the equation of motion problem, he was confronted with
the challenge of how to link his general expectations concerning the structure of such
an equation with his concrete knowledge about the motion of point particles in a
gravitational field. To bridge this gap he made use, as we have discussed before, of a
particular model of matter, which allowed him to link point mechanics and contin-
uum mechanics, i.e. the model of “dust” (cf. eq. (XXI)). At a mathematical level, the
bridge was built with the help of the Lagrangian formalism (cf. eq. (19)). The dust
model allowed Einstein to generalize the equation of motion derived within the
Lagrange formalism into a relation between components of the energy-momentum
tensor. This relation suggested, in turn, what the full tensorial equation of motion in
gravitational field should look like, if it was supplemented by both mathematical and
physical default-assumptions provided by the corresponding special relativistic equa-
tion.'%* As discussed above, eq. (XX) expresses the energy-momentum balance in a
gravitational field, i.e. the generalization of the special relativistic relation between
force, energy, and momentum (cf. eq. (XVIII)). Einstein also realized that, from a
mathematical point of view, it corresponds to the covariant divergence of the energy-
momentum tensor (cf. eq. (XXIV)). This remarkable convergence of physical and
mathematical perspectives must have confirmed the expectation that his result also
applies to other kinds of sources and turned Einstein’s equation into the default-set-
ting for the equation of motion in the Lorentz model and for the energy-momentum
balance in a gravitational field.

102 He reproduced the proof that the trajectory of a force-free motion constrained to a two-dimensional
surface is a geodesic on a page of the notebook immediately following the consideration of quadratic
invariants mentioned in the previous subsection (see p. 41R).

103 Einstein emphasized the central role of the energy-momentum tensors and the importance of special-
relativistic continuum mechanics in an article he wrote in 1912 but never published, see (CPAE 4,
Doc. 1, 63).

104 See the discussion in (Norton 2000, Appendix C).
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6.5 A Mathematical Toy Model as a New Starting Point (6L-7L)

The mismatch between the instantiations for two of the slots of the mental model of a
field equation, that for the differential operator and that for the gravitational potential,
left Einstein with two principal options as to how to proceed. He could continue try-
ing to build an appropriate differential operator applicable to the metric tensor or he
could tentatively explore substitutions of the default-setting for the gravitational
potential, thus creating “toy-models” in the sense of obviously unrealistic instantia-
tions of the model. Even if that meant temporarily suspending the insight that the
gravitational potential is represented by the metric tensor, it might still be possible to
gain knowledge from exploring such toy-models that could be helpful in constructing
a more realistic candidate field equation.

When Einstein became familiar with the generally-covariant Beltrami invariants
as a generalization of scalar differential operators, they must have appealed to him as
a promising starting point for his search for a relativistic gravitational field equation.
A field equation based on those invariants would automatically satisfy the heuristic
requirement of the generalized principle of relativity. A first attempt to construct a
differential operator for the metric out of operators acting on a scalar function had, as
we have seen, turned out to be too speculative. It was hence worth trying to explore a
generalization of the scalar Poisson equation in a generally-covariant setting by
using—instead of the Laplace operator—the second Beltrami invariant applied to a
scalar function. While such a generally-covariant scalar field equation was only a toy
model, it confronted Einstein with a serious problem, viz. that of reconciling a math-
ematically satisfactory candidate with the physical knowledge of his theory of static
gravitational fields, (see Fig. 3, p. 173). In a sense, a scalar field equation formulated
in terms of the second Beltrami invariant represents the counterpart of the scalar field
equation of Einstein’s static theory: while the latter constitutes an initial, physically
plausible instantiation for the field-theoretical model, the former represents an
equally plausible initial instantiation rooted in mathematical knowledge. In both
cases, the resulting field equations were merely starting points for further investiga-
tions that had to make contact with knowledge not yet embodied in these first default-
settings.

It therefore comes as no surprise that Einstein tried to find out under which condi-
tions a generally-covariant scalar field equation formulated in terms of the second
Beltrami invariant reduces to the ordinary Poisson equation. Such a reduction must
be possible if the candidate (or rather toy) field equation is to comply with the corre-
spondence principle. It turned out that the implementation of this heuristic principle
in this concrete case requires an additional constraint on the choice of the coordi-
nates, supplementing the field equation. Essentially by inspection, Einstein could
identify the harmonic coordinate restriction (cf. eq. (57)) as a condition that would
make sure that the Beltrami field equation reduces to the ordinary Poisson equation
for weak gravitational fields. In other words, the exploration of a toy field equation
taught Einstein that a candidate field equation obtained from a mathematical default-
setting may require an additional coordinate restriction to be viable from a physical
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point of view as well; it also familiarized him with a specific example of such restric-
tion, which later turned out to be useful when studying the Ricci tensor.

How could the toy field equation be turned into a real candidate field equation? If
the Beltrami field equation is considered as a mathematically reasonable structure to
which physical knowledge should now be assimilated, such as the insight that the
gravitational potential is actually represented by the metric tensor, it made sense to
try to bring this knowledge into an appropriate mathematical form. If unimodular
coordinate transformations are assumed, the determinant of the metric transforms as
a scalar and can be used to fill the potential-slot of a scalar field equation. The next
question was whether the resulting field equation, for the special case of a static field,
could be related to the familiar static field equation. Einstein tried to extend this
approach by taking into account different versions of a Beltrami-type field equation
but failed to integrate the mathematical and the physical knowledge in this way.

6.6 A Physical Toy Model as a New Starting Point (7L-8R)

Einstein’s first exploration of the Beltrami invariant had not answered the question as
to how to get from a mathematically plausible scalar differential equation to a tenso-
rial field equation that is both mathematically and physically plausible. Reflecting on
this gap, Einstein may well have considered the possibility of dividing this transition
into two steps. The first would be to construct a tensorial field equation that, even if
its mathematical properties were unclear at the outset, made good sense physically.
The second step would take him, relying on mathematical tools, from such a physi-
cally-plausible toy field equation to the final equation.

In any case, instead of taking a simplified instantiation for the potential-slot of
Lorentz model for a field equation to explore a mathematical toy model, Einstein now
chose a simplified instantiation for the differential operator slot, while keeping the
realistic setting for the potential slot, i.e. the metric tensor. His experience with vector
calculus and its use in physics allowed him to write down a straightforward transla-
tion of the ordinary Laplacian operator into a differential operator acting on the met-
ric tensor, the core operator. Einstein’s experience with the Beltrami invariants must
have made it clear that the core operator could hardly represent a generally-covariant
object. From the way in which it was constructed, however, it was equally clear that a
field equation based on the core operator satisfies the correspondence principle. For
this reason, the core operator (cf. eq. (XXVI)) became the default-setting for all of
Einstein’s subsequent attempts to implement this principle.

This candidate now had to be checked against the other heuristic requirements
and, in particular, its behavior under coordinate transformations needed to be
explored. This could be done in two distinct ways: either by directly checking the
transformational behavior of the core operator, or by considering it—in the sense
indicated above—an intermediate step towards the final field equation. Einstein
began with the first option. To get beyond linear transformations, however, he used a
special kind of coordinate transformations, which explicitly depend on the metric
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tensor, and which he later called “non-autonomous transformations”.'%> The behav-
ior of the core operator under such transformations is determined by differential
equations for the transformation matrices involving the metric tensor and its deriva-
tives. Einstein succeeded in writing down, at least for infinitesimal transformations,
the essential term in such a differential equation. But probably in view of the com-
plexity that this condition would take on for finite transformations and, more gener-
ally, in view of the unfamiliar character of these non-autonomous transformations, he
abandoned this approach and turned instead to the more familiar territory of ordinary
coordinate transformations.

In that case the only way to go beyond linear transformations was to generalize
the core operator. Einstein developed an ingenious method for doing so. First of all,
he considered the two differential operators constituting the core operator separately,
the divergence and the gradient (or exterior derivative, cf. eq. (XXV)). He then took
the familiar form of these operators applied to some second-rank tensor in
Minkowski spacetime with (pseudo-)Cartesian coordinates as his starting point. Ein-
stein now made the assumption that these operators actually transform as tensors
under arbitrary coordinate transformations. Under this assumption, a coordinate
transformation carrying these operators from their special form in Cartesian coordi-
nates to arbitrary coordinates should reveal their generic form. The idea was similar
to that of obtaining a generalization of the line element of Minkowski spacetime to
that of a generic curved spacetime by passing from pseudo-Cartesian to arbitrary
coordinates in Minkowski spacetime. In both cases one simply had to assume that an
equation obtained for the Minkowski metric in arbitrary coordinates is actually valid
for the metric of a generic spacetime. Although Einstein did not see his calculations
through to the end, he essentially succeeded in finding covariant generalizations of
the constituents of the core operator. Eventually he must have realized, however, that
this success amounted to no more than a Pyrrhic victory since these generally-covari-
ant differential operators give zero when applied to the metric tensor. In other words,
a generalized core operator built from these covariant differential operators is not
suitable as a candidate for the left-hand side of the gravitational field equation. Even-
tually, this failure forced Einstein to take the peculiar non-autonomous coordinate
transformations of his first approach much more seriously than he had probably
intended when he first encountered them.

6.7 Identifying the Core Operator as the Target of the
Mathematical Strategy (8R-9R)

In his next attempt Einstein, reflecting on his earlier failures and insights, combined
his prior experiences to develop a procedure for constructing candidate field equa-
tions that he would repeatedly use in the notebook (cf. eq. (XLVIII)). The genesis of

105 See Einstein to H. A. Lorentz, 14 August 1913, (CPAE S5, Doc. 467). For discussion, see
“Commentary ...” (in vol. 2 of this series), sec. 4.3.
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this procedure as the result of an oscillation between a more mathematically and a
more physically motivated attempt illustrates Einstein’s learning experience in the
course of his search, which therefore cannot be seen simply as the successive elimi-
nation of unsatisfactory alternative candidates.

The attempt to conceive of the physically plausible core operator as the represen-
tation of a more general covariant object in specific coordinates had failed because of
the degeneracy of the corresponding differential operations when applied to the met-
ric. It made therefore sense to return to the earlier direct exploration of the transfor-
mation properties of the core operator. This pathway had not definitively failed yet
but turned out to be too rough. Considered from a higher level of reflection, the core
operator could not just serve as a physically plausible starting point but also as the
possible target of a strategy starting from a mathematically well-defined object. At
this point, the only such mathematically well-defined objects that Einstein had at his
disposal were the Beltrami invariants. It therefore was natural to deal with them once
again, but now not with the theory of the static gravitational field but with the core
operator as the more promising physically meaningful target. This approach came
with a new challenge, the task to extract a tensorial object, the core operator, from a
scalar invariant. This challenge turned out to be manageable.

In short, the idea was to once more start from a mathematically motivated instan-
tiation, the second Beltrami invariant, trying to exploit its familiar mathematical
properties in order to determine the transformational behavior of the physically plau-
sible core operator. The necessary bridges between tensorial and scalar objects were
readily at hand. From his earlier experience, Einstein knew that he could use the
determinant of the metric tensor in the second Beltrami invariant if he considered
only unimodular transformations. Now he realized that he could, in turn, try to extract
a tensor from a scalar by conceiving the latter as a contraction between two tensors,
in this case of the metric tensor and the core operator.

The concrete implementation of this approach confronted Einstein with a number
of problems, minor and major. There was, first of all, the need for a restriction to uni-
modular coordinate transformations. More importantly, when trying to extract the
core operator from the second Beltrami invariant applied to the determinant of the
metric tensor, he encountered an additional first-order term that required further con-
sideration. Einstein’s understanding of the conservation principle, and in particular
his experience with his second theory of the static gravitational field, must have
immediately suggested to him that this first-order term might be related to an expres-
sion for gravitational energy-momentum (cf. eq. (XXXIV)).

In the end, however, Einstein did not succeed in establishing a convincing bridge
between core operator and Beltrami invariants. As a consequence, he failed to clarify
the transformational properties of the core operator or of a suitably amended candi-
date gravitational tensor constructed from it. At this point, he took up once more the
direct exploration of the transformational properties of the core operator earlier aban-
doned because of the intricacy of the non-autonomous transformations involved in it.
This resort to an earlier approach was, however, no return to square one. Einstein
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could benefit from the insights he had made in the meantime, in particular from the
breaking down of the original problem into simpler ones that the introduction of the
Beltrami invariants had made possible. The new first-order term posed a problem
analogous to the one Einstein had first encountered when comparing a mathematical
toy model based on the second Beltrami invariant with the ordinary Laplace operator
and thus suggested the remedy of introducing a coordinate restriction as an additional
hypothesis under which a mathematically acceptable expression reduces to a physi-
cally plausible one. One could limit then the direct exploration of transformational
properties to the remainder term distinguishing the second Beltrami invariant from
the contraction of the core operator with the metric tensor. This task was simpler than
the original one given the structure of the remainder term. If the class of non-autono-
mous transformations leaving this term invariant could be determined, one would
thereby have found the class of transformations leaving the principal term, i.e., the
contraction of the core operator with the metric, invariant as well (cf. eq. (LI)). In this
way, a bridge would have been built between the transformational behavior of the
mathematically well-defined second Beltrami invariant and that of the physically
plausible core operator. In spite of this simplification with respect to Einstein’s origi-
nal attempt to determine the transformational behavior of the core operator, even this
reduced task still turned out to be too cumbersome to carry out.

Although this entire episode was fraught with frustrations of reasonable hope, it
gave Einstein strategic insights well beyond the concrete mathematical material at
hand. There was, first of all, the recognition of the canonical form for the left-hand
side of a gravitational field equation, which would have to consist of a core operator
plus first-order correction terms somehow related to gravitational energy-momentum
(cf. eq. (XXXIV)). Second, the experiences of this episode brought the mathematical
strategy into a form that was to dominate much of the subsequent work documented
in the notebook. The general idea now was to start from an object with well-defined
mathematical properties, in particular with a broad enough covariance group to meet
the demands of the generalized principle of relativity (cf. eq. (XLVI)). The next step
was to extract from it a candidate gravitation tensor with well-defined physical
behavior, more specifically the core operator possibly with correction terms not inval-
idating the correspondence principle (cf. eq. (XLVIII)). The extent to which the gen-
eralized principle of relativity was actually fulfilled could be determined by checking
the transformational behavior of the term distinguishing the candidate gravitation
tensor from the mathematical starting point (cf. eq. (LI)). This term could be elimi-
nated by imposing the appropriate coordinate restriction (cf. eqs. (L), (LIL)). It is
remarkable that this strategy, crucial to Einstein’s exploration of the Riemann tensor,
was in place before he had even seen a single realistic candidate gravitation tensor.

6.8 Subjecting the Core Operator to a Piecemeal Approach (10L—12R, 41L-R)

While in the last episode Einstein had developed an overall strategy for solving his
problem and failed, he now took a more piecemeal approach. He focused on a mathe-
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matically much simpler object to avoid the complexity of the non-autonomous trans-
formations he had considered so far. On the whole, this phase of his work was
characterized by the attempt to break down his main problem, the identification of
appropriate field equations, into smaller, more manageable pieces in the hope of iden-
tifying reliable building blocks that could then be used to put the puzzle together.

This line of pursuit was largely shaped by the options and constraints that had
emerged in the course of Einstein’s preceding experience. In particular, while he had
just established a paradigm for what was to become his mathematical strategy, for the
time being this strategy was powerless for want of mathematical objects other than
the Beltrami invariants that could serve as input. The core operator, on the other hand,
inspired confidence as a solid achievement that would be a physically meaningful
starting point were it not for the difficulties of determining its transformation proper-
ties. Yet in view of the absence of other mathematical resources, the use of non-
autonomous transformations may have seemed unavoidable. And if hope was to
remain of connecting possible results to the Beltrami invariants, the only advanced
mathematical objects at Einstein’s disposal, the transformations should be unimodu-
lar as well.

It is against this backdrop that the emergence of the main idea guiding Einstein’s
work in this episode becomes understandable. This work may have sprung from the
idea to consider simpler mathematical objects that would make a direct approach to
the examination of their transformation properties feasible. In any case, at some point
it must have become clear to Einstein that the full problem, the determination of the
transformation properties of the core operator, could actually be broken down into the
study of such simpler objects, if possible vectors or even scalars (cf. eq. (XXV)). The
preceding experience with the attempt to extract the core operator from the scalar
Beltrami invariant may have triggered this idea. It therefore made sense to carefully
check the covariance of these simpler objects in particular under the transformations
relevant to the implementation of the elevator and the bucket models, i.e. transforma-
tions in Minkowski spacetime to uniformly accelerated or to rotating systems.

The realization of the idea just described brought Einstein to study the transfor-
mation properties of the Hertz restriction (cf. eq. (60)). If this restriction was
imposed, the core operator reduces to a simpler object whose transformation proper-
ties can then be determined separately. But in spite of the greater simplicity of these
objects, it turned out to be necessary to introduce a further simplification and to limit
the analysis to infinitesimal transformations. With these presuppositions in place,
Einstein was able to obtain some specific results even if these were not all that
encouraging. In particular, when attempting to implement the elevator model and sat-
isfy the equivalence principle, he found that compatibility with the covariance prop-
erties of the Hertz restriction required a modification of the transformation to a
uniformly accelerated system, which turned out to be unacceptable for physical rea-
sons. In short, Einstein found it difficult to establish a match between the transforma-
tional properties of the objects under study and his physical expectations. How much
of the room opened up by his main idea, that of splitting the core operator into two
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simpler pieces, did he actually investigate in the course of his calculations? It is clear
from his notes that he was aware of variants of this operator and hence of alternative
splits (involving e.g. the harmonic restriction instead of the Hertz restriction), but he
left this option unexplored.

In the end, Einstein once again assembled a number of isolated results that later
became useful. In addition, he gained strategic insights governing the subsequent
course of his research. As far as his specific results are concerned, he established, for
instance, that the Hertz restriction is covariant under infinitesimal non-autonomous
transformations to a rotating system in Minkowski spacetime but, as mentioned
above, not under a transformation to a uniformly accelerated system. He also found
that the core operator is covariant under antisymmetric non-autonomous transforma-
tions in Minkowski spacetime, without however being able to associate physical
meaning with this result. In the course of his work, he gradually shifted the emphasis
of his quest from the transformation properties of the constituents of the core opera-
tor to a careful reexamination of the physically relevant transformations themselves.
He thereby again accumulated some useful findings such as the derivation of the met-
ric for Minkowski spacetime in rotating coordinates from the Lagrangian formalism.
Eventually he made a fresh start, taking unimodular transformations as a starting
point for implementing the generalized principle of relativity. He once more tried to
match them with transformations to a uniformly accelerating system, again without
success. He then abandoned this attempt to incorporate the equivalence principle,
alongside with his entire endeavor to deal with the covariance properties of the core
operator on the basis of his piecemeal strategy. What remained, apart from specific
achievements, was the experience that non-autonomous transformations could be
handled after all, at least when applied to sufficiently simple objects. But this was an
insight that Einstein would be able to put to good use only much later, when he
explored the transformation properties of the finished Entwurf theory, in particular in
its Lagrangian formulation (cf. eqs. (LXIII), (LXIV)). Of more immediate impact
was his realization, fostered by the disappointments produced even by his piecemeal
strategy, that it might be prudent to put the pursuit of an audacious interpretation of
the generalized principle of relativity on hold, turning instead to the physical require-
ments embodied in the conservation principle.

6.9 Using the Core Operator as the Starting Point for the Physical Strategy
(13L—13R)

Einstein’s next move was to look at his problem from a different angle, bracketing the
intricate problems raised by the generalized principle of relativity and making sure
that what he had achieved so far was at least sound in other respects. And even after
the disappointing yield of his piecemeal approach, the identification of the core oper-
ator as a candidate compatible with the correspondence principle remained such a
sound result. Einstein now tried to address the seemingly intractable aspects of the
exploration of the core operator by reducing the ambitious goals imposed by the gen-
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eralized principle of relativity. For this purpose, he set up a more manageable frame-
work for dealing with the other central, but as yet unexamined aspect of the validity
of the core operator as a candidate gravitation tensor, its compatibility with the con-
servation principle.

His previous research had already suggested that perhaps the core operator needed
to be supplemented by additional first-order terms representing the energy-momen-
tum of the gravitational field in the gravitational field equation. But at that point the
problem of energy-momentum conservation had occurred only as a marginal aspect of
the relativity problem at the center of Einstein’s attention. The impasse of his work on
this problem provided a natural occasion to return to the issue.

Einstein created a manageable framework by restricting all considerations to uni-
modular, linear transformations. The requirement of linearity would secure the tenso-
rial character of the core operator, while the requirement of unimodularity kept the
door open for establishing contact with the Beltrami invariants later. By setting up a
systematic framework for generating vectors and tensors involving the metric Ein-
stein could hope, first of all, to reduce the ambiguities of his approach and second, to
gain solid ground for examining the relation between core operator and conservation
principle without the interference of the relativity problem. Such an examination
might, in particular, help to find the correction terms that he had earlier tried to obtain
from the first Beltrami invariant.

Einstein constructed a framework for generating tensorial objects involving the
metric with well-defined transformation properties, beginning with the Hertz expres-
sion (cf. eq. (60)). He set up a survey of the first-order objects and then stopped,
either because these were the objects in which he was mainly interested with a view
to the correction terms needed for the core operator or because even this limited over-
view dashed any hopes he might have had for a reduction of the space of possible
candidates. Whatever the case may be, it was at this point that he once more took up
the core operator directly, checking its compatibility with energy-momentum conser-
vation. As it turned out, his network of results had become dense enough to allow for
such a check which, even if it failed, would probably still provide hints about what
was still needed to enforce compatibility. Einstein combined the left-hand side of a
field equation based on the core operator with the expression for the energy-momen-
tum balance he had established earlier (cf. eq. (XXX)). He thus produced an expres-
sion corresponding to (cf. eq. (XXXII)):

GRAD(POT) X LAP - DIV(LAP) (LXXXVII)

which a priori could be expected to be of third differential order. But if one now
assumes that a field equation of the form (cf. eq. (XXXIX)):

LAP = ENEMO + FIELDMASS (LXXXVIII)

holds, then compatibility with the conservation principle requires that the above
expression reduces to the second-order expression (cf. egs. (XXXI), (XXIV)):

GRAD(POT) x FIELDMASS - DIV(FIELDMASS) (LXXXIX)
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with an appropriate explicit form of FIELDMASS. Einstein found indeed that
imposing the Hertz condition implies that no third-order terms appear. But, unfortu-
nately, he failed to arrange the terms in the resulting expression in a way that would
have allowed him the extraction of an explicit form of FIELDMASS.

In summary, Einstein succeeded neither in identifying the conditions under which
the core operator is compatible with the conservation principle nor in finding the cor-
rection terms that could possibly help establishing such compatibility. Even for such
a simple object as the core operator the differential equation resulting from his com-
patibility check appeared to be too complicated. His calculations and the reflections
stimulated by them had nonetheless laid the groundwork for the global approach we
have called his “physical strategy,” all elements of which were now assembled. The
core operator provided him with the starting point for this approach and the calcula-
tions just considered constituted the conservation compatibility check for this candi-
date (cf. eq. (XXXI)). The restriction to linear transformations made it possible to
postpone a check of the extent to which the generalized relativity principle was satis-
fied. What was still lacking was a procedure for guessing or generating suitable cor-
rection terms to be added to the core operator to turn it into a viable candidate.
Einstein had arrived at a dead end, but not with empty hands. Not only had he accu-
mulated a reservoir of insights and tools that would be useful for his further search,
but he had developed two overall strategies, each capable of guiding this search. For
the time being, however, both strategies were doomed to be abeyant as long as certain
elements that could trigger their application were missing. But as soon as an appro-
priate incentive was provided, either of them could be activated. For the physical
strategy to become productive, all that was needed was a way to generate plausible
correction terms to the core operator. For the mathematical strategy to become pro-
ductive, all that was required were tensors with second-order derivatives of the metric
and a well-defined transformational behavior. As it turned out, the latter option was
realized first.

6.10 The Systematic Search Phase in the Zurich Notebook

The raw material needed to set the mathematical strategy in motion was evidently
delivered by Marcel Grossmann whose name appears next to the first occurrence of
the Riemann tensor in the notebook. With this entry, the first phase of Einstein’s
research was over and a phase of systematic searching for suitable gravitational field
equations began. The Riemann tensor represented something like a raw diamond for
Einstein to which he could now apply the various extraction schemes that he had
elaborated earlier as well additional stratagems he developed in the course of his
search. Among these schemes was the contraction of the fourth-rank Riemann tensor
to yield a second-rank candidate gravitation tensor, the extraction of such a candidate
from a scalar object, the stipulation of coordinate restrictions, and the possibility of
modifying candidate field equations by adding or subtracting terms. The products to
which these extraction processes gave rise had an impact on Einstein’s search proce-
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dure going well beyond their immediate evaluation as being either refinements or
debris, as is particularly evident from the identification and subsequent rejection of
the Einstein tensor.

Einstein’s procedure was guided throughout by the Lorentz model, which sug-
gested that candidates for the left-hand side of the field equations have the form of a
core operator plus correction terms (cf. eq. (XXXIV)). His prior experience with
extracting such candidates from the second Beltrami invariant furthermore gave him
guidance on how to handle those terms not fitting his expectations, i.e., how to elimi-
nate them with the help of a coordinate restriction. Since he started from objects with
well-defined transformation properties, the main heuristic criteria to be checked were
the correspondence and conservation principles. From the point of view of the math-
ematical strategy, both criteria posed similar challenges and thus seemed to call for
similar responses, viz. coordinate restrictions to be imposed in addition to the field
equations. This parallel strengthened Einstein’s expectation that the stipulation of
these heuristic principles required a restriction of the covariance of the object used as
the starting point of the mathematical strategy. On the weak-field level, the two
restrictions, one resulting from the correspondence, the other from the conservation
principle could easily be compared with each other; their compatibility or rather the
lack thereof was an important driving force in the search for field equations (cf.
eq. (LX)).

The severe restriction on the generalized relativity principle that seemed to be the
almost unavoidable consequence of Einstein’s procedure made it all the more urgent
to check whether or not at least the most essential requirements associated with this
principle were satisfied and, in particular, whether the important special case of rota-
tion was included. Not surprisingly, Einstein more than once reexamined this special
case during his search.

The difficulties Einstein encountered in the course of his attempts to enforce his
heuristic criteria within the formalism he was weaving around the Riemann tensor
naturally provoked a reflection on the validity, the physical meaning, and the mathe-
matical implementation of these criteria. After all, they may just have been preju-
diced. Does the conservation principle really require the covariant divergence of the
stress-energy tensor to vanish (cf. eq. (XXIV))? Does the correspondence principle
really demand a static gravitational field to be represented by a spatially flat metric
(cf. eq. (25))? Can the generalized relativity principle perhaps be satisfied for rotation
by metric tensors other than the one obtained from a coordinate transformation of the
standard Minkowski metric? Such questioning of his original heuristic criteria and
the default settings suggested by them would eventually pave the way for the break-
through of 1915. But in the winter of 1912—-1913, the answers that Einstein found to
these questions confirmed his original conceptions and solidified them by extending
the network of inferences in which they were embedded. Ironically, it was precisely
the lack of a candidate field equation complying with his heuristic criteria and worthy
of further elaboration that also prevented, for the time being, the construction of an
even wider network of inferences that would allow these criteria to be overcome.
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While Einstein’s search would eventually turn up just such a candidate, the Entwurf
field equation, this candidate was no longer the result of an extraction from the Rie-
mann tensor.

What was overturned in the course of the research documented by the notebook
was not Einstein’s reliance on his heuristic criteria but the way in which he tried to
meet them following his mathematical strategy. Even when he managed to find a can-
didate for which the coordinate restrictions implied by the correspondence and con-
servation principles, respectively, could be matched, at least on the weak-field level,
the ensuing restriction of the generalized relativity principle and the question of how
to satisfy the conservation principle for the full equation made the entire attempt look
futile. The appeal of the generalized principle of relativity thus gradually faded away,
and the conservation principle gradually emerged as the major stumbling block of the
mathematical strategy and, at the same time, as the key stone for a new approach cor-
responding to a successful implementation of the physical strategy.

Einstein’s checks of the conservation principle in the context of the mathematical
strategy were limited to weak-field equations. Accordingly, all of his results concern-
ing candidate gravitation tensors—positive as well as negative—were provisional
only. For the time being, the limited exploration level of the conservation principle
could not be overcome in the context of the mathematical strategy. First, Einstein had
no systematic mathematical technique at his disposal for implementing this principle
beyond the weak-field level. He would acquire such a technique only much later
when developing a variational formalism for the Entwurftheory in 1914. Second, the
ad-hoc strategies he used to implement the conservation principle beyond the weak-
field level necessitated substantial modifications of the candidate field equations serv-
ing as the starting point of the mathematical strategy, modifications that made the
transformation properties of the proposed field equations intractable despite their ori-
gin in the generally-covariant Riemann tensor.

Einstein’s experiences with extracting candidate gravitation tensors from the Rie-
mann tensor thus displayed a remarkable parallelism to his prior experiences with the
Beltrami invariants. In both cases, the advantages gained by starting from an invariant
or generally-covariant object had to be gradually given up in favor of satisfying the
other heuristic requirements rooted in the knowledge of classical physics until finally
nothing was left of the covariance properties that recommended these objects in the
first place. But it was not only this twofold experience of failure that ultimately trig-
gered a switch from the mathematical to the physical strategy. It was precisely the
main weakness of Einstein’s attempts to come to terms with the conservation princi-
ple, i.e., the limitation to the weak-field level, that indicated a way out of the impasse.
If the implementation of the conservation principle at the weak-field level could not
be the final word, it made sense to take energy-momentum conservation for the weak-
field equations as a starting point for identifying those additional terms that were
needed to turn the core operator into a viable candidate complying with this heuristic
requirement, irrespective of the generalized principle of relativity. Einstein thus
found a way of solving the problem that had blocked the pursuit of the physical strat-
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egy before, viz. the lack of a procedure for generating plausible correction terms to
the core operator. His difficulties with the mathematical strategy suggested a proce-
dure, whose first elements were found before they turned into a systematic mecha-
nism. Once more the essential pattern governing the next step of Einstein’s research,
the derivation of the Entwurf field equations, had been prepared by reflecting on the
blocked pathways encountered in the previous episode.

The failure of Einstein’s pursuit of the mathematical strategy in the Zurich Note-
book resulted in the derivation of the Entwurf field equations along the physical strat-
egy. The establishment of these field equations, compatible with both the
correspondence and the conservation principles, ended, for the time being, his sys-
tematic search for gravitational field equations. What remained from his efforts in the
winter of 1912—-1913, however, was more than yet another and, as it eventually turned
out, unsatisfactory candidate that would eventually be discarded. There was the
November tensor, which did not immediately fall victim to any knock-out argument
derived from Einstein’s heuristic checklist, and which was dropped, not in favor of a
better candidate, but in favor of a seemingly better strategy. There were the Ricci ten-
sor and the linearized Einstein tensor, which had been explored only at the weak-field
level. From this perspective, their later revival is not surprising. But apart from candi-
dates that he would consider again in late 1915, Einstein’s search for field equations
in the winter of 1912-1913 also left its mark at the strategic level, both in his subse-
quent attempts to consolidate the Entwurf theory and in his renewed search for field
equations at the end of 1915. In fact, even when he focused exclusively on the Ent-
wurf theory, he never abandoned the expectation, grounded in the experience docu-
mented by the Zurich Notebook, that it should be possible to arrive at the same field
equations using either the physical or the mathematical strategy. It was this persis-
tence, perhaps more than the potential of any not yet fully explored candidate, that
prevented Einstein from ceasing his quest before he had reached his goal of a gener-
ally-relativistic theory of gravitation in late 1915.

6.11 Fitting the Riemann Tensor to the Lorentz Model (14L—18R)

When Marcel Grossmann introduced Einstein to the Riemann tensor, this new mathe-
matical resource fell on ground that was well-prepared by Einstein’s previous investi-
gations. The expectations with which he approached the new object, however, sent
him in a direction very different to where our modern expectations would take us, viz.
the derivation of the Einstein field equation from the Riemann tensor. For Einstein,
the Lorentz model essentially prescribed the steps to take to evaluate the new candi-
date. His prior attempts to implement this model had led him, in particular, to expect
a field equation with a left-hand side of the form (XXXIV), i.e., a left-hand side of
the form ‘core operator plus correction terms, which is incompatible with what we
now take to be the correct field equations.

The central role of the Riemann tensor within the absolute differential calculus as
the wellspring of all other “differential tensors” and “differential invariants” —a role
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of which Grossmann was certainly aware (Einstein and Grossmann 1913, 35)—and
its unexplored status in Einstein’s investigations must initially have nourished high
hopes for the project of extracting from it a suitable left-hand side of the field equa-
tions. Einstein may even have expected that the direct pathway from the Riemann
tensor to an object fitting the Lorentz model would produce the desired result, with-
out any of the moves and tricks that had been necessary in the earlier attempts based
on more pedestrian mathematics. If needed, however, by now such auxiliary schemes
were available to Einstein should difficulties arise. In any case, the fourth-rank Rie-
mann tensor had to be turned into a second-rank tensor that could serve as the left-
hand side of gravitational field equations whose right-hand side was the second-rank
stress-energy tensor (cf. eq. (XIV)). This was a straightforward mathematical opera-
tion, which Einstein carried out as soon as he had been handed the Riemann tensor.
Unfortunately, the result of this operation, the second-rank Ricci tensor (cf. eq. (55))
did not fit to instantiate the open operator slot of the Lorentz model for the field equa-
tion but contained additional, unwanted second-order terms invalidating the corre-
spondence principle (cf. eq. (56)). Einstein’s first attempt to assimilate the Riemann
tensor to his mental model thus resulted in the condition that these disturbing terms
would have to vanish. The appearance of such an additional condition is reminiscent
of similar hindrances he had encountered exploring the Beltrami invariants.

Now that the direct approach had failed, Einstein was forced to exploit the tricks
and tools he had assembled before. The most obvious way to connect his new predic-
ament with his earlier experiences was the construction of a scalar object from the
Riemann tensor, the Ricci curvature scalar. This scalar object could be subjected to
exactly the same procedure as the scalar Beltrami invariant. Einstein thus attempted
to extract a tensorial object from it in analogy to his earlier treatment of the second
Beltrami invariant, i.e., by conceiving the scalar as the contraction of this new, con-
travariant tensorial object and the covariant metric tensor. Also in analogy with his
earlier work on the Beltrami invariants, he set the determinant of the metric equal to
unity to simplify his calculations, thereby imposing a restriction to unimodular coor-
dinate transformations.

The hope was that the new second-rank tensor extracted in this way from the cur-
vature scalar would represent a suitable candidate for the left-hand side of the field
equations, meeting the requirements of the Lorentz model. Unfortunately, the consid-
erable calculational effort required to pursue this option failed to produce more
acceptable results than the direct approach. Einstein even briefly considered introduc-
ing an additional condition on the metric tensor—a weaker form of the Hertz restric-
tion—but apparently gave up this idea because it did not seem to promise an easy
way out either. He then tried to make some progress by comparing the two unsatisfac-
tory candidates he had extracted from the Riemann tensor in both their contravariant
and covariant forms. This procedure also followed the example set by his experi-
ments with the Beltrami invariants and may similarly have been driven by a concern
for uniqueness and the hope to learn from combining different pathways. While the
procedure was given up without reaching a definite conclusion, it gave an insight that
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quickly proved to be important. Using techniques familiar from his Beltrami experi-
ments, Einstein found that the constancy of the determinant of the metric could be
used to replace one of three disturbing second-order terms occurring in the Ricci ten-
sor by a first-order expression.

At the same time, it must have been clear to him that disturbing second-order
terms of some sort were there to stay, and, consequently, that at least some aspects of
what might initially have appeared to be mere stop gaps were there to remain as well.
Precisely because of the original promise of the Riemann tensor, it was clear that the
problem could no longer be the lack of mathematical resources and that no amount of
calculational sophistication would suffice to turn the Riemann tensor into an accept-
able candidate gravitation tensor without introducing further hypotheses, in all likeli-
hood with serious physical repercussions. The need for further hypotheses was also
suggested by the fact that the conservation principle had not played any role in the
analysis of the Riemann tensor so far. It was to be expected that this heuristic require-
ment would exact its price as soon as the physical consequences of a gravitation the-
ory based on the Riemann tensor were pursued any further.

6.12 Establishing a Contradiction between the Correspondence
and the Conservation Principles (19L—19R)

When Einstein had tried to match the second Beltrami invariant to the correspon-
dence principle, he had hit upon the harmonic coordinate restriction as a suitable aux-
iliary hypothesis. Trying to match the Ricci tensor to the correspondence principle,
he found that the same hypothesis could be used to eliminate all disturbing second-
order terms. This first-order condition on the metric tensor was suggested by the con-
dition following from the restriction to unimodular coordinates. This immediately
gave it a similar status, i.e., that of a global coordinate restriction. Against the back-
ground of his earlier experience with the Beltrami invariants, the introduction of such
an auxiliary hypothesis was clearly an application of what we have called the mathe-
matical strategy. The natural next step would thus have been to explore the transfor-
mational properties of this additional restriction (cf. eq. (LIV)).

However, Einstein’s earlier experience had also involved wrestling with the con-
servation principle. He had come to realize that this principle might entail further
restrictions, affecting the covariance properties of the theory. Knowing that exploring
the transformational properties of such extra conditions could become quite involved,
he first tackled the issue of conservation. It made sense to collect all necessary
restrictions first, and establish the transformational properties of overall restriction
later (cf. eq. (LIX)). To explore the emerging network of conditions, Einstein simpli-
fied his framework, focusing on a first-order, weak-field approximation. He thereby
effectively introduced another toy model, now with the goal to explore the entangle-
ment of correspondence and conservation principles.

In weak-field approximation, the harmonic coordinate restriction coming from the
correspondence principle could easily be related to the restriction coming from the
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requirement of compatibility between field equation and energy-momentum conser-
vation. It was immediately clear that the field equations in first-order approximation
satisfy the divergence condition (LXXI). The conservation compatibility check
(LXXIV) gave rise to an additional restriction which could also be brought into a
first-order form, for comparison with the harmonic restriction. The combination of
the resulting Hertz restriction with the harmonic restriction implies that the trace of
the metric tensor must be constant. This implication was inacceptable to Einstein on
physical grounds. It was incompatible not only with the default-setting for the metric
tensor of a weak static gravitational field (25) but also, via the field equations (cf. eq.
(LXXV)) with the default-setting for the stress-energy of matter as given by eq.
(XXI). In view of this discrepancy between the mathematical consequences of his
heuristic principles and his physical expectations, it is not surprising that Einstein at
this point reexamined the legitimacy of the conservation compatibility check which
had evidently triggered this conflict. A crucial implication with physical significance
was the vanishing of the covariant divergence of the energy-momentum tensor (cf.
eq. (XXIV)). Within his weak-field approximation, Einstein therefore rederived this
relation from first principles, i.e., from the continuity equation and the equation of
motion. In this way, he not only extended his network of arguments to include the lat-
ter results but, more importantly, he firmly established the existence of a contradic-
tion within this network, with no simple escape by adjusting his heuristic principles.
In summary, Einstein’s exploration of the Ricci tensor as a candidate for the left-
hand side of the gravitational field equations had ended in an impasse. At the same
time, this exploration had helped him to further extend his strategic resources. They
now included, in particular, the consideration of a weak-field equation. Furthermore,
the mathematical strategy was amplified by adding as a routine a compatibility check
of the restrictions resulting from the correspondence and the conservation principles,
respectively. As a result, the notion of coordinate restrictions as a virtually unavoid-
able consequence of combining a generalized relativity principle with other physical
requirements was solidified. Perhaps the most important result of Einstein’s explora-
tion of the Ricci tensor was, however, the establishment of a sharp contradiction in
the argumentative framework. The identification of this contradiction offered a range
of fairly clear options of how to avoid it. Among the alternative pathways to explore
was the option of changing the physical default settings entering his argument, in par-
ticular those for the metric tensor of a static field and for the stress-energy or energy-
momentum tensor. Another option was to reconsider the implementation of the corre-
spondence principle with the help of the harmonic coordinate restriction, e.g., by
extracting a new candidate from the Riemann tensor with the help of a different coor-
dinate restriction. Probing a different implementation of the correspondence principle
probably looked like the more sensible option given that Einstein’s reconsideration of
the conservation principle had strongly confirmed its implications. In the course of
his research, Einstein eventually pursued all of these options. The option he chose to
explore first came courtesy of the new toy model he had introduced, the weak-field
equation. Why should it not be possible to tinker with the field equations themselves,
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within the weak-field framework, in order to find out whether there really was no way
to satisfy all requirements on the table, including the harmonic coordinate restriction?

6.13 Matching the Riemann Tensor and the Correspondence Principle:
the Failure of the Linearized Einstein Tensor (20L-21R)

The preceding considerations had shown Einstein that the contradiction between the
coordinate restrictions implied by the correspondence and conservation principles,
respectively, had to be taken seriously enough to entertain even a modification of the
form of the field equations. His starting point had been a weak-field equation obtained
from the Ricci tensor by imposing the harmonic coordinate restriction to satisfy the
correspondence principle. The most obvious conflict was that between the implication
of the conservation principle that the trace of the stress-energy tensor of matter must
vanish, on the one hand, and the default-setting for this tensor (XXI), on the other
hand. Einstein’s earlier experience with the adjustment of his original theory of the
static gravitational field to the requirements of the conservation principle helped to
make a modification of the field equation acceptable as a possible way out of this
dilemma. In addition, the weak-field equations made the exploration of possible mod-
ifications easier by making it possible to study the interplay between the various con-
straints in a mathematically simplified form. While the overall logic of this exploration
was dominated by the mathematical strategy, the challenges it produced for the vari-
ous physical default-settings of Einstein’s search for the gravitational field made it
necessary to reflect on his heuristic presuppositions as well and to go back once more
to the physical principles guiding his search such as the equivalence principle and
even to the more secure part of his theory in the making, the equation of motion.

Since neither the conservation principle nor the default-setting for the stress-
energy tensor of matter could be given up easily, the conflict between them first
turned Einstein’s attention to the source slot of the field equation, or rather on its
default-setting, the energy-momentum tensor of matter according to eq. (XIV). If this
default setting could be changed, the default setting DUST (XXI) for the stress-
energy might well be retained without leading to a conflict with the conservation
principle. By replacing the default-setting eq. (XIV) with a traceless quantity, Ein-
stein was indeed able to avoid the conclusion that the trace of the stress-energy tensor
has to vanish if the trace of the field equation vanishes, as it would have to as a result
of combining harmonic and Hertz restrictions, as we have seen.

This remarkable achievement did not provide an entirely satisfactory solution to
the compatibility problem of the correspondence and conservation principles. Ein-
stein had resolved the conflict between the combined coordinate restrictions follow-
ing from these principles and the default-setting for the energy-momentum tensor
(XXI), the discrepancy between the combined coordinate restrictions and the default-
setting for the metric tensor of a weak static gravitational field (25) still existed. The
preceding experience had taught Einstein how modifying the field equation could
help in dealing with disturbing coordinate restrictions. If that method had worked to
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get rid of the unwanted trace condition, why not try to use it again to get rid of the
Hertz restriction altogether rather than to make it compatible with the harmonic coor-
dinate restriction?

Once again, an unsuccessful line of thought had thus paved the way for an impor-
tant strategic insight, which, in this case, gave Einstein the harmonically reduced and
linearized Einstein tensor as a candidate for the left-hand side of the field equations.
Instead of giving up and replacing the default-setting for the right-hand side of the
field equations, changing the way in which the source-term enters the equation, he
modified the way in which the gravitational potential enters the left-hand side of the
equations, i.e. the default-setting for the weak-field version of LAP (XXVIII), the
d’Alembert operator. In a sense, this may have appeared to Einstein as the more con-
servative approach because it interfered less with the canonical form of the field
equation. More specifically, Einstein changed the left-hand side of the field equations
by adding a trace term in such a way that the object on which LAP operates becomes
equal to the left-hand side of the harmonic coordinate restriction if the divergence of
this left-hand side is taken (cf. eq. (LXXIX)). In this way, the vanishing divergence of
the energy-momentum tensor, which is required by the conservation principle and
which originally resulted in the Herz restriction, is now implied by the harmonic
coordinate restriction alone — without imposing an additional constraint (cf. eq. (76)).

Now that the correspondence principle and the conservation compatibility check
in its weak-field form had been taken care of, the next step was to make sure that the
conservation principle was satisfied in all of its facets. For the modified field equa-
tions, Einstein needed to check, in particular, whether the gravitational force could be
represented as the divergence of a gravitational stress-energy expression. The weak-
field equations passed this test without any problem, in spite of the additional trace
term they involve (cf. eq. (75)). It was less obvious how this success could be
extended to the full version of the equations. A half-hearted attempt to solve this
problem was, apparently, enough for Einstein to see that this extension represented a
major challenge and that it might even bring back additional coordinate restrictions.

After this preliminary exploration of the conservation issue beyond the weak-field
case, Einstein returned to the correspondence principle and discovered that another
conflict between the modified field equations and the default-settings of his search
was still unresolved. The canonical metric for a static field (25) is no longer a solution
of the modified field equations. Since the weak-field equation with the added trace
term had otherwise fared fairly well in comparison to earlier candidates, it made
sense to carefully reexamine the legitimacy of the one obstacle that remained, the
default-setting for the weak static gravitational field. He tested its justification by
physical knowledge in the same way in which he had earlier checked the legitimacy
of the Hertz restriction when it proved to be an obstacle. He turned to the more solid
ground provided by the equation of motion. Since the entire theory of the static field
had, in a sense, originated from the equation of motion with the help of the equiva-
lence principle, a check of the default assumption about the static gravitational field
with the help of this principle was the most natural option to pursue. From this per-
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spective, the crucial question was whether the default-setting for the weak static grav-
itational field was actually inescapable given the equivalence principle. What does
Galileo’s principle of equal acceleration in a gravitation field, on which the equiva-
lence principle hinges, imply about the form of a metric tensor for a weak static grav-
itational field?

All Einstein had to do to address this question was to formulate Galileo’s princi-
ple in terms of his metric formalism. The conceptual framework within which his
question was formulated suggested to do so by trying to identify the elements of
Newton’s equation (cf. eq. (II1)) within this formalism, in particular the force term
and the mass (or energy) term. His earlier work on the equation of motion and his
experience with the Lagrange formalism gave him the tools for writing down the
required quantities. Since their interpretation was governed by the conceptual frame-
work of Newtonian physics, Einstein could draw the conclusion that, if the force was
to vary as the energy, so as to ensure the validity of Galileo’s principle, the metric for
a static field must take on its canonical form. As a consequence of this inference,
based on combining physical with mathematical elements, in a way that in hindsight
can be recognized as problematic, the default-setting for the weak static gravitational
field became even more firmly rooted in Einstein’s heuristic framework, making its
clash with the linearized Einstein tensor so much the worse for the latter.

In summary, Einstein’s attempt to match the Riemann tensor first with the corre-
spondence principle and then with the conservation principle by setting up a field
equation for which only the harmonic coordinate restriction was needed as a supple-
mentary condition had left him in the end without a viable candidate to pursue. The
promising candidate he had found in the process had to be rejected because it seemed
to be irreconcilable with the equivalence principle. Thus, in this dramatic episode of
the search for gravitational field equations, the Einstein tensor of general relativity
was, albeit only in a weak-field approximation and for harmonic coordinates, identi-
fied and discarded. Clearly, the criteria that led to its rejection had to be changed
before it could be accepted. In particular, the default-setting for the metric of a weak
static field had to be given up, in spite of its support by the canonical form of the
weak-field equation and the—in hindsight—spurious argument based on the equiva-
lence principle. The rejection of the equations in the winter of 1912-1913 was a mat-
ter of heuristic criteria that were still rooted in classical physics and that were
incompatible with general relativity as we know it today. It was also a matter of a net-
work of arguments that were still too loosely woven to produce a contradiction
between any candidate field equation and these classical criteria, that could seriously
challenge the latter rather than leading only to the rejection of the former.

Again, the failure to establish an acceptable candidate field equation in this pre-
ceding episode strengthened Einstein’s vision and generated new strategic insights.
The mathematical strategy was now fully operative, from the extraction of a candi-
date from the Riemann tensor, via the introduction of a weak-field approximation, to
the matching of the coordinate restrictions following from the correspondence and
the conservation principle, respectively. Among the new insights may have been an
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appreciation of the difficulty in passing from a weak-field to a full-fledged implemen-
tation of the conservation principle. But before this problem could even be addressed
another candidate equation was needed. The options for avoiding the original conflict
between the coordinate restrictions resulting from the correspondence and the conser-
vation principle, respectively, suggested a different implementation of the correspon-
dence principle. The pathway toward such a different implementation and thus to a
new candidate was, in a sense, suggested by the original conflict itself. So far, Ein-
stein had tried to get rid of the Hertz restriction in order to follow the path indicated
by the harmonic restriction. Since this path looked like a dead end, it made sense to
abandon the harmonic restriction, retaining the Hertz restriction instead.

6.14 Matching the Riemann Tensor and the Conservation Principle:
the Failure of the November Tensor (22L-25R)

The Ricci tensor and the Einstein tensor do not exhaust the potential represented by
the Riemann tensor and the mathematical strategy for producing candidates for the
gravitational field equations. As mentioned above, the direction in which to proceed
was indicated by the as yet unresolved conflict between the correspondence and the
conservation principles, which was embodied in the clash between two coordinate
restrictions, the harmonic restriction and the Hertz restriction, respectively. Since the
constraints imposed by the conservation principle appeared to be unavoidable, and
since Einstein’s earlier attempt to suppress the need for the Hertz condition had
failed, he now explored the possibility of realizing the correspondence principle in a
new way, without the help of the harmonic restriction.

It was once again Marcel Grossmann who prepared the ground for pursuing this
other possibility. At the price of a restriction to unimodular transformations, the Ricci
tensor could be split into two parts, each part individually transforming as a tensor
under unimodular transformations. One of those two parts was a promising new candi-
date for the left-hand side of the field equations, the “November tensor” (cf. eq. (82)).

The November tensor has a surprisingly elegant form: the divergence of a Christ-
offel symbol plus a quadratic expression in the Christoffel symbols. If the Christoffel
symbols were taken to represent the gravitational field (cf. eq. (XXIII)), the candidate
would have the canonical form of eq. (XXXVIII). Such an interpretation, however,
was in conflict with Einstein’s heuristics at this stage, which demanded the imple-
mentation of the correspondence principle first by imposing an appropriate coordi-
nate restriction; furthermore the default setting for the gravitational fields was given
by eq. (XXII). At this point, Einstein only looked for an interpretation of a candidate
in terms of field components once he had found the reduced field equations, i.e., once
he had imposed a coordinate restriction to meet the demands of the correspondence
principle (cf. eq. (LXXXI)).

As he had done before, Einstein expanded the Christoffel symbols in terms of
derivatives of the metric to identify the disturbing second-order terms preventing the
implementation of the correspondence principle. These disturbing second-order
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terms, it turned out, could be eliminated with the help of the Hertz restriction so that
the harmonic restriction was no longer needed. Since the Hertz restriction also guar-
antees the vanishing of the divergence of the linearized stress-energy tensor, the con-
flict between correspondence and conservation principle was thus resolved, at least at
the weak-field level.

Now that this major conflict was settled, new problems arose, among them the
question of the transformations allowed by the reduced field equations and the ques-
tion of the implementation of the conservation principle for the full field equations.
Einstein first addressed the issue of covariance which, given the known transforma-
tional behavior of the November tensor and following a strategy first established in
the context of the Beltrami invariants (cf. eq. (LIX)), could be addressed by exploring
the transformation properties of the Hertz restriction. Einstein could also build on an
earlier analysis of the Hertz restriction which seemed to indicate that transformations
in Minkowski space to a linearly accelerated frame presented a problem, but that
transformations to rotating frames did not.

A complete clarification of the transformation properties of the Hertz restriction
could be obtained by a larger effort dealing with non-autonomous transformations.
Before undertaking such an effort, Einstein preferred, it seems, to turn once more to
the conservation issue. How could he extend his results concerning the conservation
principle from the weak-field level to the full field equations? He must have been
aware of the crucial role of the first-order correction terms to the core operator. Con-
sidering the reduced November tensor, i.e. the terms left of the November tensor after
imposing the Hertz restriction, Einstein was confronted with a number of such first-
order terms, destroying the simple structure which the new candidate displayed when
written in terms of the Christoffel symbols. Einstein tried to reintroduce the Christoffel
symbols. While this allowed him to group certain terms more effectively, the resulting
expression became even more opaque, mixing as it did first-order derivatives of the
metric and Christoffel symbols. It was difficult to see, on the basis of this expression,
how the conservation principle for the full field equation could be satisfied.

At this point Einstein had an idea that may seem ingenious but whose grounds
were prepared by the contrast between the simple and elegant original structure of the
November tensor expressed in terms of the Christoffel symbols and its confusing
complexity when written in terms of derivatives of the metric. What was needed was
a preservation of the original structure in terms of what, in Einstein’s understanding,
would be the true representation of the gravitational field, viz. the first-order deriva-
tives of the metric (cf. eq. (XXII)). The resulting candidate gravitation tensor would
then be of the canonical form (XXXVIII) and, in all likelihood, comply with both the
correspondence and the conservation principle. The idea was to impose a new coordi-
nate restriction that would effectively allow Einstein to replace the Christoffel sym-
bols by first-order derivatives of the metric. This was somewhat more difficult than
the above sketch would suggest, as it required in particular the introduction of an
indirectly defined coordinate restriction amounting to the stipulation that an object
we have designated as the “theta expression” behaves as a tensor. It nevertheless
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proved to be fairly successful. Not only did Einstein manage to obtain a “theta-
reduced November tensor” of the desired canonical form but, along the way he also
found out that he no longer needed the Hertz restriction as an additional condition to
recover the Newtonian theory.

The next challenge was to determine the covariance properties of this theta-
reduced November tensor implied by the somewhat strange new coordinate restric-
tion. Einstein first derived a general condition for the infinitesimal non-autonomous
transformations leaving the theta expression invariant, which, however, was just as
formidable as the conditions of this kind that he had encountered earlier. He then
turned to a special case and tried to identify the class of transformations in
Minkowski space that preserve the theta condition. In doing so, he found a puzzling
result: among the metric tensors satisfying the theta coordinate restriction was a met-
ric corresponding to Minkowski space in rotating coordinates but with interchanged
covariant and contravariant components, an object we shall call the “theta rotation
metric,” or simply the “theta metric.” This curious result continued to concern Ein-
stein almost until the end of the research period covered by the Zurich Notebook.

What did this strange finding actually mean? Was rotation covered by the theta
restriction or was it not? To answer this question, Einstein had to find a physical inter-
pretation of the curious theta rotation metric, exploring whether or not it was possible
to connect it to the dynamics of rotation. He did so in various ways. First he rederived
the equations of motion with the help of the Lagrange formalism in order to identify
Coriolis and centrifugal forces. He abandoned this approach because it became too
involved. Then he switched covariant and contravariant components in the theta con-
dition, since this reformulated condition would obviously admit the ordinary rotation
metric as a solution. Finally, in yet another attempt to come to terms with the physical
interpretation of the theta condition, Einstein took recourse to the law of energy-
momentum conservation, reformulating it in terms of the covariant rather than the
contravariant stress-energy tensor and trying to extract from the reformulated law and
from the theta metric the correct expression for the centrifugal force. Due to an error,
Einstein at first convinced himself that this was actually possible but then appears to
have developed doubts.

While the physical meaning of the theta rotation metric remained obscure, its
exploration, nonetheless, had two consequences for Einstein’s subsequent work:
First, it proved increasingly difficult to reach a comprehensive implementation of the
generalized relativity principle, and rotation increasingly became something of a lit-
mus test, the one case of accelerated motion that Einstein expected his theory to cover
to comply with his original heuristic mission. Second, checking the theta metric with
respect to the dynamics of rotation may well have directed Einstein’s attention once
again to the significance of the force expression as a clue to viable field equations.

Let us try to reconstruct such a clue by means of our symbolic expressions. It was
indeed possible to derive a force expression from the linearized field equation,
expressing it as the divergence of the gravitational stress-energy density (cf. egs.
(XXXII), (XX VIID)):
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LIM(FORCE) = DIV(FIELDMASS). (XCO)

If such an expression offers a physically meaningful starting point, for instance
because it vanishes for rotation, it might serve as a criterion for picking a suitable
gravitation tensor instead of just serving as an indirect consistency check by way of a
particular solution such as the theta metric. In that case, the force expression could
perhaps be reinterpreted as representing an exact quantity even though it was
obtained in linear approximation. The force expression could thus become, in a way
similar to the transition from Einstein’s first to his second theory of the static gravita-
tional field, the starting point for extracting a suitably corrected full gravitation tensor
from it (cf. eq. (XXXVI)):

FORCE = GRAYV x FIELD (XCI)

A gravitation tensor GRAV constructed in this way would automatically satisfy the
conservation principle and looked promising with respect to the generalized relativity
principle, at least as far as rotation was concerned. After all, it fulfilled a necessary
condition for being compatible with the relativity of rotation, the vanishing of the
corresponding force expression in the case of rotation.

If Einstein were in fact trying to implement such ideas, he ran into a number of
difficulties, caused in part by calculational errors. First of all, Einstein did at first not
systematically construct a candidate gravitation tensor GRAV but seems to have
merely guessed it. Second, the gravitation tensor he extracted from the force equation
does not vanish for rotation as he had hoped, but then he found that this extraction
itself involved errors whose elimination might well yield the desired result after all.
Third, he must have realized that by postulating a physically meaningful force
expression as his new starting point he effectively abandoned the link with the
November tensor with its well-defined transformation properties. It therefore made
sense to interpret the candidate field equation extracted from the force expression not
as the definitive result of a physical strategy but rather as the new preliminary target,
itself subject to further corrections, of the mathematical strategy starting from the
November tensor. In this way, the advantage of well-defined transformational proper-
ties might be combined with that of a physically meaningful force expression ensur-
ing the satisfaction of the conservation principle and perhaps even covering the
generalized relativity principle for the case of rotation.

In a sense, Einstein may have reached once again reached the constellation he had
reached earlier when establishing the core operator as the physically meaningful tar-
get (modulo correction terms) of a mathematical strategy taking the second Beltrami
invariant as its starting point. Now the place of the Beltrami invariant was taken by
the November tensor and that of the core operator by a candidate gravitational field
equation that received its physical meaning not just from the correspondence princi-
ple but from the conservation principle as well. In the end, however, Einstein once
again was unable to build a convincing bridge between his mathematical starting
point and his physically meaningful target.
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Unable to build a bridge between the two, Einstein put the November tensor to
one side for the time being and explored the field equation suggested by his force
expression. However, at this bifurcation point of his research, he does not seem to
have had, perhaps for the first time, any promising idea about how to proceed. Nei-
ther his overall heuristics nor his remarkable ability to draw strategic lessons from
failure suggested a plausible next step. The entries in the notebook at this point do not
seem to follow any coherent and well-defined strategy. As noted above, the field
equation suggested by the force expression vanishing for rotation does itself not van-
ish for the rotation metric. Does it perhaps vanish for the curious theta rotation metric
obtained by interchanging covariant and contravariant components? This question
may sound absurd but was nevertheless pursued by Einstein. He even convinced him-
self —arbitrarily adjusting a coefficient—that his candidate field equation does indeed
vanish for the theta metric, a conclusion that is in fact erroneous. This specious result
encouraged him to resort to an earlier trick: if the candidate field equation vanishes
for the theta metric, a new candidate field equation could be constructed by inter-
changing contravariant and covariant components that would vanish for the ordinary
rotation metric. The new candidate resulting from this crude operation was mathe-
matically ill-defined. Nevertheless, Einstein explored it. It covered, or so he may have
believed, the case of rotation, was compatible with the correspondence principle, and
looked promising as far as the conservation principle was concerned.

This last issue called for a closer examination and brought Einstein back to the
starting point of this phase of his search, the expression for the force density. The new
candidate would be compatible with the conservation principle if it gave rise to a
force density that can be represented as the divergence of a stress-energy expression
for the gravitational field. Now that he had found an apparently viable candidate com-
plying with the rotation criterion by merely formal manipulations, it made sense to
repeat the procedure that originally brought him to the expression for the force den-
sity and that had been the point of departure of this whole line of reasoning. Follow-
ing this procedure, Einstein began to write down the force density for the linearized
version of the new candidate field equation, which he then tried to make exact. If
everything worked out as expected, his procedure should correspond to the transition
from eq. (XC) to eq. (XCI) so that he should be able to reconstruct his full candidate
in this way, that is, essentially from inserting the right candidate for LAP into the
expression for the force expression LIM(FORCE) and then generating the correc-
tion terms yielding GRAV.

Unfortunately, things did not work out in the end. Einstein managed to extract
terms from LIM(FORCE) that had the required form of a divergence or that could
be put on the left-hand side of the field equation as correction terms, but he also
encountered a term that could not be treated in either of these two ways. But he got
close as only one disturbing term remained. Remarkably, the terms that were put on
the left-hand side of the field equation not only induced correction terms of the form
CORR(POT) x FIELD but also a term of the form LAP(POT) x FIELD. This sug-
gested that Einstein’s expansion of LIM(FORCE) might actually produce an identity
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if only the right expression for LAP(POT) was taken as the starting point. Eventu-
ally, Einstein nonetheless abandoned the entire calculation, probably not only
because he failed to establish the compatibility of his candidate with the conservation
principle but also because he may have realized at some point that this candidate did
not make good sense mathematically in the first place.

In summary, Einstein had extracted yet another candidate from the Riemann ten-
sor in addition to the Ricci, the harmonically reduced Ricci, and the harmonically
reduced Einstein tensors: the November tensor. In the end, this candidate was judged
to be just as unsatisfactory as its predecessors. Its original appeal gradually waned
because of the problems Einstein ran into when he tried to turn the November tensor
into a viable candidate by adding appropriate coordinate restrictions. The discourag-
ing result was that it hardly made any difference whether a candidate resulted from
reducing a covariant object by additional coordinate restrictions or whether it was
merely constructed ad hoc. Either way, the main challenges, the compatibility with
rotation and the satisfaction of the conservation principle, had to be addressed
directly, by explicit construction. As a consequence, Einstein’s mathematical strategy
lost its appeal and gave way to another tinkering phase.

In this tinkering phase Einstein focused on the expression for the gravitational
force which had the advantage of having a clear physical interpretation. Such an
expression had already played a key role in the transition from his first to his second
theory of the static gravitational field. If the force can be written as a divergence, the
conservation principle is satisfied automatically. And if the expression for the force
happened to vanish for rotation, there was at least a chance of meeting some of the
demands of the generalized relativity principle as well. Einstein’s problem was that
he had yet to find a way of systematically extracting a candidate gravitation tensor
from such a force expression. His attempts to construct or guess candidate gravitation
tensors along this line tended to destroy the promise of his initial ansatz. Given a can-
didate consisting of some version of the core operator plus correction terms sug-
gested by a force expression, it still had to be checked against the conservation
principle. This in turn meant forming a force expression from the linearized field
equation which then was to be rewritten as a divergence, possibly with the help of
introducing new correction terms to the original ansatz. Having tried this procedure
once if not twice without being able to reproduce his original ansatz, Einstein noticed
that he could actually begin simply with the core operator and use the conservation
principle as a means for producing correction terms to it. The realization of this pos-
sibility was the birth of the Entwurf strategy and, as far as the research documented in
the Zurich Notebook is concerned, the end of the mathematical strategy.

6.15 Matching Correspondence and Conservation Principles:
The Emergence of the Entwurf Equations (25R-26R)

As the November tensor gradually dropped out of sight, the mathematical strategy
launched with the introduction of the Riemann tensor into Einstein’s research fell
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victim to the attrition associated with the efforts to realize Einstein’s physically moti-
vated heuristics when starting from a generally-covariant object. His principal instru-
ment for implementing the correspondence and the conservation principles was to
impose coordinate restrictions, which, first of all, had to be brought into agreement
with one another and then tended to consume the original benefit provided by a gen-
erally-covariant starting point. Meanwhile, he had developed more concise ideas
about what a viable candidate satisfying both the correspondence and the conserva-
tion principles should look like. In the course of his research he had even encountered
candidates that seemed close to satisfying these heuristic criteria. Einstein, however,
never succeeded in building a bridge between a mathematically viable starting point
such as the November tensor and a candidate that looked promising from a physical
point of view. While the November tensor, in particular, was never quite refuted, it
just became more and more uninteresting.

On a heuristic level, Einstein’s difficulties in implementing simultaneously the
correspondence and the conservation principles counteracted the potential advantage
of starting from a candidate satisfying the generalized relativity principle. Even when
the battle was won at the weak-field level, the mathematical strategy failed to provide
any hint for winning it at the level of the full equations. Instead, such a hint came
from mere formal manipulations of the force expression that had already guided Ein-
stein’s pathway from his first to his second theory of the static field. Against the back-
ground of his prior experience with a physical strategy and the inadequacy of the
mathematical strategy to cope with the conservation principle, this hint prepared the
ground for the derivation of the Entwurf field equation.

The gist of this derivation consists in starting from the force expression for the
core operator which is then transformed into a divergence expression plus terms
which are identified as correction terms (cf. eq. (XXXVII)). The resulting identity
then yields both the correction terms and the gravitational stress-energy expression
whose divergence corresponds to the force expression for the definitive gravitation
tensor. The gravitation tensor produced in this fashion even happened to involve the
gravitational stress-energy expression in such a way that the field equation could be
written in the canonical form of eq. (XXXIX), with the energy-momentum of the
gravitational field entering the field equations on the same footing as the energy-
momentum tensor of matter (cf. eqs. (49) and (50)). This strategy was the result of
Einstein’s reflection on his earlier attempts to generalize the representation of the
force as a divergence expression from the weak-field to the general case. Rather than
guessing the right correction terms, he had now found a systematic construction pro-
cedure, which seemed to uniquely identify a candidate gravitation tensor compatible
with both the correspondence and the conservation principle.

The match between these two heuristic principles was achieved at the expense of
the generalized principle of relativity. All that could be known in that respect about a
candidate gravitation tensor produced in this way was its covariance under linear
transformations (cf. eq. (LXVID)). Einstein was ready to accept this consequence. He
had already turned his attention to a simplified approach encompassing only linear
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transformations once before so that he could get a better handle on the conservation
principle. This was when his earlier attempts to determine the covariance properties
of the core operator with or without the help of the Beltrami invariants had run into
similar difficulties as his efforts involving to the Riemann tensor. While, at that point,
the restriction to linear transformations was merely a presupposition for formulating
the conservation problem, Einstein may now have felt that this was the price to pay
for its solution.

In the course of Einstein’s pursuit of the mathematical strategy, the conservation
principle had emerged as the major challenge for his search for the gravitational field
equation. This challenge triggered the switch to a physical strategy, judiciously incor-
porating results found while pursuing the mathematical strategy, from the form of the
field equation to the role of coordinate restrictions. With the establishment of the Enz-
wurf field equations with the help of this physical strategy Einstein had succeeded,
for the first time in the course of his research documented by the notebook, to satisfy
the conservation principle without restriction to the weak-field level. The major chal-
lenge for Einstein’s research now was the generalized principle of relativity. How far
could the covariance properties of the Entwurf field equation be extended or was their
covariance really restricted to linear transformations only? Why were the physically
satisfying Entwurf field equations not generally-covariant to begin with? These were
the questions delineating Einstein’s research program for the further exploration of
the Entwurf equation. Its compliance with the heuristic principles rooted in classical
physics, the correspondence and the conservation principle, made it possible to con-
sider these questions not as incentives for continuing the search for gravitational field
equations but as remaining puzzles within an established conceptual framework, that
of the Entwurf theory. For the time being, Einstein’s search for the gravitational field
equations was over—even if this meant turning his back on a reservoir of possible
further candidates.

7. PROGRESS IN A LOOP: EINSTEIN’S GENERAL RELATIVITY
AS A TRIUMPH OF THE “ENTWURF” THEORY
IN THE PERIOD FROM 1913 TO 1915

7.1 Consolidation, Elaboration, and Reflection

This chapter focuses on what has traditionally been seen as the most uneventful
period of Einstein’s search for a generalized theory of relativity, the time between
spring of 1913 and fall of 1915, in which he clung to the erroneous Entwurf theory,
which he published together with Marcel Grossmann before the end of June 1913.
According to the dramatic narratives of the emergence of general relativity, this
period was one of stagnation, it was the calm interval between two major thunder-
storms, Einstein’s tragic struggle with and eventual rejection of generally-covariant
field equations in the winter of 1912-1913 in favor of a theory with only limited
covariance properties and the sudden revelation of errors in the Entwurf theory, which
led immediately to its demise and then to a triumphant, if gradual, return to gener-
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ally-covariant field equations in the fall of 1915. The assumption of a “pitfall” in
1912-1913 and of a “breakthrough” in late 1915 constitutes the traditional explana-
tion for the most peculiar feature of the genesis of general relativity, Einstein’s double
discovery of generally-covariant gravitational field equations, first formulated in
1912 and then rediscovered in 1915. How else, if not by the introduction and later
elimination of errors, can this closed loop be explained?lo6

From the perspective of an historical epistemology, the supposed period of stag-
nation between 1913 and 1915 can be considered a period in which new knowledge
was assimilated to a conceptual structure still rooted in classical physics. As a result
of this assimilation of knowledge, this conceptual structure became richer, both in
terms of an ever more extended network of conclusions that it made possible, and in
terms of new opportunities for ambiguities and internal conflicts within this network.
It was this gradual process of enrichment that eventually created the preconditions for
a reflection on the accumulated knowledge which, in turn, induced a reorganization
of the original knowledge structure. The enrichment of a given conceptual structure
by the assimilation of new knowledge and the subsequent reflective reorganization of
the enriched structure are the two fundamental cognitive processes which explain the
apparent paradox that the preconditions for the formulation of general relativity
matured under the guidance of a theory that is actually incompatible with it.

As we will argue in the following, the results achieved on the basis of the Entwurf
theory should not be understood as so many steps in the wrong direction, whereupon
it appears that their only function was to make the deviation from the truth evident,
but rather as instruments, first for accumulating knowledge and then for rearranging it
in a new order. Both these processes are essential to the development of scientific
knowledge. The second half of this chapter covers Einstein’s papers of November
1915, with the intention to demonstrate the role in these papers of insights and tech-
niques developed in the period before.

When elaborating the Entwurf Theory, Einstein still pursued the same heuristics
that had shaped his search for a gravitational field equation in the winter of 1912—
1913 as documented by the Zurich Notebook, although the heuristics were now gov-
erned by the perspective of consolidation rather than by that of exploration of alterna-
tives. In particular, the unresolved tensions between Einstein’s heuristic principles
guided his attempts to consolidate the Entwurf theory. These attempts were character-
ized by two complementary approaches. Following a defensive approach, he
attempted to justify the restricted covariance of the Entwurf field equations by argu-
ments based on the knowledge of classical physics. Following a bold approach, he
attempted to look for a generalization of the relativity principle even in the frame-
work of the Entwurf theory. The outcome of these efforts was, as we shall see, that he
eventually succeeded in both, the defensive and the bold approach.

In the first phase of the consolidation period of the Entwurf theory, lasting
roughly from spring to summer 1913, Einstein formulated two problematic argu-

106 This section relies heavily on (Renn 2005¢) and “Untying the Knot ...” (in vol. 2 of this series).
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ments, an argument based on the consideration of energy-momentum conservation
and the notorious hole argument, both justifying the restricted covariance properties
of the theory. Although these arguments later turned out to be erroneous, they were
nevertheless significant in bringing out decisive conceptual peculiarities of general
relativity that distinguished it from classical theories, including the Entwurf theory.
The further development, refutation or clarification of these arguments revealed the
non-locality of energy-momentum conservation, as expressed by the nonexistence of
a local energy-momentum tensor for the gravitational field, the impossibility of
ascribing physical significance to single spacetime points independent of the metric,
and the fundamental connection between conservation laws and symmetries of space-
time structure later explicated in the Noether theorems.

In the second phase of the consolidation of the Entwurf theory, roughly lasting
from fall 1913 to the end of 1914, Einstein elaborated this theory, which he originally
found along the physical strategy, from the point of view of the complementary math-
ematical strategy. Guided by this heuristic strategy, Einstein found a new derivation
of the Entwurf field equations, which he completed by the fall of 1914. The second
phase of the consolidation period of the Entwurf theory had, like the first phase, a
paradoxical character. On the one hand, Einstein’s findings stabilized the Entwurf
theory, on the other hand they provided instruments for overcoming the objections
that had earlier prevented him from accepting candidate gravitational field equations
found along the lines of the mathematical strategy. In particular, the variational tech-
niques explored in the context of the new derivation of the Entwurf theory made it
possible for Einstein to solve one of the crucial problems associated with the candi-
dates for a gravitational field equation that he had discarded in the winter of 1912—
1913, the establishment of energy-momentum conservation. That he did not immedi-
ately draw this consequence was partly a matter of perspective since, from the point
of view governing the consolidation period, there was no reason for reexamining the
earlier candidates.

Having discovered flaws in the Entwurf theory and its derivation along a modified
mathematical strategy, Einstein eventually abandoned the consolidation phase and
subsequently returned to a new exploratory phase, searching once more for the cor-
rect gravitational field equation. In hindsight, he gave three reasons for his rejection
of the Entwurf theory: It could not explain the perihelion shift of Mercury; it did not
allow the interpretation of a rotating system as being equivalent to the state of rest,
and hence did not satisfy his Machian expectations, and finally, the derivation of its
field equations along a mathematical strategy involved an unjustified assumption. For
a short time, the theory survived all of these problems. Even the last problem, the dis-
covery of a flaw in the derivation of the field equations, did not lead to a refutation of
the Entwurf theory but only to a successful attempt of repairing it on a technical level.
But the discovery of this problem had nevertheless fargoing consequences on the
level of Einstein’s reflection on the results he had achieved. By its very nature this
discovery had a double effect:
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— It showed that the adaptation of the mathematical strategy to the Entwurf theory
failed and forced Einstein to return to the arguments at the core of the physical
strategy as the only possible justification of the Entwurf theory.

— It showed that the mathematical strategy adapted to the Entwurf theory did not
single out this theory but rather opened up the possibility of examining other can-
didate field equations. And he needed new equations because of the problem of
rotation.

Together with the other short-comings found earlier, the discovery of the error in the
derivation of the field equations, after a period of reflection, caused Einstein to drop
his attempts to consolidate the Entwurf theory and eventually brought him back to an
exploratory phase.

The second part of this chapter deals with the short period of three weeks before
Einstein presented the definitive field equations of general relativity to the Prussian
Academy on 25 November 1915. This period began when Einstein started to check
whether the Entwurf field equations are necessarily the only solution to his problem
and thus returned to his 1912-1913 attempts to search for a solution by examining
candidate field equations familiar from his pursuit of the mathematical strategy, the
November tensor, the Ricci tensor, and the Einstein tensor. By focusing on the impact
of Einstein’s achievements under the reign of the Entwurf theory, it is possible to
answer the question of why in 1915 he could accept field equations that he had
rejected in 1912-1913. In a note Einstein submitted to the Prussian Academy on
4 November 1915, he proposed a new gravitation theory based on the November ten-
sor, considered earlier in the Zurich Notebook. In contrast to the situation in 1912—
1913, he was now able to demonstrate that the new theory complies with the conser-
vation principle. Just as he had done in the Entwurf theory, Einstein continued to
interpret the conservation principle as implying a restriction of the admissible coordi-
nate systems which now, however, turned out to be much less restrictive than the con-
dition he had earlier found on the basis of his examination of the weak field equation
(cf. eq. (LXXXVI)). He thus reached a decoupling of the coordinate restrictions
implied by the conservation and the correspondence principles, respectively. Reflect-
ing on this decoupling, Einstein was now able, for the first time, to conceive the
choice of coordinates required for implementing the correspondence principle as a
coordinate condition in the modern sense.

In an addendum to the note published on 4 November, Einstein reinterpreted
another already familiar candidate in a new context, the Ricci tensor. This new context
was provided by a speculative electromagnetic theory of matter, probably stimulated
by the contemporary work of David Hilbert on such a theory. Due to this new context,
Einstein shifted the restriction on the choice of coordinates, which he had found for
the theory based on the November tensor, to a restriction of the choice of a particular
kind of matter acting as the source of gravitational fields. Einstein thus arrived at a
generally-covariant theory based on the Ricci tensor, which he considered as being
merely a reinterpretation of the theory based on the November tensor so that he could
take over essential results such as those concerning energy-momentum conservation.
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He thus partly resolved—on the basis of the Entwurf theory—and partly circum-
vented—on the basis of an electromagnetic theory of matter—the objections he had
earlier encountered against such a theory when he first considered it in 1912—-1913.

In a paper submitted on 18 November 1915 Einstein calculated the perihelion
shift of Mercury, claiming to provide support for the hypothesis of an electromag-
netic nature of matter on which his new theory of gravitation was based. In a sense,
the Mercury problem now offered a theoretical laboratory for the Ricci Tensor. Ein-
stein’s paper is largely based on techniques he had developed jointly with Besso in
1913 in the context of the Entwurf theory. It also includes the crucial insight that the
determination of the Newtonian limit for a gravitational field equation involves, in
general, more complex considerations than originally envisioned along the physical
strategy, and that were used earlier to object to the harmonically reduced Ricci tensor
in the Zurich Notebook. This insight into the complex nature of the correspondence
principle had already been attained in 1913 as well, in the context of the Entwurf the-
ory (at least by Besso) but was then of no relevance as Einstein and Besso did their
original calculations in the consolidation phase of this theory.

Einstein’s more sophisticated understanding of the Newtonian limit had, in the
context of the renewed exploratory phase at the end of 1915, decisive consequences:
It made it possible for him, in his final paper of that period, to base a theory of gravi-
tation on the Einstein tensor, whose harmonically reduced and linearized form had
been rejected in 1912 because of its apparent incompatibility with the correspon-
dence principle. Also the status of energy-momentum conservation changed in the
new theory. The insight into its different status was a consequence and not a presup-
position of the establishment of the definitive version of general relativity, which on
Einstein’s part was established entirely in the conceptual framework of the Entwurf
theory. The Entwurf theory and general relativity were initially not separated by a
conceptual gulf, but merely by technical insights on the one hand, and a change of
perspective on the other. Remarkably, these were both the result of the same process,
the elaboration of the Entwurf theory during the supposed period of stagnation. Since
the technical achievements attained in this period could still have been, in principle,
assimilated to the theory that had given rise to them, taken by themselves they would
have induced only a linear progress, thus yielding an increasingly sophisticated and
increasingly complex Entwurf theory. It thus becomes clear that in light of the new
technical achievements of the consolidation phase of the Entwurf theory, Einstein’s
reflection on his earlier knowledge, including previously discarded candidate gravita-
tion tensors, was the crucial process that made the establishment of general relativity
the result of progress in a loop.

7.2 The First Phase of the Consolidation Period of the Entwurf Theory:
The Defensive and the Bold Approach

With the formulation of the Entwurf field theory and its publication by Einstein and
Grossmann in the spring of 1913, the search for the field equations, as documented
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by the Zurich Notebook, had manifestly come to an end. Einstein no longer examined
different candidates by comparing them with his heuristic expectations. Instead, he
used his growing mastery of the mathematical representation to develop the one most
promising candidate he had found. He thus entered the consolidation period of the
Entwurf theory. A consolidation of the Entwurf theory was necessary in view of the
main problem left open by the Entwurf paper of 1913, the determination of the cova-
riance properties of the field equations and thus of the extent to which the new theory
realized the generalized principle of relativity. The covariance was more restricted
than that of the candidate gravitation tensors derived from the generally-covariant
Riemann tensor that had formed the points of departure of Einstein’s mathematical
strategy. It therefore made sense to address this problem by trying to explain and jus-
tify the restricted covariance of the Entwurf equations and to explore these covariance
properties in the hope of generalizing the relativity principle as much as possible.

Einstein’s probing of these two approaches came to a first conclusion in August
1913. All his bold efforts up to that point to identify by explicit calculations non-lin-
ear transformations under which the Entwurf field equations might be covariant had
failed, including an attempt to show that the metric for Minkowski spacetime in rotat-
ing coordinates is a solution of these equations. At the same time, his defensive
efforts had led to a first result. Not surprisingly, this result was based on the conserva-
tion principle which had earlier motivated a restriction of the generalized principle of
relativity on several occasions in the Zurich Notebook. An interpretation of the
expression for energy-momentum conservation in the Entwurf theory, following the
model of classical and special-relativistic physics, was now taken by Einstein to indi-
cate that the Entwurf theory is covariant only under linear transformations. Both
results, the failure of his attempts to identify non-linear transformations and the con-
servation argument, as we shall call it, thus pointed in the same direction and encour-
aged Einstein to look for further arguments along the defensive.

By the end of August 1913, he found, quite possibly in discussion with Michele
Besso,'%7 another argument against general covariance, the so-called “hole argu-
ment,” which is based on the assumption, again motivated by classical and special-
relativistic physics, that points in spacetime can be identified by means of coordinate
systems, independently from any physical processes. In a formulation by Besso, the
argument merely seeks to express the non-uniqueness of the metric tensor in terms of
two distinct sets of functions which solve the same set of differential equations with
given boundary values. Einstein elaborated this argument to a construction of two
distinct solutions for the metric tensor considered within one and the same coordinate
system. This more sophisticated version of the hole argument makes use of the idea,
in modern parlance, to drag values of the metric tensor from one spacetime point to
the other and later raised the important question of which aspects of a generally-cova-
riant theory are physically meaningful.

107 See “What Did Einstein Know ..” (in vol. 2 of this series).
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By means of the hole argument, Einstein convinced himself that generally-covari-
ant gravitational field equations, together with boundary values, do not determine
uniquely the metric tensor representing the gravitational field. Having thus identified
an apparently fundamental reason for rejecting general covariance, he interpreted his
earlier argument from the conservation principle as providing the necessary special-
ization of the reference frames to be used within the theory. With these results, the
Entwurf theory had come to a certain closure, ending the first phase of its consolida-
tion period.

7.3 The Failure of the Generalized Principle of Relativity:
A Conflict Between Formalism and Physical Intuition

Einstein’s decision to settle for the non-generally-covariant field equations of the
1913 Entwurf paper was the consequence of his failure to find generally-covariant
equations and not of a conviction or an insight that such equations could not exist. In
the spring of 1913, he could not be sure that he had just failed to find generally-cova-
riant equations that would fulfill his hopes for fully implementing the generalized
principle of relativity. In the notebook, he had considered several candidates for gen-
erally or at least unimodularly covariant field equations and found them defective.
But the fact that these candidates failed for different reasons must have made it diffi-
cult for Einstein to accept that generally-covariant field equations did not exist since
these different reasons did not include a clear hint as to why a full implementation of
the generalized relativity principle could not exist. Either the conflict with the realiza-
tion of the Newtonian limit as required by the correspondence principle, or with the
demonstration of energy-momentum conservation as required by the conservation
principle, or both, led to the rejection of a promising candidate, but these conflicts by
themselves did not provide any counter-argument against the possibility of the gener-
alized principle of relativity. The failure to find generally-covariant field equations
was, after all, merely a technical result, incompatible with the physical intuition
incorporated in the generalized principle of relativity.lo8 The conflict between for-
malism and physical understanding motivated Einstein’s further elaboration of the
Entwurf theory.

If Einstein, at the time of the notebook or of the publication of the Entwurf paper,
had seen any reason to modify or restrict this principle, he might have done so explic-
itly in order to justify his failure to achieve its full implementation. In a letter to
Ehrenfest from May 1913, in which he announced the forthcoming publication of the
Entwurf paper, he asserts his firm belief in a generalized principle of relativity, but
points out that he had been unable to realize this principle on the level of the theory’s
formalism:

108 For discussion of the problematic relation between the physical intuition incorporated in the general-
ized principle of relativity and general covariance, see (Janssen 2005).
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I slowly convinced myself that privileged coordinate systems do not exist at all. How-

ever, I succeeded only partly in arriving at this position also from a formal point of
o 109

view.

In the Entwurf paper itself, Einstein refers to the conflicts between the generalized
relativity principle and his other heuristic principles in order to justify the new the-
ory’s lack of general covariance (Einstein and Grossmann 1913, 11). He emphasized,
in particular, the difficulties he had found in realizing the correspondence principle,
suggesting a second-order field equation, as a justification for his failure to achieve a
generally-covariant field equation. He also admitted that his introduction of the Ent-
wurf field equations was merely based on plausible assumptions and not on a strict
derivation from postulates such as a generalized principle of relativity.

The failure to find generally-covariant field equations was most evident from an
intrinsic asymmetry of the Entwurf theory, between the non-generally-covariant field
equation and the generally-covariant equation for material processes in a gravita-
tional field, i.e., the equation for energy-momentum conservation. This asymmetry is
also emphasized in the Entwurf paper itself. Einstein attempted to interpret it as a
clue for justifying the failure to establish a generally-covariant field equation, point-
ing at the different ways in which the metric tensor enters into the equation for
energy-momentum conservation, on the one hand, and the field equation, on the

other:
This exceptional position of the gravitational equations in this respect, as compared with
all of the other systems, has to do, in my opinion, with the fact that only the former can
contain second derivatives of the components of the fundamental tensor.! 10

In a sense, he simply turned the description of the problem into its solution at this
point. Einstein’s problem remained that this assertion was merely speculative and, in
the final account, based on nothing but his failure to find appropriate, generally-cova-
riant, second-order gravitational field equations.

7.4 The Failure of Einstein’s Search for Non-Linear Transformations

While in the spring of 1913 Einstein made his first attempts at justifying the lack of
general covariance of the Entwurf field equation, he tried, at the same time, to over-
come this problem. In fact, it could not be excluded that, even though all derivations
in the Entwurf theory merely involve the assumption of linear covariance, the field
equations would turn out to be covariant under a wider class of transformations. In
the Entwurf paper, this question is singled out as the most important one left to be
resolved (Einstein and Grossmann 1913, 18).

109 “Die Uberzeugung, zu der ich mich langsam durchgerungen habe, ist die, dass es bevorzugte Koordi-
natensysteme iiberhaupt nicht gibt. Doch ist es mir nur te[i]lweise gelungen, auch formal bis zu die-
sem Standpunkt vorzudringen.” Einstein to Paul Ehrenfest, 28 May 1913, (CPAE 5, Doc. 441).

110 “Die diesbeziigliche Ausnahmestellung der Gravitationsgleichungen gegeniiber allen anderen Syste-
men héngt nach meiner Meinung damit zusammen, dal nur erstere zweite Ableitungen der Kompo-
nenten des Fundamentaltensors enthalten diirften.” (Einstein and Grossmann 1913, 18)
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There are indications that Einstein attempted to find out by calculation whether
the Entwurf field equation transforms also under a wider class of transformations.
From his Zurich Notebook, he was familiar with techniques for exploring the trans-
formational behavior of field equations. But the Entwurf field operator confronted
him with a case that was far more complex than any other candidate in the notebook
for which he had attempted to determine the transformational behavior by directly
subjecting it to coordinate transformations.

One indication for Einstein’s explorative attempts and their failure comes from a
couple of pages of the so-called Einstein-Besso manuscript, pages that were probably
written around June 1913 and that deal specifically with the problem of rotation.'!!
Another indication comes from a letter Einstein wrote on 14 August 1913 to Hendrik
A. Lorentz. This letter marks the preliminary end of Einstein’s search for non-linear
transformations of the Entwurf field equation and provides a succinct resume of the
situation of the Entwurf theory just on the verge of the renouncement of the bold
approach. The letter begins with the confession that the lack of general covariance
represents a profound dilemma for the new theory of gravitation:

And now to gravitation. I am delighted that you so warmly espouse our investigation.
But, unfortunately, there are still such major snags in the thing that my confidence in the
admissibility of the theory is still shaky. So far the “Entwurf” is satisfactory insofar as it
concerns the effect of the gravitational field on other physical processes. For the absolute
differential calculus permits the setting up of equations here that are covariant with
respect to arbitrary substitutions. The gravitational field (g,,, ) seems to be the skeleton,
so to speak, on which everything hangs. But, unfortunatély, the gravitation equations
themselves do not possess the property of general covariance. Only their covariance with
respect to linear transformations is certain. But all of our confidence in the theory rests
on the conviction that an acceleration of the reference system is equivalent to a gravita-
tional field. Hence, if not all of the equation systems of the theory, and thus also equa-
tions (18), permit other than linear transformations, then the theory refutes its own
starting point; then it has no foundation whatsoever.! 12

The letter to Lorentz continues with a description of Einstein’s unsuccessful attempts
to find non-linear transformations under which the Entwurf field equation remains
covariant, discussing two types of transformations, autonomous and non-autonomous
ones.!13 In the Zurich Notebook, he had attempted on several occasions to find the
transformational properties of a physically plausible candidate by deriving differen-
tial equations for the transformation coefficients involving the metric tensor. But he
had never found a simple solution to the problem posed in this way. In view of the
many reasons in favor of the Entwurf theory, he must have applied this technique to it
with even greater persistence. Einstein’s letter to Lorentz shows, however, that these
efforts remained as unsuccessful as they had been in the Zurich Notebook. He was, in
fact, ready to give up the bold approach to solve the most fundamental problem of the
Entwurf theory and turn to the defensive approach, searching for more substantial

111 See (CPAE 4, Doc 14 [pp. 41-42]) and the discussion in (Janssen 1999).
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arguments to justify the lack of covariance of the field equations than those adduced
in the Entwurf paper.

7.5 Einstein’s Reinterpretation of the Conservation Principle

For the candidates which Einstein had encountered pursuing the mathematical strat-
egy, the conservation principle typically implied a restriction of the generalized prin-
ciple of relativity. Given this experience, it must have been plausible for him to
examine whether an explanation for the restricted covariance of the Entwurf field the-
ory could perhaps also be found in the context of energy-momentum conservation.
Only a day after Einstein sent the letter to Lorentz quoted above, on 15 August 1913,
he indeed found a way to justify the limited covariance of the Entwurf theory on the
basis of the conservation principle. A crucial heuristic ingredient of his argument was
the parallelism between gravitational energy and other forms of energy, represented
in the Entwurf theory by eq. (51). In another letter to Lorentz, written on 16 August
1913, Einstein wrote:

Furthermore, yesterday I found out to my greatest delight that the doubts regarding the

gravitation theory, which I expressed in my last letter as well as in the paper, are not

appropriate. The solution of the matter seems to me to be as follows: The expression for
the energy principle for matter & gravitational field taken together is an equation of the

. oF ., . . .
form (19), i.e., of the form Ea—“ = 0; starting out from this assumption, I set up
XV

112 “Nun zur Gravitation. Ich bin begliickt dariiber, dass Sie mit solcher Wéarme sich unserer Untersu-
chung annehmen. Aber leider hat die Sache doch noch so grosse Haken, dass mein Vertrauen in die
Zuldssigkeit der Theorie noch ein schwankendes ist. Befriedigend ist der Entwurf bis jetzt, soweit es
sich um die Einwirkung des Gravitationsfeldes auf andere physikalische[e] Vorginge handelt. Denn
der absolute Differenzialkalkiil erlaubt hier die Aufstellung von Gleichungen, die beliebigen Substitu-
tionen gegeniiber kovariant sind. Das Gravitationsfeld ( 8uv ) erscheint sozusagen als das Gerippe an
dem alles héngt. Aber die Gravitationsgleichungen selbst haben die Eigenschaft der allgemeinen
Kovarianz leider nicht. Nur deren Kovarianz linearen Transformationen gegeniiber ist gesichert. Nun
beruht aber das ganze Vertrauen auf die Theorie auf der Uberzeugung, dass Beschleunigung des
Bezugssystems einem Schwerefeld dquivalent sei. Wenn also nicht alle Gleichungssysteme der Theo-
rie, also auch Gleichungen (18) [i.e. the gravitational field equations] ausser den linearen noch andere
Transformationen zulassen, so widerlegt die Theorie ihren eigenen Ausgangspunkt; sie steht dann in
der Luft.” Einstein to Hendrik A. Lorentz, 14 August 1913, (CPAE 5, Doc. 467). In view of the later
development, in which the question of whether the manifold with its coordinate systems or the metric
tensor is the “skeleton” on which all physical processes depend acquired a certain significance, it is
remarkable that in the above formulation Einstein singled out the metric tensor as the crucial object.
As we will see below when discussing the hole argument, in defending the lack of general covariance
of his field equations Einstein for a while assumed that the points of the manifold identified by certain
sets of coordinates actually have a reality and physical significance by themselves, that is, also inde-
pendently from the metric tensor.

113 This fact also suggests that Einstein at this point did not assume that the Entwurf field equations
remain covariant under rotations.
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equations (18). But a consideration of the general differential operators of the absolute
differential calculus shows that an equation so constructed is never absolutely covariant.
Thus, by postulating the existence of such an equation, we tacitly specialized the choice
of the reference system. We restricted ourselves to the use of such reference systems with
respect to which the law of momentum and energy conservation holds in this form. It
turns out that if one privileges such reference systems, then only more general linear
transformations remain as the only ones that are justiﬁed.' 14

With this insight, the conservation principle was no longer merely a technical imped-
iment to the full implication of the generalized relativity principle but provided the
concrete physical reason for the restriction to specific, well-defined transformations.
Accordingly Einstein continued in his letter to Lorentz:

Thus, in a word; By postulating the conservation law, one arrives at a highly determined
choice of the reference system and the admissible substitutions. Only now, after this ugly
dark spot seems to have been eliminated, does the theory give me pleasure.] 15

Einstein’s argument presupposes, however, that the objects appearing in his equation
for energy-momentum conservation eq. (51) behave themselves as tensors. This is
true for the stress-energy tensor of matter, but not for the stress-energy expression for
the gravitational field, as Einstein came to realize a few months later.' 1 But if this
quantity fails to behave as a tensor, the transformational properties of eq. (51) cannot
be read off by inspection as Einstein claimed to be able to do in his letter to Lorentz.

Einstein immediately incorporated the argument for linear covariance found on
15 August 1913 and exposed to Lorentz a day later into his manuscript for a lecture
he was invited to hold on 23 September 1913 in Vienna.!'” In § 6 of this lecture, enti-

114 “Ferner fand ich gestern zu meiner grossen Freude, dass die gegeniiber der Gravitationstheorie in mei-
nem letzten Briefe, sowie in der Arbeit gedusserten Bedenken nicht angezeigt sind. Die Sache scheint
sich mir folgendermassen zu l9sen. Ausdruck des Energieprinzips fiir Materie & Gravitationsfeld

oF
zusammen ist eine Gleichung von der Form (19) d.h. von der Form Ea—u ¥ = 0; von dieser Voraus-
xV

setzung ausgehend stellte ich die Gleichungen (18) [i.e. the field equations] auf. Nun zeigt aber eine
Betrachtung der allgemeinen Differenzialoperatoren des absoluten Differenzialkalkiils, dass eine so
gebaute Gleichung niemals absolut kovariant ist. Indem wir also die Existenz einer solchen Gleichung
postulierten, spezialisierten wir stillschweigend die Wahl des Bezugssystems. Wir beschrénkten uns
auf den Gebrauch solcher Bezugssysteme, inbezug auf welche der Erhaltungssatz des Impulses und
der Energie in dieser Form gilt. Es zeigt si[ch], dass bei der Bevorzugung solcher Bezugssysteme nur
mehr allgemeine lineare Transformationen als allein berechtigt iibrig bleiben.” Einstein to Hendrik A.
Lorentz, 16 August 1913, (CPAE 5, Doc. 470).

115 “Also kurz gesagt: Durch die Postulierung des Erhaltungssatzes gelangt man zu einer in hohem
Masse bestimmten Wahl des Bezugssystems und der zuzulassenden Substitutionen. Erst jetzt macht
mir die Theorie Vergniigen, nachdem dieser hissliche dunkle Fleck beseitigt zu sein scheint.”

116 Einstein found the fallacy of this argument in the period between ca. 20 January 1914 and ca. 10
March 1914, see Einstein to Heinrich Zangger, ca. 20 January 1914, (CPAE 5, Doc. 507) and Einstein
to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512), as well as Einstein to Heinrich Zang-
ger, ca. 10 March 1914, (CPAE 5, Doc. 513). The last two letters mention, for the first time after a
long period of intermission (to which the first letter to Zangger evidently still belongs), progress in the
work on the gravitation problem related to the covariance properties of the Entwurf equation.
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tled “Bemerkungen iiber die mathematische Methode,” Einstein summarized some of
the mathematical properties of the Entwurf theory. In the previous paragraph he had
dealt with equations describing the effect of the gravitational field on other physical
processes, and in particular with energy-momentum conservation, in the next he was
going to develop the gravitational field equation. Towards the end of § 6, he took the
occasion to comment on the remarkable asymmetry between the transformational
behavior of these two types of equations (Einstein 1913, 1257). He explained that the
arguments in favor of a generalized principle of relativity, on the one hand, and his
argument in favor of its restriction, on the other, are located on different levels, one
on the general level of the spacetime structure, the other on the level of concrete
physical requirements. Whereas the first level remains the relevant one for all equa-
tions dealing with the effects of the gravitational field on other physical processes, the
second level becomes relevant only for the gravitational field equation itself. The
introduction of a specialization of the reference system only “after the fact” may well
have motivated him to continue his search for an explanation that makes the restric-
tion of the generalized relativity principle understandable also on the level of the
spacetime structure. Furthermore, the asymmetry between the transformational
behavior of the gravitational field equations and that of all other equations of physics
hinted at an explanation that is related to the mathematical nature of the field equa-
tions. As we shall now see, Einstein eventually found such an explanation in the hole
argument.

7.6 The Construction of the Hole Argument] 18

The use of the conservation principle to justify the limited covariance of the Entwurf
field equation was a relief but contributed, in effect, little to understanding the restric-
tion of the generalized principle of relativity. In a first attempt to come to terms with
this unsatisfactory situation, Einstein reformulated the Machian heuristics that had
originally suggested the introduction of this principle. This attempt is visible already
in his earliest statements concerning the conservation argument described above, but
is most clearly expressed in a letter Einstein wrote to Ernst Mach in the second half of
December 1913:

It seems to me absurd to ascribe physical properties to “space.” The totality of masses
produces the g, field (gravitational field), which in turn governs the course of all pro-
cesses, including the propagation of light rays and the behavior of measuring rods and
clocks. First of all, everything that happens is referred to four completely arbitrary space-
time variables. If the principles of momentum and energy conservation are to be satis-
fied, these variables must then be specialized in such a way that only (completely) linear
substitutions shall lead from one justified reference system to another. The reference sys-

117 Einstein completed the manuscript for this lecture about a month earlier, see (CPAE 4, note 17) and
“What Did Einstein Know ...” note 19 (in vol. 2 of this series).
118 See also “What Did Einstein Know ...” (in vol. 2 of this series) and further references cited there.
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tem is, so to speak, tailored to the existing world with the help of the energy principle,
and loses its nebulous aprioristic existence.!?

In this reformulated argument against absolute space, the role of the cosmic masses
and their relations in constituting space is now taken over by the conservation princi-
ple which is claimed to provide the physical justification of preferred reference
frames. But Einstein’s revised Machian heuristics nevertheless failed to completely
ban the plausibility of a generalization of the relativity principle. This is evident from
the efforts by Einstein and his friend Michele Besso to find a deeper connection
between the limited transformation properties of the Entwurf field equation and the
structure of spacetime.

These efforts are documented, in particular, by a manuscript in the hand of
Michele Besso.!?’ In a group of pages, the first of which carries the dateline
28 August 1913, Besso listed a number of problems which he had probably encoun-
tered while working jointly with Einstein on the problem of Mercury’s perihelion
shift in the context of the Entwurf the:ory.121 These problems were evidently not
intended as a program for the further development of the Entwurf theory but rather
constituted the results of reflections on what had been achieved so far. In a note found
in the part of the manuscript belonging to a later period, Besso modestly character-
ized himself as being merely an “orrechiante,’ that is, as an amateur who had the
privilege of listening to a great master. But some of Besso’s observations turned out
to be most consequential, introducing a possibly naive but fresh perspective. It seems
in fact that he went together with Einstein through his list of problems, some of them
directly formulated as questions, and that they discussed them one by one; at some
later point Besso then entered Einstein’s responses.122 Three of Besso’s problems are
relevant for the present discussion, the first concerning the issue of rotation, the sec-
ond regarding the logical status of the restriction implied by the conservation princi-
ple, and the third concerning what later was to become the hole argument, Einstein’s
central argument to defend the restricted covariance of the Entwurf theory.

119 “Fiir mich ist es absurd, dem “Raum” physikalische Eigenschaften zuzuschreiben. Die Gesamtheit
der Massen erzeugt ein Suv -Feld (Gravitationsfeld), das seinerseits den Ablauf aller Vorginge, auch
die Ausbreitung der Lichtstrahlen und das Verhalten der Massstidbe und Uhren regiert. Das Geschehen
wird zunichst auf vier ganz willkiirliche raum-zeitliche Variable bezogen. Diese miissen dann, wenn
den Erhaltungssitzen des Impulses und der Energie Geniige geleistet werden soll, derart spezialisiert
werden, dass nur (ganz) lineare Substitutionen von einem berechtigten Bezugssystem zu einem ande-
ren fithren. Das Bezugssystem ist der bestehenden Welt mit Hilfe des Energiesatzes sozusagen ange-
messen und verliert seine nebulose apriorische Existenz.” Einstein to Ernst Mach, second half of
December 1913, (CPAE 5, Doc. 495).

120 For more detailed discussion of both the contents and the dating of this document, see “What Did Ein-
stein Know ...” (in vol. 2 of this series).

121 For a facsimile reproduction of these pages, see (Renn 2005a, 126-130).

122 This pattern is made evident also by the arrangement of problems and answers on these pages, the
answers being often written in a slightly different hand than the questions and squeezed in between
the lines or at the margin.
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In his notes on the first problem, Besso summarized the failure of Einstein’s
hopes to fully implement his Machian heuristics within the Entwurf theory. Besso
noted that it was impossible to conceive of rotation as equivalent to a state of rest in a
gravitational field that is a solution of the Entwurf field equations.123 This repre-
sented a challenge either for the Entwurf theory or the generalized principle of rela-
tivity. In the consolidation period of the Entwurf theory the decision was made in
favor of the theory. That was bound to change only in the context of Einstein’s
renewed exploratory phase in the fall of 1915. In his notes Besso studied the question
of whether the failure of the Entwurf theory to interpret rotation as a state of rest can
possibly be explained by a failure of the conservation principle in a rotating system.
If that were so, he would have succeeded in establishing the desired physical connec-
tion between the problem of implementing the generalized relativity principle and the
restriction of the admissible coordinate systems required by the conservation princi-
ple. The remainder of the text, probably going back to Einstein’s intervention, shows
that this attempt of explaining the problem with rotation in terms of the conservation
principle does not work.

In a second passage, Besso posed a more general question concerning the role of
energy-momentum conservation for the selection of admissible coordinate systems:

Is every system that satisfies the conservation laws a justified system?'24

If the conservation principle is really the explanation for the restriction on the choice
of coordinate systems, it should not only be a necessary but also a sufficient condition
for this choice. Besso therefore wondered whether any coordinate system satisfying
the constraints imposed by the conservation laws is compatible also with the covari-
ance of the field equations. Since there is no note which may be traced back to a reac-
tion by Einstein on this issue, it seems that he did, at first, not seriously consider
Besso’s suggestion. In fact, given Einstein’s belief at that point that the conservation
equation (51) is covariant under linear transformations only, the question may have
held little interest for him since it offered no promise of generalizing the covariance
properties of the Entwurf field equations beyond linearity. Eventually, however, when
Einstein turned to the exploration of a mathematical strategy for the Entwurf theory,
he did realize, as we shall see, the significance of Besso’s question.

After writing down his second question, Besso sketched an idea of how the failure
of realizing general covariance on the level of the gravitational field equation might
be explained, namely as a problem of the uniqueness of its solutions. The text of his
third problem reads:

The requirement of [general] covariance of the gravitational equations under arbitrary
transformations cannot be imposed: if all matter [is given] were contained in one part of
space and for this part of space a coordinate system [is given], then outside of it the coor-
dinate system could still [essentially] except for boundary conditions be chosen arbi-

123 See “What Did Einstein Know ...” sec. 3 (in vol. 2 of this series).
124 “Ist jedes System, welches den Erhaltungssitzen geniigt, ein berechtigtes System?”
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trarily, [through which the g arbitrarily] so that a unique determinability of the g’s
cannot be obtained.

It is, however, not necessary that the g themselves are determined uniquely, only the
observable phenomena in the gravitation space, e.g., the motion of a material point,
must be.!??

In this passage Besso imagines a central mass to be surrounded by empty space and
wonders whether the solution for the metric tensor is, in this case, determined
uniquely for the empty region. His mental model appears to be the inverse of Ein-
stein’s famous hole argument where matter may be anywhere outside an empty hole
for which the problem of the ambiguity of solutions then supposedly arises. In
Besso’s argument the ambiguity of solutions is conceived as being due to the arbi-
trary choice of the coordinate system in the empty region, giving rise to arbitrary
coordinate expressions for the metric tensor (which have to satisfy, however, the
boundary conditions). Apart from the inversion of hole and matter, Besso’s “proto-
hole argument” thus corresponds to the primitive version of the hole argument that
was traditionally ascribed to Einstein, charging him with the naivety of being
unaware that different coordinate representations of the metric tensor do not corre-
spond to different solutions of the field equations. It is therefore remarkable that even
Besso immediately realized the flaw of this naive version since he added, in the sec-
ond paragraph of the above text, that only observable phenomena, such as the motion
of a particle, should be determined uniquely.

How did Besso’s idea emerge and how was it transformed into the hole-argument
familiar from Einstein’s later publications? As to the first question, it seems plausible
that Besso related, in the context of his reflections on the Entwurf theory, the problem
of the restriction of general covariance to other problems that had arisen for this the-
ory, in particular in the course of his joint research with Einstein. One such problem
was rotation, as we have just seen. Another problem was the perihelion shift of Mer-
cury, the central subject of a paper Besso planned to write.

In 1913 Besso had in fact encountered the problem of uniqueness when he
worked on the perihelion problem in the context of the Entwurf theory. In fact, a note
in the Einstein-Besso manuscript explicitly refers to the question of uniqueness in
connection with the ansatz used for solving the Entwurf field equation by an approxi-
mation procedure. For the first step of that iterative procedure Einstein and Besso had
used a metric with only one variable component, the same spatially flat metric (25)

125 “Die Anforderung der [allgemeinen] Covarianz der Gravitationsgleichungen fiir beliebige Transfor-
mationen kann nicht aufgestellt werden: wenn in einem Teile des Raumes alle Materie [gegeben ist]
enthalten wire und fiir diesen Teil ein Coordinatensystem, so konnte doch ausserhalb desselben das
Coordinatensystem noch, [im wesentlichen] abgesehen von den Grenzbedingungen, beliebig gewiihlt
werden, [wodurch die g beliebig eine] so dass eine eindeutige Bestimmbarkeit der g s nicht eintreten
konne.

Es ist nun allerdings nicht notig, dass die g selbst eindeutig bestimmt sind, sondern nur die im Gravi-
tationsraum beobachtbaren Erscheinungen, z.B. die Bewegung des materiellen Punktes, miissen es
sein.”
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that is also crucial for obtaining the Newtonian limit of the Entwurf theory. Besso
then wondered whether that choice of a metric was sufficiently general for recovering
all possible solutions of the field equation:

Is the static gravitational fieldin§ 1 g,,, = 1, 1103 g4y = f (x, y, z) aparticular solu-
tion? Or is it the general solution expressed in particular coordinates?'26

It may have been this question arising in the context of the perihelion calculation that
suggested to Besso that covariant field equations suffer, in general, from a problem of
uniqueness. In fact, the physical model of Besso’s proto-hole argument is strikingly
similar to that of the perihelion problem, a central mass surrounded by empty space.
And when Besso reminded himself that it was not the expression for the metric tensor
that mattered but physically observable phenomena, he chose the motion of a mate-
rial particle, such as that of Mercury around the sun, as an example.

How did Einstein react to Besso’s consideration of the proto-hole argument and
how did the definitive version of the hole argument emerge? Einstein’s reaction is, it
seems, preserved in a text written below Besso’s note quoted earlier. It starts, just as
Einstein’s earlier remark concerning rotation and energy conservation, with a charac-
teristic “Of no use” (“Niitzt nichts”):

Of no use, since with [the] a solution a motion is also fully given. If in coordinate system
1, there is a solution K| , then this same construct is also a solution in 2, K,; K,, how-
ever, also a solution in 1.1%7

Remarkably, Einstein did not simply agree with Besso’s conclusion that the ambi-
guity of the coordinate representation of the metric tensor was of no physical conse-
quence. He apparently found Besso’s idea to justify the lack of general covariance of
the Entwurf field equations on the basis of a uniqueness argument intriguing and
effectively reinterpreted it as an argument about the nature of space and time, and, in
particular, about the role of coordinate systems in identifying points in space and
time. In fact, a solution of the field equation in a particular coordinate system,
expressed in terms of functions representing the components of the metric tensor, can
be transformed to another coordinate system, producing a different set of functions
representing the same solution. But if, as Einstein’s argument suggests, this set of
functions “this same construct” (“dieses selbe Gebilde”) can somehow be related to
the original coordinate system, it there represents a different metric which, however,
solves the same field equation, provided that the right-hand side of these equations
remains unchanged by the coordinate transformation, which is the case for an empty
region where the stress-energy tensor of matter vanishes. To avoid the issue of addi-
tional boundary conditions, it turned out to be convenient for Einstein to reverse the

126 “Ist das stat Schwerefeld des § 1 uw =11 bis 3, g,4 = f(x,y,z) ein spezielles? oder ist es das
allgemeine, auf spec. Coordinaten zuriickgefiihrtes” (CPAE 4, Doc. 14, [p. 16]).

127 “Niitzt nichts, denn durch eine Losung ist auch eine Bewegung voll gegeben. Ist im Koordinatensy-
stem 1 eine Losung K|, so ist dieses selbe Gebilde auch eine Losung in 2, K,; K, aber eine Losung
in 1.” For a facsimile of this passage, see Fig. 2 on p. 300 of “What Did Einstein Know ...” (in vol. 2 of
this series) and (Renn 2005a, 128).
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physical model proposed by Besso and consider, instead of a void with a lump of
mass, matter with a hole in it—the well-known configuration of the hole argu-
ment.!?

Einstein’s interpretation of a solution initially given in one coordinate system as
referring to another coordinate system implicitly presupposes that coordinate systems
have their own physical reality and allow to identify points in spacetime. The crucial
but hidden point of this reinterpretation of Besso’s proto-hole argument is therefore a
reification of coordinate systems, which are conceived as part of the physical set-up
constituting a solution and not only as a mathematical device for describing it. Only
the later refutation of the hole argument made it eventually clear that it is not
“motions” in the sense used here which constitute physically real events but rather
spacetime coincidences for which a coordinate-independent description can be
given.129

Our reconstruction suggests that the hole argument was, in spite of its philosophi-
cal appeal, not rooted in a metaphysical prejudice concerning the nature of space and
time or the role of coordinate systems, preventing Einstein from accepting generally-
covariant field equations. On the contrary, it was the necessity of justifying a non-
generally-covariant field equation that led to the construction of this argument, trig-
gering a peculiar interpretation of the physical significance of coordinate systems, an
interpretation moreover that largely remained implicit in the initial formulation of the
argument. The hole argument was just the kind of argument Einstein had been after in
his earlier attempts to justify the failure of general covariance: a mathematical argu-
ment related to the structure of space and time. It was this peculiar perspective,
shaped by the context of the consolidation period of the Entwurf theory, that probably
led him to take Besso’s naive point seriously and search for a physically significant
interpretation of a mathematically trivial property, the coordinate dependence of
expressions for the metric tensor. It is hardly surprising that to formulate such an
interpretation, Einstein relied on the conceptual resources of classical physics,
implicitly defining what a motion is in terms of the relation between a particle and a
coordinate system. As a result, he found a way of relating the formalism of absolute
differential calculus to a physical interpretation of coordinate systems that allowed
him to justify the restricted covariance of the Entwurf field equations. In short, the
necessity of interpreting a complex mathematical formalism under a peculiar per-
spective was crucial for the emergence of the hole argument. Only when Einstein
eventually succeeded in formulating physically acceptable, generally-covariant field
equations did he abandon this argument and revise the physical interpretation of
coordinate systems as well as of space and time associated with it.!3% The deep con-
ceptual insight into the crucial role of spacetime coincidences was thus no presuppo-

128 For detailed discussion, see sec. 4 of “What Did Einstein Know ...” (in vol. 2 of this series).

129 For selected references to the extensive literature on the hole argument, see “What Did Einstein
Know ..”” note 95 (in vol. 2 of this series).

130 For discussion of Einstein’s later retraction of the hole argument, see “What Did Einstein Know ...”
sec. 4 (in vol. 2 of this series) and (Janssen 2005, 73-74)



PATHWAYS OUT OF CLASSICAL PHYSICS 243

sition of general relativity but merely a consequence of its establishment—effectively
implying a refutation of the hole argument.

With the advent of the hole argument, the conservation principle lost its role as
the primary physical reason for the restriction of general covariance of the Entwurf
field equations; the restriction to linear transformations now merely appeared as a
concrete result in harmony with a more general insight. Einstein reinterpreted his first
argument defending the restricted covariance of the Entwurf field equation accord-
ingly as a specific physical complement to what he saw as a general “logical” princi-
ple.131 That he considered the hole argument not merely as an addition but as the
solution of a puzzle left unresolved by the earlier physical argument is confirmed by a
letter he wrote in the beginning of November 1913 to Ehrenfest:

The gravitation affair has been clarified to my complete satisfaction (namely the circum-
stance that the equations of the gr. field are covariant only with respect to linear transfor-
mations. For it can be proved that generally covariant equations that determine the field
completely from the matter tensor cannot exist at all. Can there be anything more beauti-
ful than this, that the necessary specialization follows from the conservation laws?!32

7.7 The Second Phase of the Consolidation Period of the Entwurf Theory:
A Mathematical Strategy for the Entwurf Theory

The insights Einstein had acquired pursuing the mathematical strategy in the Zurich
Notebook continued to set standards for his further elaboration of the Entwurf theory
developed along the lines of the physical strategy. In particular, the procedure at the
core of the mathematical strategy by which non-generally-covariant field equations
could be extracted from a generally-covariant object remained plausible. Even if gen-
erally-covariant field equations were excluded for a satisfactory relativistic theory of
gravitation, the physical and the mathematical strategies should converge because
only in this way was it possible to fully clarify and stabilize the relation between the
physical and the mathematical knowledge expressed in the theory. Even if Einstein
had good reasons for restricting the generalized principle of relativity, it still made
sense for him to search for a derivation of the field equations of the Entwurf theory
along the mathematical strategy, albeit now with the aim of confirming what had

131 In a later paper he formulated with regard to these two arguments: “But there are two weighty argu-
ments that justify this step [i.e. the restriction of general covariance], one of them of logical, the other
one of empirical provenance” (“Es gibt aber zwei gewichtige Argumente, welche diesen Schritt recht-
fertigen, von denen das eine logischen, das andere empirischen Ursprungs ist”, CPAE 4, Doc. 25,
[178]).

132 “Die Gravitationsaffire hat sich zu meiner vollen Befriedigung aufgeklért (der Umstand namlich, dass
die Gleichungen des Gr. Feldes nur linearen Transformationen gegeniiber kovariant sind. Es lédsst sich
namlich beweisen, dass allgemein kovariante Gleichungen, die das Feld aus dem materiellen Tensor
vollstindig bestimmen, iiberhaupt nicht existieren konnen. Was kann es schoneres geben, als dies,
dass jene notige Spezialisierung aus den Erhaltungssitzen fliesst?” Einstein to Paul Ehrenfest, before
7 November 1913, (CPAE 5, Doc. 481).
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already been found through the physical strategy. This approach is characteristic for
what we call the “second phase” of the consolidation of the Entwurf theory.

It was probably in pursuing a mathematical strategy for the Entwurf theory that, in
early 1914, Einstein discovered a flaw in his conservation argument for linear covari-
ance. It turned out that the quantity representing the stress-energy of the gravitational
field is not a tensor. Einstein thus realized that, while the conservation principle still
requires a restriction on the admissible coordinate systems, this restriction was not as
stringent as it had seemed before. The issue of the covariance properties of the Ent-
wurf theory was therefore reopened since the hole argument only excluded general
covariance but did not by itself prescribe a specific covariance group. It remained to
be clarified, in particular, in which sense the transformational properties of the Ent-
wurf field equation were restricted by the conservation principle, which now
appeared as implying a “weak” restriction only taking full advantage perhaps of the
leeway left by the hole argument.

A suggestion by the Zurich mathematician Paul Bernays made it possible for Ein-
stein and Grossmann to return in early 1914 to the “bold” approach, once again
exploring the transformational properties of the Entwurf field equation by direct cal-
culation. Bernays suggested to derive the Entwurf field equation from a variational
principle in order to be able to focus attention on a single scalar quantity, the
Lagrangian, rather than on the complex tensorial objects constituting the field equa-
tion itself. Einstein and Grossmann succeeded indeed in finding a Lagrangian from
which the Entwurf field equations could be derived. They found that this Lagrangian
is invariant under transformations between coordinate systems specified solely by the
requirement of energy-momentum conservation. The necessary restriction of covari-
ance following from the conservation principle thus turned out to be also a sufficient
one, just as Michele Besso had envisaged. This result seemed to be in perfect agree-
ment also with the hole argument since the four additional equations resulting from
the conservation principle were apparently just enough to remove the ambiguity in
the metric field on which this argument turns.

With these results, attained by March 1914, the “defensive” and the “bold”
approaches had converged and, once again, a sense of closure in the development of
the Entwurf theory was reached, this time on a higher level than half a year earlier and
more durable: it would last until October 1915. Einstein was convinced that he had
obtained an optimal realization of the generalized relativity principle and that he had
understood the profound reasons for the impossibility of general covariance. He even
came to believe that the restriction of covariance imposed by the conservation princi-
ple in fact does not imply a restriction of the possible solutions to the field equation
but merely a restriction of the possible coordinate systems in which these solutions
can be expressed. Consequently, Einstein also became convinced that the Entwurf the-
ory fully realized the equivalence principle and other heuristic ideas, such as a descrip-
tion of Minkowski spacetime in a rotating frame of reference as a special case of the
gravitational field, in spite of the difficulties at the level of explicit calculations.!®
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The success of this exploration of the Entwurf theory along the lines of the math-
ematical strategy encouraged Einstein to undertake a new derivation of its field equa-
tions; he completed this derivation by the fall of 1914. By February 1914, he had
abandoned his earlier conviction that the Entwurf field equation had no relation to the
absolute differential calculus essential to the mathematical strategy. When Einstein
took up the project of deriving the Entwurf field equation along the mathematical
strategy, however, he did not start from the generally-covariant objects suggested by
the original mathematical strategy as he had done in the Zurich Notebook. He rather
generalized the variational derivation, developed together with Grossmann, into a
mathematical formalism applicable not only to the Entwurf field equations but to
other candidate field equations. He then searched for a mathematical reason to justify
choosing the Lagrangian corresponding to the Entwurf equation and erroneously con-
vinced himself that he had actually found such reasons.

7.8 A Prelude: The First Reawakening of the Mathematical Strategy

Einstein’s failure to reach general covariance had been a target of criticism by his col-
leagues.134 In January 1914 he wrote a paper in reply to such criticism (Einstein
1914b). Apart from presenting his arguments in favor of a restricted covariance of the
Entwurf field equations such as the hole argument, he had to admit that the relation of
this field equations to the generally-covariant objects of the absolute differential cal-
culus was still an open problem. As a consequence, the relation between physical and
mathematical strategies, which should have been just two different pathways to the
same result, also remained unclear.

Defending the restricted covariance of the Entwurf theory, Einstein had to
acknowledge that there are profound reasons why generally-covariant equations
should exist which correspond to the Entwurf field equation (Einstein 1914b, 177—
178). He argued that there must be, in modern terms, a coordinate-free representation
of any meaningful mathematical relation between physical magnitudes. Ideally, the
Entwurf equation should be derived from such a representation by a suitable special-
ization of the coordinate system. This would correspond to its derivation along the
lines of the mathematical strategy. But as if to excuse himself for the failure to realize
such a derivation, Einstein claimed that the hole argument and the argument from
energy momentum conservation suggested that it would not be worthwhile to search
for the generally-covariant counterpart of the Entwurf equation.135

In spite of this excuse Einstein embarked, at about the same time, on precisely
such a search, albeit for another gravitation theory with restricted covariance proper-
ties serving as a toy model On 19 February 1914 he submitted a joint paper with

133 See “What Did Einstein Know ...” sec. 3 (in vol. 2 of this series).

134 See,e.g., (Abraham 1914, 25).

135 (CPAE 4, Doc. 25, [179]). See “Untying the Knot ...,” (in vol. 2 of this series) note 57, for the relevant
passage. See (Norton 1992a) for a historical discussion.
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Adriaan Fokker on a generally-covariant reformulation of Nordstrom’s special rela-
tivistic theory of gravitation (Einstein and Fokker 1914). They demonstrated that the
field equation of this theory, in its original version only Lorentz covariant, can in fact
be obtained from a generally-covariant equation. Just as in the mathematical strategy
employed in the Zurich Notebook, a generally-covariant expression derived from the
Riemann tensor served as the starting point of their approach, from which a suitable
left-hand side of the gravitational field equation was then obtained by imposing addi-
tional conditions on the metric tensor. In the case of the Nordstrom theory, the addi-
tional condition amounted to the requirement of the constancy of the speed of light.
This additional condition in turn led to a restriction on the admissible coordinate sys-
tems, in this case to those systems which are adapted to the principle of the constancy
of the velocity of light (Einstein and Fokker 1914, 326).

As a consequence of the successful reformulation of Nordstrom’s theory in gener-
ally-covariant terms, it was only natural to search for an analogous reformulation also
of the Entwurf theory, in spite of the skepticism which Einstein had expressed in his
earlier paper. That such a search made sense was precisely the conclusion which Ein-
stein and Fokker drew at the end of their joint paper:

Finally, the role that the Riemann-Christoffel differential tensor plays in the present
investigation suggests that this tensor may also open the way for a derivation of the Ein-
stein-Grossmann gravitation equations that is independent of physical assumptions. The
proof of the existence or nonexistence of such a connection would represent an important
theoretical advance.'3%

In a footnote to the above passage, they added:

The argument in support of the nonexistence of such a connection, presented in §4, p. 36
of “Entwurfs einer verallgemeinerten Relativitéitstheorie” [“Outline of a Generalized
Theory of Relativity”], did not withstand closer scmtiny.l37

On the cited page of the Entwurf paper, Einstein and Grossmann had simply claimed
that, in the case of field equations with restricted covariance, it was understandable
that no relation to generally-covariant tensors could be established (Einstein and
Grossmann 1913, 36). But in view of Einstein’s realization that a connection with a
generally-covariant formulation must exist for any physically meaningful theory, the
failure to discover such a connection could no longer be defended in this simple way.

In their paper, Einstein and Fokker used a terminology for the relation between
generally-covariant equations and field equations with restricted covariance that

136 “Endlich legt die Rolle, welche bei der vorliegenden Untersuchung der Riemann-Christoffelsche Dif-
ferentialtensor spielt, den Gedanken nahe, daf} er auch fiir eine von physikalischen Annahmen unab-
hingige Ableitung der Einstein-GroBmannschen Gravitationsgleichungen einen Weg 6ffnen wiirde.
Der Beweis der Existenz oder Nichtexistenz eines derartigen Zusammenhanges wiirde einen wichti-
gen theoretischen Fortschritt bedeuten.” (Einstein and Fokker 1914, 328).

137 “Die in §4, p. 36, des “Entwurfs einer verallgemeinerten Relativititstheorie” angegebene Begriindung
fir die Nichtexistenz eines derartigen Zusammenhanges hilt einer genaueren Uberlegung nicht
stand.”
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would soon become standard in the further analysis of the covariance properties of
the Entwurf theory. They spoke, in particular, of “preferred” (“bevorzugt”) coordinate
systems, “adapted” (“angepasste”) to a certain physical situation.!*® Nordstrom’s
theory and the terminology developed for its treatment helped to further pursue the
questions which had to be answered for a derivation of the Entwurf theory along the
lines of the mathematical strategy to succeed: What were the “preferred” coordinate
systems of the Entwurf theory? And what was the physical condition to which these
coordinate systems are “adapted”? Although Einstein must have believed that he had
answers to these questions, given his argument in favor of a restriction to linear trans-
formations from energy-momentum conservation, it remained open how these
answers could assist him in relating the Entwurf theory to its unknown generally-
covariant counterpart. It was the experience gathered with Nordstrém’s theory that
eventually helped him to make progress in this regard—by challenging the answers
that had seemingly settled the fate of the generalized relativity principle in the Enz-
wurf theory.

7.9 A First Consequence of the Return to the Mathematical Strategy

In early March Einstein wrote to his friends about a breakthrough in his work on the
Entwurf theory.139 By this time he had not only recognized the fallacy of his argu-
ment for restricted covariance from energy-momentum conservation but had also
investigated, jointly with Marcel Grossmann, the covariance properties of the theory
in a new way. This new analysis, contained in a joint paper published on 29 May
1914 (Einstein and Grossmann 1914), was based on the use of variational techniques
which allowed them to pursue the bold approach of exploring covariance properties
by direct calculation.

Einstein’s breakthrough was prepared by his reflection on the relation between
non-covariant and covariant formulations of a theory, substantiated by his analysis of
Nordstrom’s theory. In light of these considerations, the Entwurf theory appears as a
specialization of a generally-covariant theory to coordinate systems which are
adapted to a certain physical condition. In the case of the Entwurf theory, this physi-
cal condition was the validity of energy-momentum conservation in the sense of eq.
(51).

If generally-covariant field equations are expressed in coordinates adapted to this
condition, they should take on the form of the Entwurf field equation eq. (52).

In analogy to the treatment of the Nordstrom theory, eq. (51) should be consid-
ered as a condition on the metric tensor g, providing the necessary coordinate
restriction. But in Einstein’s original version of the argument for restricted covariance
from energy-momentum conservation, this equation does not so much provide a con-

138 See (Einstein and Fokker 1914, 326).
139 See Einstein to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512) and Einstein to Heinrich
Zangger, ca. 10 March 1914, (CPAE 5, Doc. 513).
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dition on the metric tensor, but actually presupposes one. In fact, the argument that
eq. (51) is only covariant under linear transformations only works, as Einstein was
aware, if it is assumed that " has the same transformational behavior as T"", i.e. if
it is a generally-covariant object. However, #'* is a coordinate-dependent expres-
sion.!*Y While the assumption that it is generally covariant may have at first appeared
plausible to Einstein in the light of his conviction that gravitational and other forms
of energy should behave in the same way as sources of the gravitational field, this
assumption becomes much less plausible once eq. (51) is seen as imposing a coordi-
nate restriction on generally-covariant equations. That perspective requires in fact a
much closer examination of its ingredients, since it is now the content rather than the
form of the equation that matters. Apart from checking more closely the character of
", Einstein’s earlier experience with what we have called the conservation compat-
ibility check in the sense of eq. (XLIII) suggested expressing T"" + ¢V in this equa-
tion by means of the field equations so that eq. (51) becomes a condition merely in
terms of the metric tensor and its derivatives. One thus obtains eq. (54) as a condition
for the class of admissible coordinate systems.

This equation played a central role in Einstein’s new approach to the problem of
the covariance properties of the Entwurf field equation. It first appeared in Einstein’s
and Grossmann’s 1914 paper141 and expresses in fact a physically motivated coordi-
nate restriction in a sense that was quite familiar to him from his experiences along
the mathematical strategy in the Zurich Notebook. In distinction from the original
mathematical strategy, however, the generally-covariant equation from which the
Entwurf field equation should be derivable by means of this coordinate restriction
was unknown. But finding this generally-covariant equation may have been precisely
Einstein’s point in formulating eq. (54). In summary, a reconsideration from the per-
spective of the mathematical strategy of the argument for restricted covariance based
on energy-momentum conservation could have led Einstein both to see the fallacy of
his original argument and to cast it into a new form.

This reconstruction is supported by the timing of the transformation of the origi-
nal argument for a linear covariance of the Entwurf equations into an argument about
a coordinate restriction in the sense of the Zurich Notebook. In the manuscript of a
popular exposition on his theory,142 which Einstein completed by the end of January
1914, he still included the argument in its original form. When he submitted the
paper for publication by March, 21, 1914, that is, before he left Zurich, the passage
arguing for the linear covariance of the Entwurf field equation was cancelled. By the
beginning of March, Einstein had already achieved a breakthrough along the varia-

140 There are a number of arguments by which Einstein could have seen his fallacy: 1) There are no gen-
erally-covariant tensors involving only the metric and its first order derivatives. 2) In a suitably chosen
coordinate system, the stress-energy complex of the gravitational field t,y can be made to vanish.

141 See (Einstein and Grossmann 1914, 218).

142 The published version is (Einstein 1914c). For references to and transcriptions of the manuscript ver-
sion, see the annotations in (CPAE 4, 621-622).

143 See Einstein to Heinrich Zangger, ca. 20 January 1914, (CPAE 5, Doc. 507).
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tional approach, as we know from his correspondence. The paper by Einstein and
Fokker on Nordstrom’s theory, on the other hand, in which, as we have also seen, the
application of the mathematically strategy to the Entwurf theory is formulated as a
program, was submitted on 19 February 1914. In other words, Einstein must have
reformulated his argument based on the conservation principle at some point between
the end of January and the beginning of March 1914, at the time or shortly after he
was working on the application of the mathematical strategy to Nordstrom’s theory.

With the discovery of the fallacy in the original argument, the question of the
covariance properties of the Entwurf field equation was open again. While it was
obvious that eq. (54) imposes a necessary condition on the coordinates systems
“adapted” to this theory, it remained to be clarified whether this condition is also a
sufficient one and how it related the Entwurf field equation to its generally-covariant
counterpart. Einstein had thus arrived at a point where it made sense for him to take
up the second point raised in Besso’s notes:

Is every system that satisfies the conservation laws a justified system‘.7I44

In the context of Einstein’s reconsideration of the Entwurf field equation from the
perspective of the mathematical strategy, the relation between conservation laws and
“justified” coordinate systems must have assumed a new significance. Exploring
whether or not this field equation actually retained its form under transformations
between the “preferred” coordinate systems characterized by eq. (54) now became a
pressing task. Unfortunately, the absolute differential calculus offered little help in
addressing this task.

7.10 A New Turn for the Mathematical Strategy: Variational Calculus

When Einstein took up the mathematical strategy once again and adapted it to the
Entwurf theory, he faced difficulties achieving concrete results along this strategy,
and must have searched out mathematical advice. It is unclear at exactly which point
Grossmann re-entered the story. Perhaps he was already instrumental in recognizing
the fallacy of Einstein’s original argument for restricted covariance from energy-
momentum conservation. Perhaps he entered the picture only when Einstein needed
help in exploring the consequences of the new coordinate restriction eq. (54). But
Grossmann was, it seems, as little successful as Einstein in establishing relations
between the Entwurf theory and absolute differential calculus. At some point they
both turned to another Zurich mathematician colleague, Paul Bernays, for help.145
Bernays advised Einstein and Grossmann to bring the field equation of the Entwurf
theory into the form of a variational principle.m6

The reformulation of the Entwurf theory in terms of a variational principle did
not, however, provide any clue concerning the relation of this theory to absolute dif-

144 “Ist jedes System, welches den Erhaltungssctzen geniigt, ein berechtigtes System?” For a facsimile of
this passage, see Fig. 2 on p. 300 of “What Did Einstein Know ..” (vol. 2 of this series).
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ferential calculus. The latter would have suggested, as it later did to Hilbert, to take
the Ricci scalar as a starting point for such a reformulation. But, by analyzing the
relation of this scalar to the Bu of their coordinate restriction, Einstein and Gross-
mann convinced themselves that the B, do not form a generally-covariant vector and
that the Entwurf field equation has nothing to do with the invariant Ricci scalar.'4’
Nevertheless, a variational reformulation of the Entwurf had, for Einstein and Gross-
mann, one chief advantage: instead of having to study the covariance properties of a
complex tensorial field equation, they could instead explore the invariance group of a
single scalar object, the action integral (cf. eq. (LXIV)). Much later Einstein still con-
sidered the simplification due to the introduction of the more familiar scalar quanti-
ties the main advantage of the variational calculus.!4®

In early 1914, the suggestion to make use of the variational calculus brought Ein-
stein and Grossmann back to the initial bold approach of exploring by direct calcula-
tion the covariance properties of the Entwurf field equation. In pursuing this approach
they could rely on their experience from the Zurich Notebook where they had
attempted to study the covariance properties of objects found along the physical strat-
egy or of coordinate restrictions by means of infinitesimal transformations.

However, one crucial presupposition of the new approach had to be established
first, the expression for the action integral from which the Entwurf field equation
could be derived by means of the variational formalism. In their 1914 paper Einstein
and Grossmann only give the end result, without mentioning what had motivated
them to introduce a particular Langrangian, other than its successful employment in
deriving the field equations.149 Probably they found the Lagrangian of the Entwurf
theory by starting from an expression quadratic in the fields in analogy to classical
and special-relativistic physics according to the default setting eq. (LXIII). With Ein-
stein’s default setting for the components of the gravitational field, the Lagrangian
required for deriving the Entwurf field equation was found to be:

L= guvgﬁu,ugav,ﬁ = guvfgquV- (85)

145 Bernays later became known for his work in mathematical logic and set theory, was in Zurich from
1912 to 1919 after completing a mathematical doctoral thesis on the analytic theory of binary qua-
dratic forms under the supervision of the mathematician E. Landau. Before coming to Zurich, Ber-
nays had spent two years in Gottingen studying mathematics and physics chiefly with Hilbert,
Landau, Weyl, Klein, Voigt and Born. Bernays was at the time concerned with an extension of the
special theory of relativity.

146 In their paper, Einstein and Grossmann acknowledge the stimulation received from Bernays in a foot-
note (Einstein and Grossmann 1914, 218).

147 See (Einstein and Grossmann 1914, 225).

148 Einstein to Lorentz, 19 January 1916 and Einstein to T. De Donder, 23 July 1916 (CPAE 8, Docs. 184
and 240).

149 See (Einstein and Grossmann 1914, 219).
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The Entwurf theory was thus solidified by connecting its field equation in yet another
way with the established knowledge of classical and relativistic physics, in this case
about the canonical form of a Lagrangian.

The identification of both the Langrangian for the Entwurf field equation and of a
physically motivated coordinate restriction now gave Einstein and Grossmann a clear
definition of their next goal, the establishment of a relation between the coordinate
restriction and the transformational properties of this Lagrangian. Does the coordi-
nate restriction eq. (54) resulting from the conservation principle indeed constitute
not only a necessary but also a sufficient condition for the covariance of the Entwurf
Lagrangian? In that case, by establishing a connection between conservation and
covariance, Einstein would have achieved a result effectively preparing the later
Noether theorem.!?9 The close connection between conservation and covariance, first
suggested by the ill-fated argument for a restriction of the Entwurf theory to linear
transformations, became a heuristic guiding principle for Einstein’s further explora-
tion and a criterion that he expected a satisfactory theory to fulfill.

The means to answer his question concerning the covariance properties of the
Entwurf Lagrangian was provided by the infinitesimal coordinate transformations
explored earlier in the Zurich Notebook. With their help, Einstein and Grossmann
succeeded in establishing a connection between the transformational properties of the
action integral for the Entwurf Lagrangian and the physically motivated coordinate
restriction eq. (54). Their bold approach had finally given them what they had failed
to achieve with the help of the absolute differential calculus—a link between the
physical and the mathematical strategies.

7.11 Looking Back on a Breakthrough: The General Relativity
of the Entwurf Theory

With their proof of the covariance properties of the Entwurf field equations, Einstein
and Grossmann had finally closed the crucial gap in their 1913 publication. But in
Einstein’s view, they had achieved much more. In the time between the completion of
this proof by early March 1914 and the discovery of a problem with transformations
to rotating frames of reference in September 1915, he was convinced that he had
finally reached not only a generalization of the relativity principle but a truly general
theory of relativity. In early March he wrote to Paul Ehrenfest that the proof of the
existence of “most general transformations” leaving the field equations covariant
demonstrated the validity of the principle of equivalence as well:

The work on gravitation progresses, but at the cost of extraordinary efforts; gravitation is
coy and unyielding! The equivalence principle is valid after all in the sense that there
exist highly general transformations that transform the gravitational equations into them-
selves. What has been found is simple, but the search is hell! 15!

In a similar vein he expressed himself in a contemporary letter to Heinrich Zangger:

150 See “Untying the Knot ...” (in this volume).
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I was toiling again on the gravitation theory to the point of exhaustion, but this time with
unheard-of success. That is to say that I succeeded in proving that the gravit. equations
hold for arbitrarily moving reference systems, and thus that the hypothesis of the equiva-
lence of acceleration and the gravitational field is absolutely correct, in the widest sense.
Now the harmony of the mutual relationships in the theory is such that I no longer have
the slightest doubt about its correctness.'>2

In these passages Einstein left it somewhat open what he meant by qualifying the
covariance he had reached as “most general” or “in the widest sense.” In another con-
temporary passage he showed himself convinced that the transformation to a rotating
coordinate system was comprised by this covariance:

By means of a simple calculation I have been able to prove that the gravitation equations
hold for every reference system that is adapted to this condition. From this it follows that
there exist acceleration transformations of the most varied kind that transform the equa-
tions to themselves (e.g., also rotation), so that the equivalence hypothesis is preserved in
its original form, even to an unexpectedly large extent.!>

The “simple calculation” to which Einstein refers must be the demonstration of the
covariance properties of the Entwurf equation published jointly with Grossmann,
since he emphasizes the crucial element of this demonstration, the condition for
adapted coordinate systems. He obviously perceived the more specific properties of
the field equation, such as its covariance under rotation, as being merely a trivial con-
sequence of this proof. Einstein thus believed he had achieved a full implementation
of the generalized principle of relativity.

Yet, the exact relation of the Entwurf field equation to the absolute differential
calculus had not been clarified. It seems, however, that Einstein did not bother too
much about this problem. When he learned that Grossmann had finally succeeded in
establishing such a relation, Einstein viewed this result as a nice complement to what
they had already achieved earlier but not more. In late March or early April 1914 he
wrote to Ehrenfest:

151 “Die Gravitation macht Fortschritte, aber unter ausserordentlichen Anstrengungen; sie ist sprode! Das
Aequivalenzprinzip gilt nun doch in dem Sinne, dass es hochst allgemeine Transformationen gibt, die
die Gravitationsgleichungen in sich iiberfiihren. Das Gefundene ist einf[a]ch, aber das Suchen ganz
verflucht.” Einstein to Paul Ehrenfest, before 10 March 1914, (CPAE 5, Doc. 512).

152 “Ich habe mich wieder bis zur Erschopfung geplagt mit der Gravitationstheorie, aber diesmal mit
unerhortem Erfolge. Es ist ndmlich der Beweis gelungen, dass die Gravit. Gleichungen fiir beliebig
bewegte Bezugssysteme gelten, dass also die Hypothese von der Aequivalenz der Beschleunigung
und des Gravitationsfeldes durchaus richtig ist, im weitesten Sinne. Nun ist die Harmonie der gegen-
seitigen Beziehungen in der Theorie eine derartige, dass ich an der Richtigkeit nicht mehr im Gering-
sten zweifle.” Einstein to Heinrich Zangger, 10 March 1914, (CPAE 5, Doc. 513).

153 “Ich habe beweisen konnen durch eine einfache Rechnung, dass die Gleichungen der Gravitation fiir
Jjedes Bezugssystem gelten, welches dieser Bedingung angepasst ist. Hieraus geht hervor, dass es
Beschleunigungstransformationen mannigfaltigster Art gibt, welche die Gleichungen in sich selbst
transformieren (z.B. auch Rotation), sodass die Aequivalenzhypothese in ihrer urspriinglichen Form
gewabhrt ist. sogar in ungeahnt weitgehendem Masse.” Einstein to Michele Besso, ca. 10 March 1914,
(CPAE 5, Doc. 514), Einstein’s emphasis. The “einfache Rechnung” probably refers to the covariance
proof. For an alternative interpretation, see (Janssen 1999, n. 125).
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Grossmann wrote me that now he also is succeeding in deriving the gravitation equations
from the general theory of covariants. This would be a nice addition to our examina-
o 154

tion.

The more Einstein thought about the proof of the covariance properties of the Ent-
wurf field equation he had jointly developed with Grossmann, the more he became
convinced that what he had reached was general covariance. This is apparent from his
ever more optimistic assessments of their result. In June 1914 Einstein wrote to
Wien:

In Zurich I had found the proof for covariance in the gravitation equations. Now the the-
ory of relat[ivity] really is extended to arbitrarily moving systems.155

In July Einstein wrote to Planck, also claiming that he had now his theory covered
every possible manifold and that the restriction was only one of the coordinate sys-
tem:

Then also a brief reply to a comment you made recently at the Academy in the welcom-
ing speech. There is an essential difference between the reference system restriction
introduced by classical mechanics for the theory of relativity and that which I apply in
the theory of gravitation. For the latter can always be adopted no matter how the 8uv 'S
may be selected. To the contrary, the specialization introduced by the principle of the
constancy of the velocity of light presupposes differential correlations between the
8uv S that is, correlations that ought to be very difficult to interpret physically. Satisfac-
tion of these correlations cannot be forced by the appropriate choice of a reference sys-
tem for any given manifold. !>

According to the explanation given to Planck, Einstein considered the principal dis-
tinction between the specialization of the reference system in classical mechanics and
in the special theory of relativity, on the one hand, and that which he had introduced
in his new gravitation theory, on the other hand, to be the fact that in the latter case
the specialization of the reference system refers only to the choice of the coordinate
system in an otherwise arbitrarily given manifold. Einstein made this point particu-

154 “Grossmann schreibt mir, dass es ihm nun auch gelingt, die Gravitationsgleichungen aus der allge-
meinen Kovariantentheorie abzuleiten. Es wire dies eine hiibsche Ergénzung zu unserer Untersu-
chung.” Einstein to Paul Ehrenfest, 10 April 1914, (CPAE 8, Doc. 2).

155 “In Ziirich fand ich noch den Nachweis der Kovarianz der Gravitationsgleichungen. Nun ist die
Relat[ivitdts]theorie wirklich auf beliebig bewegte Systeme ausgedehnt.” Einstein to Wilhelm Wien,
15 June 1914, (CPAE 8, Doc. 14).

156 “Sodann noch eine kurze Beantwortung einer Bemerkung, die Sie neulich in der Akademie in der
Begriissungsrede gedussert haben. Es gibt einen prinzipiellen Unterschied zwischen derjenigen Spe-
zialisierung des Bezugssystems, welche die klassische Mechanik bezw. die Relativitétstheorie ein-
fiihrt und zwischen derjenigen, welche ich in der Gravitationstheorie anwende. Die letztere kann man
nimlich stets einfiihren, wie auch die g,,, gewihlt werden mdgen. Diese durch das Prinzip der Kon-
stanz der Lichtgeschwindigkeit eingefﬁhrte Spezialisierung dagegen setzt Differenzialbeziehungen
zwischen den g, voraus, und zwar Beziehungen, deren physikalische Interpretation sehr schwierig
sein diirfte. Das Erfiilltsein dieser Beziehungen kann nicht fiir jede gegebene Mannigfaltigkeit durch
passende Wahl des Bezugssystems erzwungen werden.” Einstein to Max Planck, 7 July 1914,
(CPAE 8, Doc. 18).
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larly clear in a letter he wrote to Lorentz a few months later. In this letter Einstein
explained in what sense the restriction to adapted coordinate systems in his under-
standing was compatible with the claim that the theory would be a “general” theory
of relativity. He referred to an analogous situation in the Gaussian theory of surfaces:

Although I prefer certain reference systems, the fundamental difference to the Galilean
preference is, however, that my coordinate selection makes no physical assumptions
about the world; let this be illustrated by a geometric comparison. I have a plane of
unknown description which I want to subject to geometric analysis. If I require that a
coordinate system ( p, g ) on the plane be selected in such a way that

d52 = dp2+dq2,

I therefore assume that then the surface can be unfolded on to a [Euclidean] plane. Were
I only to demand, however, that the coordinates be chosen in such a way that

2 2 2
ds” = A(p,q)dp”+B(p, q)dq

i.e., that the coordinates be orthogonal, then I am assuming nothing about the nature of
the surface; this can be obtained on any surface.!>’

The analogy with Gaussian surface theory suggests a geometrical interpretation of
the coordinate restriction introduced in Einstein’s theory of gravitation. A letter Ein-
stein wrote in 1915 to Paul Hertz shows that he had searched in vain for such an inter-
pretation and that for elucidating the meaning of this coordinate restriction, he had
little more to offer than the comparisons he mentioned in the letter to Lorentz.

He who has wandered aimlessly for so long in the chaos of possibilities understands your
trials very well. You do not have the faintest idea what I had to go through as a mathemat-
ical ignoramus before coming into this harbor. Incidentally, your idea is very natural and
would by all means be worth following up, if it could be carried through at all, which,
based upon my experiences gathered during my wayward wanderings, I doubt very
much.

Given an arbitrary manifold of 4 dimensions (given guv(xg) ). How can one distinguish
a coordinate system or a group of such? This appears not to be possible in any way sim-
pler than the one chosen by me. I have groped around and tried all sorts of possibilities,
e.g., required: The system must be chosen such that the equations

uv
i _ g (W=1-4)

ax
v v

157 “Ich bevorzuge zwar auch gewisse Bezugssysteme, aber der fundamentale Unterschied gegeniiber der
Galileischen Bevorzugung besteht darin, dass meine Koordinatenwahl nichts iiber die Welt voraus-
setzt; dies sei durch einen geometrischen Vergleich erldutert. Es liegt mir eine Flidche unbekannter Art
vor, auf der ich geometrische Untersuchungen machen will. Verlange ich, es solle auf der Fldche ein
Koordinatensystem ( p, g ) so gewihlt werden, dass ds* = dp2 + dqz, [s]o setze ich damit voraus,
dass die Fliche auf eine Ebene abwickelbar sei. Verlange ich aber nur, dass die Koordinaten so
gewihlt seien, dass ds* = A(p, q)dp2 + B(p, q)dq2 ist, d.h. dass die Koordinaten orthogonal seien,
so setze ich damit liber die Natur der Fldche nichts voraus; man kann dies auf jeder Fldche erzielen.”
Einstein to H.A. Lorentz, 23 January 1915, (CPAE 8, Doc. 47).
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are satisfied throughout.

At least it seemed definite to me a priori that a transformation group exceeding the
Lorentz group must exist, because those observations summed up in the words “relativity
principle” and “equivalency principle” point to it.

The coordinate limitation that was finally introduced deserves particular trust because it
establishes a link between it and the postulate of the event’s complete determination.

A theoretical differential geometric interpretation of preferred systems would be of great
value. The weakest point of the theory as it stands today consists precisely in this, that
the group of justified transformations are by no means closely assessable. There is not
even any exact proof that arbitrary motions can be transformed to motionlessness. !>

The letter shows that Einstein saw all coordinate restrictions he had examined to
function essentially on the same level, that is, to be generally imposed as conditions
supplementary to the field equations; this is made clear by his formulation that he
assumed what we have called the “Hertz restriction” eq. (60) to be satisfied “every-
where.” He evidently treated the Hertz restriction on the same level as the condition
eq. (54) for adapted coordinate systems, despite their different form. Both conditions
were motivated, as we have seen, by the conservation principle. But, as Einstein
points out in his letter, the condition for adapted systems could also be justified on a
deeper level; the causality considerations were related to the hole argument, and
therefore inspired more confidence. The letter to Hertz furthermore confirms that
Einstein was convinced that this condition just implies a particular choice of the coor-
dinate system without restricting the range of possible manifolds. He implicitly
claimed that, in the Entwurf theory, all motions can be transferred to rest, although he
admitted that he had been unable to demonstrate this “exactly.”

158 “Wer selber im Chaos der Moglichkeiten sich so viel herumgetrieben hat, begreift Ihre Schicksale
sehr gut. Sie haben ja keine blasse Ahnung, was ich als mathematischer Ignorant habe durchmachen
miissen, bis ich in diesen Hafen eingelaufen bin. Ubrigens ist Ihre Idee sehr natiirlich und wire auf
jeden Fall ernster Verfolgung wert, wenn sie sich iiberhaupt durchfiihren liesse, was ich auf Grund
meiner im Herumirren allméhlich angesammelten Erfahrung sehr bezweifle.

Gegeben eine beliebige Mannigfaltigkeit von 4 Dimensionen (gw(x‘,) gegeben). Wie kann man ein
Koordinatensystem bezw. eine Gruppe von solchen auszeichnen? Es scheint dies auf einfacher als die
von mir gewihlte Art nicht moglich zu sein. Ich habe herum getastet und alles Mogliche versucht,
z.B. verlangt: Das System soll so gewihlt werden, dass tiberall die Gleichungen [eq.] erfiillt seien.
Immerhin schien es mir a priori sicher, dass eine iiber die Lorentz-gruppe hinausgehende Transforma-
tionsgruppe vorhanden sein miisse, da jene Erfahrungen, die mit den Worten Relativitétsprinzip,
Aequivalenzprinzip zusammengefasst werden, darauf hinweisen.

Die schliesslich eingefiihrte Koordinatenbeschriankung verdient deshalb besonderes Vertrauen, weil
sie sich mit dem Postulat der vollstindigen Bedingtheit des Geschehens in Zusammenhang bringen
ldsst.

Eine flaichentheoretische Interpretation der bevorzugten Systeme wire von sehr grossem Werte. Der
schwichste Punkt der Theorie bei ihrem heutigen Stande besteht ndmlich gerade darin, dass man die
Gruppe der berechtigten Transformationen durchaus nicht scharf iibersieht. Exakt ist nicht einmal der
Beweis geliefert, dass beliebige Bewegungen auf Ruhe transformiert werden konnen.” Einstein to
Paul Hertz, 22 August 1915, (CPAE 8, Doc. 111). For an extensive discussion of this letter, see
(Howard and Norton, 1993).
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In spite of such reservations, Einstein was nevertheless convinced that he had
reached all his major original heuristic goals within the Entwurf theory. What
remained were only some minor problems, such as the establishment of the connec-
tion of the methods used by Einstein and Grossmann to the absolute differential cal-
culus, and a clarification of some other mathematical aspects of the theory. Einstein
also had the impression that the crucial proof of the covariance properties of the Ent-
wurf field equation still required improvement. This was the task he set himself in
mid-1914 in the context of composing a major review article, finished by the end of
October and providing a full exposition of the finally complete theory which now was
called, for the first time, the “general theory of relativity” (Einstein 1914a).

7.12 The Revised Covariance Proof and the Definitive Formulation
of the Hole Argument] 39

When at the end of 1914 Einstein looked back on his first review article on general
relativity, entitled “The Formal Foundations of General Relativity” and submitted on
29 October 1914, the revision of the covariance proof appeared to him as the central
achievement, as is suggested in a letter he wrote in December to Paul Ehrenfest:

In recent months I reworked extremely carefully the basis of the general theory of rel.
The covariance proof of last spring was not yet completely right. Otherwise, I have also
been able to penetrate a few things more clearly. Now I am entirely satisfied with that
matter. You will soon receive the paper; read it, you will find it very enjoyable.160

The proof of the covariance properties of the Entwurf field equation as originally con-
ceived by Einstein and Grossmann was based on the idea that an infinitesimal,
adapted coordinate transformation leaves the variation of the action integral invariant.
The variation of the manifold giving rise to the variation of this integral had to be per-
formed in two steps, an “adapted” variation, making it possible to vary the coordinate
system along with the manifold so that it remains adapted to it, and a variation of the
manifold that merely corresponds to the introduction of a new coordinate system, a
“coordinate variation.” The problem with the original proof was that the first of these
two variations was not clearly defined. In fact, Einstein and Grossmann had obvious
difficulties in arguing for the possibility of an appropriate variation of the adapted
coordinate system “following” that of the manifold. This variation of the coordinate
system was introduced rather as an afterthought to the variation of the manifold, an
afterthought which left open exactly how the variation of the manifold is restricted by
the condition that it must be possible to vary the adapted coordinate system along

159 See (Cattani and De Maria 1989b).

160 “In den letzten Monaten habe ich die Grundlage der allgemeinen Rel Theorie nochmals hochst sorg-
faltig bearbeitet. Der Kovarianzbeweis vom letzten Friihjahr war noch nicht ganz in Ordnung. Auch
sonst habe ich manches klarer durchdringen konnen. Nun bin ich aber vollig zufrieden mit der Ange-
legenheit. Du erhilst bald die Arbeit, lies sie, Du wirst grosse Freude daran finden.” Einstein to Paul
Ehrenfest, December 1914 (CPAE 8, Doc. 39).
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with it. The origin of Einstein’s difficulties was his concept of a manifold being
closely tied to its representation by the metric tensor and hence lacked the clear-cut
distinction from the representation of a manifold in terms of coordinates.'6!

At the outset of his new approach, Einstein distinguished more clearly a variation
of the manifold and a variation of the coordinate system. It was probably for the pur-
poses of such a cleaner separation of the different kinds of variations that he treated
coordinate systems—as suggested by the hole argument and in contrast to the modern
understanding—as being essentially given independently from the manifold for
whose description they serve. Einstein believed that in this way he could refer to two
different manifolds, or rather one manifold before and, after the variation, to one and
the same coordinate system.162 The ensuing challenge to refer changes of the values
of the metric tensor due to a coordinate transformation to one and the same coordi-
nate system, given independently from the manifold, may well have induced him to
formulate more clearly than he had done before the artifice of transposing values of
the metric tensor characteristic of the hole argument.

Einstein’s treatment of the hole argument in his 1914 review paper is in fact the
first published version of this argument that makes plain how values of the metric ten-
sor given at one point of the manifold are to be referred to another point, a notion
implicit in its original formulation in late August 1913 but obscured in the subsequent
published presentations. It is also the first version that introduces a distinct notation
for the metric tensor and its representation in a particular coordinate system.163 The
mature and more elaborate formulation of the hole argument was hence closely asso-
ciated with the reworking of the covariance proof. Revisiting, together with Marcel
Grossmann, the covariance properties of the Entwurf field equation, Einstein arrived
at a formulation of this argument that now pointed to philosophical questions con-
cerning the mathematical representation of the physical properties of space and time.

7.13 A Shaky Mathematical Derivation and a Spin-off with Consequences

In the introduction to his 1914 review paper Einstein mentioned the peculiar combi-
nation of physical and mathematical arguments that led him to the Entwurf theory
and announced a purely mathematical derivation:

In recent years I have worked, in part together with my friend Grossmann, on a generali-
zation of the theory of relativity. During these investigations, a kaleidoscopic mixture of
postulates from physics and mathematics has been introduced and used as heuristical
tools; as a consequence it is not easy to see through and characterize the theory from a
formal mathematical point of view, that is, only based upon these papers. The primary

161 See (Norton 1992b).

162 See (Einstein 1914a, 1071-1073). Einstein conceived a variation of the metric tensor generated by a
coordinate transformation, referring its result to the same original coordinate system. His transforma-
tion can thus not be an ordinary coordinate transformation, but must be the kind of transport of values
of the metric tensor from one coordinate system to the other as it is essential to the hole argument.

163 See (Einstein 1914a, 1067).
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objective of the present paper is to close this gap. In particular, it has been possible to
obtain the equations of the gravitational field in a purely covariance-theoretical
manner ... 1%

The basis for this derivation was provided by the variational formalism. In their
paper of early 1914, Einstein and Grossmann had, as we have seen, solved the prob-
lem of identifying an appropriate Lagrangian from which the Entwurf equations were
derived. Since their Lagrangian now represented the natural starting point for build-
ing up the entire edifice of Einstein’s theory, the question arose whether this
Lagrangian could be justified by reasons other than that of generating the desired
field equation. In order to answer this question, Einstein generalized the formalism
jointly developed with Grossmann to apply to an arbitrary Lagrangian. While this
generalization was rather straightforward, it was a more challenging task to pinpoint
the assumptions by which the resulting formalism could be specialized again so as to
determine the Lagrangian appropriate for the Entwurf field equation. Einstein’s
approach was effectively guided by the mathematical strategy presupposing a generic
mathematical object, which is then specialized in light of concrete physical require-
ments. In the generalized formalism of his 1914 review paper, such physical require-
ments had to be formulated as mathematical criteria serving to select the Entwurf
Lagrangian.

It was a combination of two criteria that helped Einstein to achieve this goal, one
derived from the conservation principle, the other from the generalized principle of
relativity. He formulated both criteria in terms of differential conditions for the
Lagrangian and concluded, erroneously as it later turned out, that the requirement of
their compatibility singles out a particular candidate. In the Entwurf theory, the
implementation of the conservation principle imposed, as we have seen, a coordinate
restriction B, = 0 (cf. eq. (54)). This condition played, as we have also seen, the
double role of ensuring the satisfaction of the conservation principle and of determin-
ing the covariance properties of the field equation. The exact same equation B, = 0
also played a role in Einstein’s interpretation of the generalized theory, but here only
in the context of analyzing its covariance properties. The formulation of the conserva-
tion principle within the generalized framework yielded a slightly different equation,
now comprising two terms instead of one:

B g _ o (86)
Z&xv W

164 “In den letzten Jahren habe ich, zum Teil zusammen mit meinem Freunde Grossmann, eine Verallge-
meinerung der Relativitétstheorie ausgearbeitet. Als heuristische Hilfsmittel sind bei jenen Untersu-
chungen in bunter Mischung physikalische und mathematische Forderungen verwendet, so daf} es
nicht leicht ist, an Hand jener Arbeiten die Theorie vom formal mathematischen Standpunkte aus zu
tibersehen und zu charakterisieren. Diese Liicke habe ich durch die vorliegende Arbeit in erster Linie
ausfiillen wollen. Es gelang insbesondere, die Gleichungen des Gravitationsfeldes auf einem rein
kovarianten-theoretischem Wege zu gewinnen ... ” (Einstein 1914a, 1030)
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The existence of two similar but not identical conditions could be turned into a com-
patibility argument identifying the Entwurf theory as a special case of the generalized
formalism. He thus demanded:

SV=0, (87)

v
u
and claimed that this condition, together with the additional requirement that the
Lagrangian be a homogeneous function of second degree in the gravitational fields,
determines uniquely the Entwurf Lagrangian. Einstein’s additional “mathematical”
requirement has, as is the case for his other constraints, also physical aspects, here the
analogy with the Lagrangian for a free electromagnetic field (cf. the default setting
eq. (LXIII)). In his paper Einstein did not explicitly prove his claim. It may well have
been his long-held conviction that the conservation principle determines uniquely the
Entwurf field equation, that simply correlated with his belief that the Entwurf theory
can be uniquely characterized with the help of eq. (87).

It turned out later that Einstein’s reasoning was flawed. A more careful analysis of
his formalism later showed him that eq. (87) did not actually impose a strong addi-
tional selective criterion, but could be easily fulfilled by simply requiring that the
Lagrangian be an invariant under linear transformations, a criterion that does not help
to single out the Entwurf theory. Einstein had imposed this requirement implicitly in
the context of his analysis of the covariance properties and had effectively suppressed
the condition involving SY in this context, thus coming up with what appeared to be
two different sets of conditions, one derived from the generalized principle of relativ-
ity, the other from the conservation principle. A deeper exploration of his formalism,
first achieved about a year later, eventually offered him the insight that the analysis of
the covariance and the conservation aspects actually implied the same set of condi-
tions, an important step towards what later became Noether’s theorem. This step was
prepared by Einstein’s seemingly successful attempt to derive the Entwurf theory
along a mathematical strategy in which, alongside the conservation principle, covari-
ance considerations had assumed the role of the correspondence principle in restrict-
ing the admissible candidate Lagrangians. More than anything else, it was the
supposed achievement of being able to renounce the correspondence principle as part
of Einstein’s derivation that gave it the appearance of being largely independent of
specific physical knowledge about gravitation (Einstein 1914a, 1076).

Nevertheless, what Einstein had achieved was satisfactory also from a physical
point of view. In the course of his mathematical elaboration of the Entwurf theory, he
had brought its field equation into a form satisfying all structural requirements fol-
lowing from the conservation principle. In particular, he succeeded in identifying,
even for a generic Lagrangian, an expression for the stress-energy tensor of the grav-
itational field, i.e. for FIELDMASS. Furthermore, he was able to write the field
equation in a form corresponding to eqs. (XLIV) and (XLV), thus demonstrating the
structural analogy with classical field theory as well as the parallelism between the
stress-energy tensor of matter and of the gravitational field as sources of the field. In
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this way, Einstein had built up a mathematical framework lending itself to direct
physical interpretation:

The system of equations (81) allows for a simple physical interpretation in spite of its
complicated form. The left-hand side represents a kind of divergence of the gravitational
field. As the right-hand side shows, this is caused by the components of the total energy
tensor. A very important aspect of this is the result that the energy tensor of the gravita-
tional field itself acts field-generatingly, just as does the energy tensor of matter.'®

7.14 From Consolidation to Exploration

7.14.1 Living with the Less than Perfect

If considered in hindsight of general relativity, the Entwurf theory has considerable
flaws: it does not comply with the only astronomical test available before 1919166 for
a relativistic gravitation theory, the anomalous perihelion advance of Mercury by ca.
43” per century, which is inexplicable in terms of Kepler’s laws; it does not include
the Minkowski metric in rotating coordinates as a solution and hence disappointed
Einstein’s Machian expectations; and the mathematical derivation from general prin-
ciples was based on an error. Einstein’s discovery of these flaws in the Entwurf theory
may appear to constitute a step-by-step refutation, clearing the way for a new
approach. However, uncovering these flaws did not immediately shatter the Entwurf
theory. As was shown above, the Entwurf theory had emerged as a theory firmly
grounded in the knowledge of classical physics, incorporating, in particular, both the
correspondence and the conservation principles. At the same time, the theory allowed
for a limited extension of the generalized relativity principle to at least general linear
transformations, this limitation being, however, justified by both physical and mathe-
matical arguments. Whatever Einstein achieved in the second phase beyond this
state—in terms of an astronomical confirmation of the theory, of a further generaliza-
tion of the relativity principle, or in terms of its mathematical elaboration—was not
necessary to support the theory. The successes and failures beyond the core estab-
lished in the consolidation period concerned the more ambitious part of Einstein’s
heuristics, in particular the extension of the generalized principle of relativity, which
from the beginning was a less stringent criterion for the validity of his new gravita-
tion theory than its relation to the knowledge of classical physics.

In this section, we shall briefly assess the impact of the discovery of flaws in the
Entwurf theory on Einstein’s attitude with respect to his theory. It demonstrates his

165 “Das Gleichungssystem (81) [cf. eq. (52)] ldft trotz seiner Kompliziertheit eine einfache physikali-
sche Interpretation zu. Die linke Seite driickt eine Art Divergenz des Gravitationsfeldes aus. Diese
wird—wie die rechte Seite zeigt—bedingt durch die Komponenten des totalen Energietensors. Sehr
wichtig ist dabei das Ergebnis, daf der Energietensor des Gravitationsfeldes selbst in gleicher Weise
felderregend wirksam ist wie der Energietensor der Materie.” (Einstein 1914b, 1077)

166 For a discussion of the status of the other two classical tests, gravitational light bending and gravita-
tional redshift, by 1919, see the introduction to (CPAE 9).
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ability to live with the less than perfect or, more specifically, his resistance to aban-
doning an elaborate edifice because of damage it suffered on one of its floors.

7.14.2 The Mercury Problem

In temporal order, Einstein’s discovery of the failure of the Entwurf theory to yield
the correct perihelion shift of Mercury came first; it was made as early as the summer
of 1913. The extensive research notes by Einstein and Besso, which document their
joint effort to calculate Mercury’s perihelion motion, show that this endeavor was
actually part of a broader program that included not only the Entwurf theory, but also
Nordstrom’s gravitation theory, and not only the perihelion shift of Mercury, but also
other possible checks of a non-Newtonian gravitation theory, such as its compatibility
with the effects anticipated on the basis of Einstein’s Machian heuristics. This
broader perspective may have shaped Einstein’s reaction to finding that the Entwurf
theory could not account for the astronomically observed value of the perihelion
shift. First of all, this anomaly could not be explained by other contemporary gravita-
tion theories; second, there might have been a purely astronomical explanation for it;
and third, there was a range of other possible checks of the Entwurf theory, such as
the deflection of light in a gravitational field and gravitational redshift. In view of this
situation, the negative finding on Mercury’s perihelion shift was not a result of imme-
diate significance for the validity of the Entwurf theory. It had required some effort to
perform the perihelion calculation, but from the beginning it must have been at best a
hope that a relativistic gravitation theory could actually account for this effect. Ein-
stein himself did not publish his negative result. He encouraged Besso to complete a
paper offering a comparative evaluation of contemporary gravitation theories both on
empirical and epistemological grounds.167 In his contemporary letters, he appeared
more convinced of or worried by, as the case might be, the theory’s internal consis-
tency or lack thereof.

The failure of the perihelion calculation was not mentioned in Einstein’s publica-
tions and hardly ever in his contemporary correspondence. It only played a role in
Einstein’s later justifications of his abandonment of the Entwurf theory. If his and
Besso’s extensive manuscript notes had not survived, one would not have known how
much effort they had invested into this calculation. And yet, this calculation had a
profound impact on the genesis of general relativity, which is discussed more exten-
sively below, by affecting the speed with which Einstein could calculate the perihe-
lion shift on the basis of his later generally-covariant theory.168 This was possible
because the formalism he had developed for the Entwurf theory turned out to be more
generally applicable and hardly required any modification when used in the context
of another gravitation theory. But the perihelion calculation also had more subtle
effects which, as we shall see, later turned out to be beneficial to Einstein’s renewed

167 Einstein to Michele Besso, after 1 January 1914 (CPAE 5, Doc. 499).
168 For detailed historical discussion, see (Earman and Janssen 1993).
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exploration of generally-covariant candidate field theories. It led, in particular, to an
improved understanding of the Newtonian limit.

7.14.3 The Rotation Problem

The method developed by Einstein and Besso for calculating the perihelion advance
was based on an iterative procedure for finding approximate solutions of the field
equation. It also turned out to be applicable to the investigation of another question of
great heuristic significance for Einstein’s attempt to generalize the relativity princi-
ple.169 As we have discussed earlier, this attempt was guided, from the beginning, by
the idea of conceiving rotation as being equivalent to a state of rest, interpreting the
inertial forces arising in a rotating frame of reference as a special gravitational field.
If the Entwurf theory were actually compatible with this heuristics, the Minkowski
metric in rotating coordinates should be a solution of its field equations.

The inertial forces arising in a rotating frame, centrifugal and Coriolis forces, are
of a different order in the angular velocity, the centrifugal force depending on its
square, the Coriolis forces depending linearly on this velocity. Einstein and Besso’s
approximation scheme could thus be used to check whether one can obtain from a
first-order approximation of a Minkowski metric in rotating coordinates, containing
only the components relevant for the Coriolis forces, the correct second order term
relevant for the centrifugal forces. The result of this calculation could then be com-
pared with that of the direct transformation of the Minkowski metric in rotating coor-
dinates.

In a scratch notebook Finstein first wrote down the one component relevant for
the centrifugal force and then two components relevant for the Coriolis force. Under-
neath he wrote:

Is the first equation [concerning the centrifugal force] a consequence of the other two
[concerning the Coriolis force] on the basis of the theory?]m

In a page of the bundle of manuscripts used jointly by Einstein and Besso for their
calculations on the perihelion shift, Einstein actually performed this check (CPAE 4,
Doc. 14, [41-42]). Although the approximation scheme applied to the Entwurf theory
does not yield the correct value for the 44 component of a Minkowski metric in
rotating coordinates, he at first came to the erroneous conclusion that it actually does,
and ended his calculation with the remark “stimmt” (CPAE 4, Doc. 14, [41]).

There is, however, as early as 1913 evidence that this was not Einstein’s last word.
In the draft for his paper on contemporary gravitation theories, Besso listed the fail-
ure of the Entwurf theory to yield the correct combination of centrifugal and Coriolis
forces, in other words, its failure to include the Minkowski metric in rotating coordi-

169 For a discussion of this procedure, see the editorial note on the Einstein-Besso manuscript in
(CPAE 4, 346-349), as well as (Earman and Janssen 1993, 142-143).

170 “Ist die erste Gleichung Folge der beiden letzten auf Grund der Theorie?” (CPAE 3, Appendix A,
[66]).
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nates as a solution, as problems to be thought about and to be discussed with Ein-
stein. From these notes it seems that at some point by the end of August 1913, Besso
was aware of this problem. Einstein’s contemporary correspondence suggests that he
as well had realized by mid-August that the positive result mentioned above was
actually based on an error.!7!

The problem resurfaced only when Einstein had convinced himself, after the dis-
covery of a flaw in his original conservation argument (cf. subsection “Einstein’s
Reinterpretation of the Conservation Principle,” p. 235, that there actually exists a
large variety of transformation to accelerated reference systems under which the Ent-
wurf theory was covariant. On 20 March 1914, Michele Besso wrote to Einstein, after
the latter had reported his progress in analyzing the covariance properties of the
Entwurf field equations:

Does the result obtained also give a clue, perhaps, for a more complete treatment of the
rotation problem, so that one can get the correct value of the centrifugal force? Unfortu-
nately, my brain, at least the way it has been trained, is much too feeble for me to answer
this question myself, or even to guess from what side it could be attacked. For reasons
already discussed, it seems to me that it (?) is of importance for the astronomical prob-
lem as well (for until now it at least seemed that a system in which no Coriolis forces flit
about could still be a seat of centrifugal forces, or the reverse).172

The passage clearly confirms that Besso was aware by spring 1914—and also
assumed Einstein to be aware—that the “incomplete treatment” of the problem of
rotation (probably referring to the use of an approximation procedure) did not yield
the correct result for the Coriolis force. Besso also claimed that the solution to this
problem might be relevant for the calculation of the perihelion shift of Mercury (pos-
sibly the “astronomical problem” to which he alluded). Einstein did not, however, at
this point check the compatibility of his general insights into the covariance proper-
ties of the Entwurf field equations with concrete calculations on the level of his
approximation scheme.

It was only in September 1915 that Einstein rediscovered, to his surprise, the
result that the iterative solution of the Entwurf field equations does not yield the cor-
rect Minkowski metric in rotating coordinates. This is known from a letter he wrote

171 See, e.g., Einstein to H. A. Lorentz, 14 August 1913, (CPAE 5, Doc. 467). Einstein did not allude to
anything like having established the Minkowski metric in rotating coordinates as a solution of the Ent-
wurf equations (at least in second-order approximation) in his letters to Lorentz nor in those he wrote
to other colleagues and friends, who would have been interested in the issue, such as Ernst Mach,
Erwin Freundlich, Heinrich Zangger, Paul Ehrenfest, and Michele Besso. See also the extended dis-
cussion in “What Did Einstein Know ...” (in vol. 2 of this series).

172 “Gibt das erreichte Resultat vielleicht auch einen Wink fiir eine vollstindigere Behandlung des Dre-
hungsproblems, so dass man den richtigen Wert der Centrifugalkraft bekommen kann? Leider ist
mein Kopf, wenigstens so wie er einmal erzogen ist, viel zu schwach, um mir die Frage selbst zu
beantworten, oder auch nur zu ahnen, wo man sie angreifen konnte. Aus schon besprochenen Griin-
den scheint sie (?) mir auch fiir das astronomische Problem von Bedeutung (weil es frither wenigstens
so aussah, ein System in welchem keine Corioliskrifte huschen, doch Sitz von Centrifugalkriften sein
konnte, oder umgekehrt).” Michele Besso to Einstein, 20 March 1914, (CPAE 5, Doc. 516, 606).
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on 30 September 1915 to Erwin Freundlich, in which he now also connected this
finding with the perihelion problem, just as Besso had done in the letter quoted
above. Evidently Einstein was quite concerned by his finding:

I am writing you now about a scientific matter that electrifies me enormously. For I have
come upon a logical contradiction of a quantitative nature in the theory of gravitation,
which proves to me that there must be a calculational error somewhere within my frame-
work. [...]

Either the equations are already numerically incorrect (numerical coefficients), or I am
applying the equations in a principally incorrect way. I do not believe that I myself am in
the position to find the error, because my mind follows the same old rut too much in this
matter. Rather, I must depend on a fellow human being with unspoiled brain matter to
find the error. If you have time, do not fail to study the topic.173

The letter leaves open in which context Einstein redid the earlier calculation. It is
plausible to assume that it was once more Besso who stimulated the reconsideration
of this problem. In fact, Besso and Einstein probably discussed the Mercury as well
as the rotation problem during the latter’s stay in Switzerland in September 1915.174
The letter to Freundlich was sent only a week after Einstein’s return to Berlin.!> 1t
was probably written as a reaction to a request for political support and represented
one of the first occasions for Einstein to present the revived rotation problem to a col-
league who must have been interested in it because of its implication for the under-
standing of the Mercury problem.176

Evidently, this time Einstein found the rotation problem much more alarming than
he did in the summer of 1913. In his letter to Freundlich he still did not substantially
question the Entwurf field equation but merely took into consideration that he applied

173 “Ich schreibe Thnen jetzt in einer wissenschaftlichen Angelegenheit, die mich ungeheuer elektrisiert.
Ich bin ndmlich in der Gravitationstheorie auf einen logischen Widerspruch quantitativer Art gestos-
sen, der mir beweist, dass in meinem Gebdude irgendwo eine rechnerische Unrichtigkeit stecken
muss. [...] Entweder sind die Gleichungen schon numerisch unrichtig (Zahlenkoeffizienten) oder ich
wende die Gleichungen prinzipiell falsch an. Ich glaube nicht, dass ich selbst imstande bin, den Fehler
zu finden, da mein Geist in dieser Sache zu ausgefahrene Gleise hat. Ich muss mich vielmehr darauf
verlassen, dass ein Nebenmensch mit unverdorbener Gehirnmasse den Fehler findet. Versdumen Sie
nicht, wenn Sie Zeit haben, sich mit dem Gegenstande zu beschiftigen.” Einstein to Erwin Freun-
dlich, 30 September 1915 (CPAE 8, Doc. 123), extensively discussed in (Janssen 1999), here just a
summary,

174 He wrote to Elsa Einstein from Lucerne: “In Zurich I was together with Besso very often; my stay in
Zurich was very much improved by it, but thus I neglected my duties to others.” (“In Ziirich war ich
sehr viel mit Besso zusammen, mein Aufenthalt wurde dadurch sehr verschonert, doch vernachlis-
sigte ich so meine Pflicht gegen andere.”) Einstein to Elsa Einstein, 11 September 1915, (CPAE 8,
Doc. 116).

175 See Calender (CPAE 8, 998).

176 Einstein had written to Freundlich in March of the same year on the perihelion problem, see Einstein
to Erwin Freundlich, 19 March 1915 (CPAE 8, Doc. 63). He had written a letter to Lorentz a day after
his return from Switzerland, Einstein to H. A. Lorentz, 23 September 1915, (ibid., Doc. 122), in which
he did not mention this problem, probably because he was ashamed.
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it incorrectly —probably a reference to the unclear status of the approximation proce-
dure—or that some numerical coefficients were wrong.

That the discovery of this flaw, taken by itself, did not amount to a refutation of
the Entwurf theory is made evident also by Einstein’s immediate reaction to the rota-
tion problem. Apparently encouraged by his general results on the covariance proper-
ties of the Entwurf theory, which, as we have seen, amounted for him to the claim that
there was no physical restriction of the generalized relativity principle but only on the
choice of admissible coordinates, he attempted to show that the Entwurf field equa-
tion could be solved by a rotating system in a different set of coordinates; but this
attempt failed as well.1”’ Shortly afterwards, he developed a new derivation of the
Entwurf field equation, to which we will turn below, effectively confirming its immu-
nity with regard to the rotation problem. It was only after his return to the November
tensor, that he listed the problem of rotation as one of the three flaws which under-
mined his trust in the Entwurf theory.

Einstein’s diverse reactions over the course of time to the same problem of the
Entwurf theory are correlated with his changing perspectives during the elaboration
of this theory. When he first believed that his rotation calculation worked, it seemed
like progress on the bold approach, without providing him with a general insight into
the covariance properties of the Entwurf theory. When it turned out that it does not
actually work, this negative result became irrelevant because Einstein successfully
developed his defensive approach with the supposed consequence that the Entwurf
field equation is covariant only under linear transformations. When Einstein then, in
the second phase of the consolidation period of the Entwurf theory, achieved more
general insights into its covariance properties, these insights seemed to make a check
on the level of concrete calculations superfluous. Eventually, Einstein took it for
granted that rotation did not present a problem for the Entwurf theory. Only when he
reviewed the problem in September 1915, possibly at Besso’s prompting, he finally
connected his general considerations with his concrete calculations—and rediscov-
ered the problem. This result now questioned not only his earlier conviction concern-
ing rotation, but also more generally the significance of his insights into the theory’s
covariance properties. Still, the discovery of this failure implied little more than a
return to the status of the Entwurf theory at the end of the first phase of the consolida-
tion period, its covariance being guaranteed only for general linear transformations.

7.14 4 The Failure of the Covariance Proof

We now turn to the last flaw that Einstein discovered, probably in early October,
some weeks before he gave up the Entwurf theory. This flaw concerns Einstein’s
attempt to derive the Entwurf field equation along the mathematical strategy. As our
earlier discussion of this endeavor has made clear, one of its problems was the neces-

177 See the calculations on the back of the draft of letter Einstein wrote to Otto Naumann after 1 October
1915, (CPAE 8, Doc. 124).
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sity to adapt general tools, such as variational calculus, to the requirement of
restricted covariance. This aspect had been at the center of Einstein’s discussion in
early 1915 with the Italian mathematician Tullio Levi-Civita, which apparently was
triggered by a letter from Max Abraham.

Abraham may well have been one of the first to discover a problem with Ein-
stein’s derivation of the Entwurf field equation from a Lagrangian function. On 23
February 1915 he wrote to Levi-Civita:

Really I did not understand on which hypotheses his new demonstration is based. Among
all possible invariants that could be used to construct the [Lagrangian] function H he
chooses very arbitrarily the one that yields his field equations.178

Abraham thus succinctly summarized the crucial weakness of Einstein’s proof.

But Levi-Civita’s exchange with Einstein did not touch upon this crucial problem.
Levi-Civita focused instead on a specific technical problem in Einstein’s derivation;
his proof of the claim that the candidate for the left-hand side of the field equations is
atensor.!”® He produced a counter-example which Einstein, however, declared irrele-
vant by pointing to the fact that Levi-Civita’s example does not satisfy the condition
of being covariant under the linear transformations that he had explicitly stipu-
lated.!3Y As we shall see, he only later would realize the questionable role of this con-
dition in his proof. Levi-Civita, in any case, did not insist on this aspect. Einstein had
more difficulties in responding to other problems in his proof to which Levi-Civita
drew his attention. In spite of his attempts to rebut the latter’s criticism, Einstein
eventually had to admit that his derivation was incomplete, without, however, losing
faith in it actually fulfilling its purpose in yielding the Entwurf field equations.181 On
the contrary, as Einstein wrote to Levi-Civita during their controversy:

I must even admit that, through the in-depth considerations to which your interesting let-
ters have led me, I have become only more firmly convinced that the proof of the tensor
character of Q’Mv/ ~/—g 1is correct in principle.182

Further objections by Levi-Civita did not shatter this conviction. Nevertheless Ein-
stein and Levi-Civita agreed upon a shortcoming of Einstein’s proof; eventually when
Levi-Civita proposed an alternative gravitation theory involving a scalar gravitational
potential, Einstein lost interest in the exchange and broke it off 183

Einstein’s discovery of the crucial flaw in his proof was not stimulated by Levi-
Civita’s criticism but by a reconsideration of this proof in light of a paper by Lorentz
about six months later. When Einstein returned from Switzerland on 22 September

178 Quoted after (Cattani and De Maria 1989b, 184-185).

179 For an extensive discussion, see (Cattani and De Maria 1989b).

180 See Einstein to Tullio Levi-Civita, 5 March 1915 (CPAE 8, Doc. 60).

181 See Einstein to Tullio Levi-Civita, 5 May 1915, (CPAE 8, Doc. 80).

182 “Ich muss sogar gestehen, dass ich durch die tieferen Uberlegungen, zu denen mich Ihre interessanten
Briefe brachte, noch fester in der Uberzeugung wurde, dass der Beweis vom Tensorcharakter von
@uV/Jjg im Prinzip richtig ist.” Einstein to Tullio Levi-Civita, 8 April 1915 (CPAE 8, Doc. 71)

183 See Einstein to Tullio Levi-Civita, 5 May 1915, (CPAE 8, Doc. 80).
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1915, he found Lorentz’s recently published paper on Hamilton’s principle in the the-
ory of gravitation, including a treatment of electromagnetic fields. In a letter to
Lorentz dated the following day Einstein wrote:

Your article delighted me. I have also found a proof for the validity of the [relativistic]
energy-momentum conservation principle for the electromagnet. field taking gravitation
into consideration, as well as a simplified covariant theoretical representation of the vac-
uum equations, in which the “dual” six tensor [Sechservektor] concept proves unessen-
tial. At the moment I am occupied with studying your papcr.184

Lorentz’s paper on generally-covariant Maxwell theory introduced a generic Hamil-
tonian principle without deriving Einstein’s specific choice from it.!8 In a first reac-
tion to this paper, Einstein attempted to convince Lorentz that the theory of invariants
actually leads to such a specific choice. Although the letter in which Einstein
expressed this conviction is not preserved, this much can be concluded from a subse-
quent letter in which Einstein revoked his claim:

Subsequent reflections on the last letter I sent you have revealed that I made erroneous
assertions in that letter. In actual fact the invariant theory method does not yield more
than Hamilton’s principle when determining your function Q(= H./-g). 186

Evidently, it was the thorough comparison with Lorentz’s approach that directed Ein-
stein’s attention to a flaw in his derivation of the Entwurf field equations.

On reexamining his 1914 derivation, Einstein found that the condition of linearity,
which had apparently entered his argument as an unproblematic default setting, was
less innocent than it first appeared to him:

The reason why I did not notice this last year is that on p. 1069 of my article I had frivo-
lously introduced the condition that H was invariant against linear transformation.'87

As we discussed earlier, it was by introducing this condition that Einstein had found

the condition B, = 0 for the choice of an adapted coordinate system, while he had

= 0 as a consequence of energy-momentum

derived the condition E aSy/dx, - B,
v

conservation—without taking into account the linear covariance of the Lagrangian.

184 “Uber Ihre Abhandlung habe ich mich sehr gefreut. Ich habe auch einen Beweis fiir die Giiltigkeit des
Impuls Energ[ie]satzes des elektromagnet. Feldes mit Beriicksichtigung der Gravitation gefunden
sowie eine kovariantentheoretisch vereinfachte Darstellung der Vakuumgleichungen, indem sich der
Begrift des “dualen” Sechservektors als entbehrlich erweist. Ich bin gerade mit dem Studium Ihrer
Arbeit beschiftigt.” Einstein to H. A. Lorentz, 23 September 1915, (CPAE 8, Doc. 122).

185 See (Lorentz 1915).

186 “Nachtriigliche Uberlegungen zu dem letzten Briefe, den ich an Sie richtete, haben gezeigt, dass ich in
diesem Briefe Unrichtiges behauptete. Thatséchlich liefert die invariantentheoretische Methode nicht
mehr als das Hamilton’sche Prinzip wenn es sich um die Bestimmung der Ihrer Funktion
o(= H&) handelt.” Einstein to H. A. Lorentz, 12 October 1915, (CPAE 8, Doc. 129).

187 “Dass ich dies letztes Jahr nicht merkte liegt daran, dass ich auf Seite 1069 meiner Abhandlung leicht-
sinnig die Voraussetzung einfiihrte, H sei eine Invariante beziiglich linearer Transformationen.”
(CPAE 8, Doc. 129)
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The basic error which Einstein discovered thus consisted in requiring the compatibil-
ity of two conditions derived under different assumptions, once with linearity and
once without. An acceptable derivation of the Entwurf field equation from the
Lagrangian formalism had therefore to be based on additional assumptions. In his let-
ter to Lorentz, Einstein reintroduced the correspondence principle in order to justify
the selection of the Entwurf Lagrangian among the lengthy list of candidates given in
his 1914 paper:

That Q/ & had been set by me as equal to the fourth expression given there can be
justified by the fact that only with this choice does the theory contain Newton’s in
approximation. That I believed it possible to support this selection on the equation Sﬁ
was based on error.'88 ‘

Einstein’s derivation along a mathematical strategy was thus reduced, in its sub-
stance, to that of the original 1913 Entwurf paper. He had come back to his starting
point—but with one important difference: In spite of the failure of his hope to achieve
a derivation essentially from covariant theory only, he had effectively found a deriva-
tion in which mathematical principles came first and were supplemented by the phys-
ical requirements of energy-momentum conservation and Newtonian limit embodied
in the default settings of his field equation. In other words, Einstein had established a
derivation which follows precisely the pattern of his attempted derivations along the
mathematical strategy in the Zurich Notebook. But instead of taking a generally-
covariant object suggested by absolute differential calculus as a starting point, Ein-
stein’s point of departure was now the variational calculus he had developed himself.

From Einstein’s correspondence it becomes clear that he did not yet consider the
state of affairs just described as a reason for abandoning the Entwurf theory. There is
no trace of this in his letter to Lorentz. Also in a letter written to Zangger a few days
later,'® Einstein treated gravitation as one among several topics, clearly considering
his current work on it as business as usual:

It has unfortunately become clear to me now that the “new stars” have nothing to do with
the “lens effect,” moreover that, taking into account the stellar densities existing in the
sky, the latter must be such an incredibly rare phenomenon that it would probably be
futile to expect one of the like.!%0

188 “Dass Q/./—g von mir gleich dem vierten der dort angegebenen Ausdriicke gesetzt werde, lisst sich
dadurch rechtfertigen, dass die Theorie nur bei dieser Wahl die Newton’sche als Niherung enthilt.
Dass ich glaube, diese Auswahl auf die Gleichung SZ; stiitzen zu konnen, beruhte auf einem Irrtum.”
(CPAE 8, Doc. 129)

189 The letter was dated by the editors of (CPAE 8) as 15 October 1915, but since it is explicitly dated
only as “Friday” and other indications leave a window between 30 September and 21 October, it may
well have been written on 8 October, i.e. before the letter to Lorentz.

190 “Seit ich hier bin, habe ich sehr fest auf meiner Bude gearbeitet. Es ist mir nun leider klar geworden,
dass die “neuen Sterne” nichts mit der “Linsenwirkung” zu thun haben, das ferner letztere mit Riick-
sicht auf die am Himmel vorhandenen Sterndichten ein so ungeheuer seltenes Phinomen sein muss,
dass man wohl vergeblich ein solches erwarten wiirde. Ich schrieb eine ergénzende Arbeit zu meiner
letztjdhrigen Untersuchung iiber die allgemeine Relativitit. Gegenwirtig arbeite ich etwas in Wirme-
theorie.” Einstein to Heinrich Zangger, 15 October 1915, (CPAE 8, Doc. 130).
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Einstein evidently considered what he believed to be the impossibility of relating the
observation of nova stars to the gravitational lensing effect he had predicted in
1912'° to be more important than the problem he had discovered in the mathemati-
cal proof of the Entwurf theory. Even the paper that he mentions as being supplemen-
tary to his 1914 review is probably not a reference to a planned revocation of his
proof192 but to a paper mentioned in his earlier letter to Lorentz on generally-covari-
ant electrodynamics, which was eventually published in 1916 (Einstein 1916b). Thus,
also the third flaw which Einstein discovered in the Entwurf theory did not immedi-
ately lead to its refutation.'®3 It nevertheless must have had a subversive effect on his
belief in this theory as will be discussed in the next section.

In summary, we have seen that the endeavor to develop a mathematical strategy
for deriving the Entwurf field equation had to face tensions between the non-covari-
ance of the theory and the properties of a mathematical apparatus naturally tuned to
generally-covariant objects. These tensions implied the necessity to repeatedly rework
the mathematical analysis of the covariance properties of the theory and the derivation
of the field equation based on it; they became particularly evident in the criticism by
Abraham and Levi Civita. The latter’s critique, however, never questioned the goal of
Einstein’s derivation, to show the supposed uniqueness of the Entwurf field equation.
Einstein’s exposition of his theory to the Gottingen mathematicians and physicists in a
series of six Wolfskehl lectures, delivered in late June and early July 1915 at the invi-
tation of David Hilbert,194 may also have induced a renewed reflection on the justifi-
cation of the Entwurf theory along the mathematical strategy.

The problematic character of Einstein’s derivation of the Entwurf field equation
from a Lagrangian formalism may have emerged, as we have also seen, in the context
of applying the formalism to a different context, that of a generally-covariant Max-
well theory. It was here that the formalism developed specifically for the Entwurf the-
ory first proved its greater generality. Against this background Einstein’s discovery of
a flaw in his derivation could have had a double effect: It pointed out the familiar
physical arguments for deriving the Entwurf theory, and it suggested taking up once
more the mathematical strategy of trying out the newly empowered techniques on dif-
ferent candidates. Initially Einstein chose the first option, but his rederivation of the
Entwurf theory from a variational formalism plus one extra physical condition may

191 See (Renn and Sauer 2003b).

192 As conjectured in (Janssen 1999, note 51).

193 We leave aside here the question of a possible, direct or indirect, influence by David Hilbert, who had
also found a flaw in Einstein’s reasoning around this time. It is, however, unclear whether and if so
when and what Einstein may have learned about Hilbert’s work prior to 7 November 1915 when their
extant correspondence on this issue begins. See (Corry 2004, ch. 7) and further references cited
therein for a discussion of the interaction between Einstein and Hilbert in this period. See also the dis-
cussion below in sec. 7.18.1

194 Fragments of an auditor’s notes taken during one of the lectures are published in (CPAE 6, Appendix
B). For further historical discussion of Einstein’s Gottingen visit in June and July 1915, see (Corry
2004, pp. 320-329).
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have made it clear to him how much more general this formalism was, particularly
since the conservation principle no longer presented a major obstacle.

7.15 Einstein’s November Revolution: the Restoration of an Old Candidate

7.15.1 Looking Back in Anger and Hope

With his publication of 11 November 1915, submitted on the 4th of November, Ein-
stein made his definite rejection of the Entwurf theory public:

My efforts in recent years were directed toward basing a general theory of relativity, also
for nonuniform motion, upon the supposition of relativity. I believed indeed to have
found the only law of gravitation that complies with a reasonably formulated solution in
a paper that appeared last year in the Sitzungsberichte.

Renewed criticism showed to me that this truth is absolutely impossible to show in the
manner suggested. That this seemed to be the case was based upon a misjudgment.195

Among the three major flaws he had meanwhile found in the Entwurf theory, the
Mercury failure, the rotation failure, and the breakdown of its mathematical deriva-
tion, the latter was publicly the most visible, documented as it was by Einstein’s
lengthy 1914 review paper. It was, in any case, the only failure explicitly mentioned
in his first 1915 article:

The postulate of relativity—as far as I demanded it there—is always satisfied if the
Hamiltonian principle is chosen as a basis. But in reality, it provides no tool to establish
the Hamiltonian function H of the gravitational field.!9®

As we have seen, none of the problems of the Entwurf theory, taken by themselves or
together, resulted in an immediate rejection of this theory. Therefore it is not self-evi-
dent that Einstein, in view of these problems, finally decided to give up the Entwurf
theory, as he pointed out in the 1915 paper:

For these reasons I lost trust in the field equations I had derived, and instead looked for a
way to limit the possibilities in a natural manner.!”’

195 “In den letzten Jahren war ich bemiiht, auf die Voraussetzung der Relativitéit auch nicht gleichférmi-
ger Bewegungen eine allgemeine Relativititstheorie zu griinden. Ich glaubte in der Tat, das einzige
Gravitationsgesetz gefunden zu haben, das dem sinngeméfB gefafiten, allgemeinen Relativitéitspostu-
late entspricht, und suchte die Notwendigkeit gerade dieser Losung in einer im vorigen Jahre in die-
sen Sitzungsberichten erschienenen Arbeit darzutun.

Eine erneute Kritik zeigte mir, daf3 sich jene Notwendigkeit auf dem dort eingeschlagenen Wege abso-
lut nicht erweisen 14Bt; daf} dies doch der Fall zu sein schien, beruhte auf Irrtum.” (Einstein 1915¢,
778)

196 “Das Postulat der Relativitit, soweit ich es dort gefordert habe, ist stets erfiillt, wenn man das Hamil-
tonsche Prinzip zugrunde legt; es liefert aber in Wahrheit keine Handhabe fiir eine Ermittelung der
Hamiltonschen Funktion H des Gravitationsfeldes.” (Einstein 1915c¢, 778)

197 “Aus diesen Griinden verlor ich das Vertrauen zu den von mir aufgestellten Feldgleichungen vollstéin-
dig und suchte nach einem Wege, der die Moglichkeiten in einer natiirlichen Weise einschriinkte.”
(Einstein 1915c, 778)
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This step cannot be exclusively accounted for, we believe, on the basis of the failures
of that theory but only becomes plausible in view of the unexploited resources that he
still had at his disposal from his earlier work in the Zurich Notebook. This is also
suggested by the sentences following immediately in the paper:

In this pursuit I arrived at the demand of general covariance, a demand from which I
parted, though with a heavy heart, three years ago when I worked together with my
friend Grossmann. As a matter of fact, we were then quite close to that solution of the
problem, which will be given in the following‘]98

In fact, after abandoning the Entwurf theory Einstein returned to one of the mathe-
matical objects he had encountered along the mathematical strategy three years ago
in the Zurich Notebook, the November tensor (cf. eq. (82)). As the above passage
suggests, he did not insist on the specific requirement of general covariance, but
merely required a “more general covariance of the field equations.” It was thus, above
all, a return to the mathematical strategy applied to the absolute differential calculus
that marked the turning point of 11 November 1915, rather than a radical break with
his earlier experiences concerning the restriction of covariance if it turned out to be
necessary. Indeed, Einstein now emphatically embraced the absolute differential cal-
culus:

Nobody who really grasped it can escape from its charm, because it signifies a real tri-
umph of the general differential calculus as founded by Gauss, Riemann, Christoffel,
Ricci, and Levi-Civita.'*’

In the context of our account, the crucial questions for understanding Einstein’s shift

in late 1915 are:

1. What eventually convinced him to give up the Entwurf theory and return to the
mathematical strategy applied to the absolute differential calculus?

2. How could any of the tensors explored and discarded in the course of Einstein’s
work on the Zurich Notebook now again represent a resource for a renewed
exploration?

3. What made the November tensor particularly suitable for such a renewed explora-
tion? And, finally:

4. How exactly did Einstein find his way back to the November tensor?

The answer to the first question follows from our analysis of the third flaw Einstein
discovered in the Entwurf theory, the erroneous derivation. His last derivation of the
Entwurf field equation had effectively reinstalled the mathematical strategy in its

198 “So gelangte ich zu der Forderung einer allgemeineren Kovarianz der Feldgleichungen zuriick, von
der ich vor drei Jahren, als ich zusammen mit meinem Freunde Grossmann arbeitete, nur mit schwe-
rem Herzen abgegangen war. In der Tat waren wir damals der im nachfolgenden gegebenen Losung
des Problems bereits ganz nahe gekommen.” (Einstein 1915c, 778)

199 “Dem Zauber dieser Theorie wird sich kaum jemand entziehen konnen, der sie wirklich erfalit hat; sie
bedeutet einen wahren Triumph der durch Gauss, Riemann, Christoffel, Ricci und Levi-Civiter
begriindeten Methode des allgemeinen Differentialkalkiils.” (Einstein 1915c, 779)
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original sense, starting from a generally-covariant object which is then checked and,
if necessary, modified according to physical criteria. However, both the starting point
and the check list of criteria now looked somewhat different from how they did in
1912-1913. If Einstein’s starting point had then been a second-rank tensor represent-
ing a candidate for the left-hand side of the field equation, it was now a scalar repre-
senting the Lagrangian of the theory. And if the conservation principle was then a
criterion that had to be laboriously checked for each single candidate, it was now
automatically fulfilled for any candidate fitting into the general framework. The cor-
respondence principle therefore remained the crucial criterion for choosing the right
candidate. If Einstein at any point after his letter to Lorentz of 12 October 1915
decided to actually check his claim that the Entwurf theory was determined uniquely
by this criterion, his search would have been governed by the renewed mathematical
strategy. In a word, checking the Entwurf theory and pursuing the mathematical strat-
egy simply coincided in the end.

To answer the second question of why, in general, tensors earlier discarded could
now be considered worthy of further examination, we must turn once again to the Zur-
ich Notebook. Einstein’s examination in the notebook of candidate gravitation tensors
extracted from the Riemann tensor was restricted to the weak-field form of the field
equation. In the notebook, Einstein mastered energy-momentum conservation only for
weak fields—with the exception of the Entwurf operator at the end of the notebook.
Therefore, all candidates extracted from the Riemann tensor were left only partially
explored in the notebook when Einstein decided to move on to the next candidate.
This unexplored potential of the candidates encountered along the mathematical strat-
egy was one of the essential reasons why he considered it worthwhile to reexamine
them in 1915. Another crucial reason for such progress in a loop—or by reflection—
was the fact that Einstein’s renewed mathematical strategy now drew on more
resources, in particular, the variational calculus as applied for the Entwurf theory.

In answering the third question of what made the November tensor particularly
suitable for a renewed exploration, we again must look at the Zurich Notebook. There
Einstein, with Grossmann’s help, had derived the November tensor from the Ricci
tensor under the stipulation of unimodular coordinate transformations. Contrary to
the Ricci tensor, the November tensor satisfies Einstein’s physically motivated crite-
ria because it could be reduced to a form suitable for obtaining the Newtonian limit
by assuming a coordinate restriction (the Hertz restriction) that was the same as the
restriction required by energy-momentum conservation in the weak field limit (cf. eq.
(LXXXIV)). Contrary to the Einstein tensor, the harmonization of these two restric-
tions for the November tensor did not require a change in the view of how the Newto-
nian limit was to be achieved. Clearly, the November tensor offered a natural starting
point for a renewal of the mathematical strategy, since in its case the check of the
weak field equation with regard to the conservation and correspondence principles
produced a positive outcome —shadowed only by the restricted covariance properties
of the candidate that resulted from the November tensor by imposing the required
coordinate restriction. The questions that remained were whether or not this result
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could be extended to the full field equation as well, and which restrictions of covari-
ance were implied for the full equation by the conservation principle. These questions
could now be addressed with the help of an improved mathematical apparatus.

The answer to the fourth question, concerning the actual path that Einstein took in
rediscovering the November tensor in the fall of 1915 is suggested by several com-
ments pointing to the crucial role of the default setting for the gravitational field eq.
(XXII) which, in hindsight, played the role of a “fateful prejudice” with its substitu-
tion by the default setting eq. (XXIII) being the “key to the solution.”? The path
leading from the Entwurf field equation to a field equation based on the November
tensor can be reconstructed with fair confidence in view of the default setting for the
Lagrangian in terms of the field eq. (LXIII). It was, as we have discussed, this default
setting, rooted in classical field theory, which had also made the Entwurf Lagrangian
look particularly promising.

It must have been tempting for Einstein to look for other Lagrangians that could
be interpreted in this way as involving a “square” of the gravitational fields, experi-
menting with the definition of the gravitational field. In fact, the internal logic of the
mathematical representation exerted a pressure on Einstein’s interpretation, since in
that representation the connection coefficients, i.e. the Christoffel symbols, have a
central importance in, e.g. the concept of a covariant derivative, the geodesic equa-
tions, or the definition of the Riemann and Ricci tensors. This role of the connection
coefficients was at odds with the significance that Einstein attached to the coordinate
derivatives of the metric. Thus, when Einstein took the mathematical tradition more
seriously again, the mathematical knowledge that was accumulated in the representa-
tion, forced him to reconsider his physical prejudices. And it was indeed not far
fetched to reinterpret the Christoffel symbol as representing the field, a choice that
almost immediately leads to the Lagrangian of the November theory. Einstein’s ear-
lier experience, documented in the Zurich Notebook, might have helped find this path
from the Entwurf to the November theory because at that time he had already
explored the relation between gravitation tensors expressed by Christoffel symbols
and their expression in terms of the derivatives of the metric, e.g. in the context of
studying the so-called “theta-condition »201

In summary, in the fall of 1915 Einstein succeeded in combining insights from his
earlier mathematical strategy and canonical mathematical knowledge with the
achievements of the physically motivated Entwurf theory. He had probably omitted
the November tensor from the Zurich Notebook because he lacked the mathematical
means to build a full-scale theory around it, in particular, with regard to the imple-
mentation of the conservation principle. His unsuccessful attempt at deriving the Enz-
wurf theory from a mathematical strategy had laid just those means in his hands. The
failure of the mathematical derivation of the Entwurf theory left Einstein with a for-
malism that initially seemed tailor-made for this very purpose, but then turned out to

200 See “Untying the Knot ...” (in vol. 2 of this series).
201 See the “Commentary ...” (in vol. 2 of this series).
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be much more generally applicable. An attempt to rederive the Entwurf field equation
within this formalism turned almost automatically into a renewal of his search along
the mathematical strategy. Einstein’s physical expectations, not only of the corre-
spondence and the conservation principles, but also of the role of the gravitational
field in the Lagrangian and in the equation of motion, must have quickly led him to
identify the November tensor as the most appropriate candidate, which not only was
probably the easiest to handle given Einstein’s propensity for unimodular coordinates
but for which the implications of the mathematical and the physical strategies seemed
to coincide.

7.15.2 Removing an Old Stumbling Block and Encountering a New One:
The Conservation Principle in 1915

The demonstration of energy-momentum conservation for a theory based on the
November tensor and the representation of the gravitational field by the Christoffel
symbols were, for Einstein, the hallmark of the turnaround in November 1915. His
contemporary comments and later recollections not only confirm that his earlier
rejection of candidates derived from the Riemann tensor was just as much associated
with the difficulty in demonstrating the validity of the conservation principle as with
difficulties related to the correspondence principle.202 They also confirm that it was
his revision of the understanding of the components of the gravitational field that was
a crucial turning point associated with his return to the mathematical strategy in
November 1915.203

The decisive progress from Einstein’s earlier exploration of a theory based on the
November tensor was made possible by the Lagrangian formalism that allowed him
to demonstrate that the theory complies with the conservation principle. He thus suc-
ceeded in removing an old stumbling block that had earlier forced him to abandon the
November tensor, as well as expressions based on it, in the Zurich Notebook. How-
ever, the problem of establishing the compatibility between conservation and relativ-
ity principles, which had also been a problem with the November tensor in 1912—
1913, continued to challenge him even in 1915 when it presented new insights as well
as a new obstacle.

The most consequential new insight was related to the fact that the coordinate
restriction resulting from the conservation principle turned out to have a remarkably
simple structure, being reduced to the requirement that a certain scalar function is
constant (cf. eq. (83)). Instead of the usual four equations, Einstein merely obtained a
single condition from the requirement of energy-momentum conservation. In spite of
this simplification, his physical interpretation of this condition did not change; he still
saw it as defining adapted coordinates and admissible transformations (Einstein
1915¢, 785).

202 Einstein to Michele Besso, 10 December 1915, (CPAE 8, Doc. 162) quoted in the introduction.
203 For extensive discussion, see “Untying the Knot ...” (in vol. 2 of this series).
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Due to the technical novelties of the November theory, Einstein’s perspective on
the role of coordinate restrictions changed. Now the requirements arising from the
conservation principle and those related to the correspondence principle began to
play different roles. The first kind of requirements only led to a minimal but still glo-
bal constraint on the choice of coordinate systems, the second kind of requirements
essentially fixes the coordinate system—but now only in the context of a specific
physical situation without global implications. In his paper, Einstein for the first time
introduced coordinate conditions in this modern sense albeit without any further
explanation. He simply made use of the opportunity that the formalism of the
November theory had opened up for him.

Considering his earlier failures, the November theory implemented Einstein’s
heuristic requirements without requiring much of an adjustment of these require-
ments. What had changed was, as we have seen, the default setting for the representa-
tion of the gravitational field. Furthermore, the way in which the conservation
principle had earlier fully determined adapted coordinate systems was, as we have
also seen, now changed into a weak constraint that could be harmonized with the
requirements of the correspondence principle, thus giving rise to the idea of coordi-
nate conditions in the modern sense. On the other hand, what had not changed was
the view of the conservation principle as imposing additional conditions on the
choice of coordinates. Finally, the way in which the Newtonian limit is attained in the
November theory, that is, via a weak field equation of the form of eq. (33), also
remained, by default, the same. That Einstein, at the time, did not regard the Novem-
ber theory as a first step towards a more complete theory—as it must appear to a
modern reader. This is evident by a letter he wrote to his son on the day he submitted
his first November paper, the 4th of November 1915:

In the last few days I completed one of the finest papers of my life; when you are older
I'll tell you about it.204

The formalism of the November theory generated one, apparently minor novelty that
could not easily be assimilated to Einstein’s expectations and that therefore called for
a physical interpretation. This new stumbling block was the scalar condition for the
choice of adapted coordinates eq. (84). In view of its derivation from the conservation
principle, it could not have been surprising to Einstein that this condition determines
the choice of adapted coordinates by the properties of the stress-energy tensor of mat-
ter.”*> But this general argument does little to make the precise way of this determi-
nation plausible, let alone make it understandable that coordinate systems for which
J-g = 1 are to be excluded, as is implied by Einstein’s condition. This was a point
where the new formalism of the November theory confronted him with the challenge

204 “Dieser Tage habe ich eine der schonsten Arbeiten meines Lebens fertig gestellt; wenn Du einmal
grosser bist, erzihle ich Dir davon.” Einstein to Hans Albert Einstein, 4 November 1915, (CPAE 8,
Doc. 134).

205 The very existence of an additional coordinate restriction must have been a puzzle in view of Ein-
stein’s earlier insights into the relation between covariance and conservation.
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to find an adequate physical interpretation. Einstein did not hesitate to take up this
challenge and, less than a week after the submission of his first November paper, sub-
mitted a short addendum dedicated to the physical interpretation of this condition.

7.16 A Familiar Candidate in a New Context:
FEinstein’s Return to the Ricci Tensor

Einstein’s addendum to his first November paper was submitted on 11 November and
published on 18 November 1915 (Einstein 1915d). It does not contain a single novel
formula with respect to the earlier paper but merely constitutes a reinterpretation of
what had been achieved. Yet, it introduced a new, now generally-covariant field equa-
tion, replacing that of the November theory, which was covariant only for unimodular
transformations. The new field equation is instead based on the Ricci tensor, a candi-
date that Einstein had also considered earlier while working on the Zurich Notebook
(cf. eq. (55)). How did he reinterpret his earlier results?

The point of departure for this reinterpretation was the scalar condition for the
choice of adapted coordinates eq. (84). This equation, together with the requirement
of unimodularity, were the only obstacles, it appeared, that separated Einstein from
the realization of general covariance. Furthermore, there was no general physical
interpretation for these two requirements: Why should coordinate transformations be
unimodular and why should it nevertheless be impossible to select a coordinate sys-
tem so that A/—7g = 1? These must have been questions motivating Einstein’s further
search, beyond what he had achieved in his first November paper. In the new
approach presented in the addendum, these two questions were answered in the con-
text of an issue that at first glance appears to be unrelated to gravitation theory; the
question of the fundamental constitution of matter.

In the introductory part of his addendum, Einstein discussed a contradiction aris-
ing in an electromagnetic theory of matter. He argued that the inclusion of gravitation
in the energy-momentum balance could resolve, at least in principle, the following
contradiction: The hypothesis that all matter is of electromagnetic origin, and Max-

well’s equations imply that the trace of the energy-momentum tensor vanishes: 206

E T4, = 0. (88)

It is also clear that for the default setting of the source-term, i.e. pressureless dust (cf.
eq. (4)), the trace of the energy-momentum tensor does not vanish. The conflict
between this implication and eq. (88) seems to indicate that matter if conceived of as
pressureless dust cannot be constructed on an electromagnetic basis.

However, it is possible to conceive the energy-momentum tensor as being com-
posed of two parts, as is suggested by the parallelism of the energy-momentum of

206 Cf.(Laue 1911, § 13).
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matter and of the gravitational field on right-hand side of the field equation (cf. eq.
(XLI)):

ET& = E(Tﬁel + t&gmv) = E(O + tﬁé’"“")’ (89)
w u

w

where T4, is due to the electromagnetic origin of matter and 7§ grav 10 gravitational
fields, which are now assumed to play a role in the constitution of matter as well. It
follows that the non-vanishing trace of the energy-momentum tensor for matter no
longer necessarily contradicts with eq. (88) since it seems possible that the vanishing
of T}, is compensated by l,,,,. In other words, the additional assumption that
gravitational fields play a role in the constitution of matter might be considered as
hinting at the solution of a puzzle in a purely electromagnetic theory of matter (Ein-
stein 1915d, 800).2%7

The discussion of an electromagnetic theory of matter in the introductory part of
Einstein’s addendum raises the obvious question of its function in his theory of grav-

itation. In his introductory paragraph he stakes the following claim:

In a recent investigation I have shown how Riemann’s theory of covariants in multidi-
mensional manifolds can be utilized as a basis for a theory of the gravitational field. I
now want to show here that an even more concise and logical structure of the theory can
be achi;)\éed by introducing an admittedly bold additional hypothesis on the structure of
matter.

The hypothesis of an electromagnetic constitution of matter on the basis of “a theory
more complete than Maxwell’s theory” allowed Einstein to invalidate an important
implication regarding the source term of the gravitational field equation—its non-
vanishing trace. In his first November paper, this default assumption had forced him
to introduce the coordinate condition that excluded coordinate systems with
A/—7; = 1. Even earlier, in the Zurich Notebook, he had discarded the Ricci tensor as
a candidate for the left-hand side of a gravitational field equation (if only on the level
of linear approximation) because this candidate implies the vanishing of the trace of
the stress-energy tensor in contrast to the default properties of Einstein’s standard
model of matter (cf. eq. (LXXV)). The hypothesis of an electromagnetic origin of

207 Apart from the fact that Einstein does not elaborate on the question as to how matter might be con-
ceived of on the basis of “einer gegenueber Maxwells Theorie vervollstaendigten Elektrodynamik”
(p. 800), Einstein’s suggestion suffers, however, from a rather conspicuous difficulty: Since t‘: is no
tensor but a coordinate-dependent expression, it can in fact not replace the stress-energy tensor of
matter. In particular, the claim that the coordinate-dependent expression tt is positive remains
unproven in Einstein’s paper and can be refuted in a rather simple way by considering a coordinate
system in which this quantity vanishes as well. See (Earman and Glymour 1978, 298).

208 “In einer neulich erschienenen Untersuchung habe ich gezeigt, wie auf Riemanns Kovariantentheorie
mehrdimensionaler Mannigfaltigkeiten eine Theorie des Gravitationsfeldes gegriindet werden kann.
Hier soll nun dargetan werden, daf durch Einfiihrung einer allerdings kiihnen zusitzlichen Hypothese
iiber die Struktur der Materie ein noch strafferer logischer Aufbau der Theorie erzielt werden kann.”
(Einstein 1915d, 799)
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matter made it possible to resolve both these problems at the same time. In fact, under
the condition ./—g = 1, admissible under this hypothesis, the November tensor
coincides with the generally-covariant Ricci tensor. Together with the generalized
principle of relativity, this mathematical feature led Einstein to choose the Ricci ten-
sor rather than the November tensor as the more appropriate candidate for the left-
hand side of a gravitational field equation. With the introduction of the generally-
covariant Ricci tensor, the other problem of the November theory —its restriction to
unimodular coordinate systems—disappeared.

All aspects of the new Ricci theory are simply straightforward consequences of
the November field equation plus the condition A/—Tg = 1 which can now be con-
ceived of as a coordinate condition in the sense that its stipulation does not affect the
physical validity of the equations. In particular, Einstein did not present a new deriva-
tion of the new field equation from a Hamiltonian variation principle, now to be for-
mulated for the Ricci tensor. He did not write down the free field Lagrangian that
would produce the Ricci tensor in the field equation. Instead, Einstein still used the
technique of reducing his gravitational field equation, using the condition Jjg =1,
to the November field equation in his conclusive 1915 paper, and even in the 1916
review paper on general relativity. Similarly, in his addendum, he neither provided an
independent discussion of energy-momentum conservation nor of the Newtonian
limit, but just assumed that everything would carry over unchanged from the Novem-
ber theory. In his paper, he explicitly claimed that the physically relevant relations
remain unchanged by the transition from the November to the Ricci theory:

Based upon this system one can—by retroactive choice of coordinates—return to those
laws which I established in my recent paper, and without any actual change in these
laws, ...209

He emphasized that the only difference was the increased freedom in choosing a
coordinate system:

The only difference in content between the field equations derived from general covari-
ance and those of the recent paper is that the value of J-g = 1 could not be prescribed
in the latter.2!°

Even more radically, Einstein claimed in his letter to Hilbert of 12 November that his
latest modification implied that Riemann’s tensor would now directly produce the
gravitational equations but would not change the equations of the theory.211 In short,
his new generally-covariant field equation based on the Ricci tensor represented for

209 “Von diesem System aus kann man durch nachtridgliche Koordinatenwahl leicht zu dem System von
Gesetzmifigkeiten zuriickgelangen, welches ich in meiner letzten Mitteilung aufgestellt habe, und
zwar ohne an den Gesetzen tatsichlich etwas zu d@ndern.” (Einstein 1915d, 801)

210 “Der Unterschied zwischen dem Inhalte unserer aus den allgemein kovarianten gewonnenen Feldglei-
chungen und dem Inhalte der Feldgleichungen unserer letzten Mitteilung liegt nur darin, daf in der
letzten Mitteilung der Wert fiir & = 1 nicht vorgeschrieben werden konnte.” (Einstein 1915d,
801)

211 Einstein to David Hilbert, 12 November 1915, (CPAE 8, Doc. 139).
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Einstein largely a reinterpretation of his earlier results from the November theory.212

Only the condition J—Tg = 1 had changed its status from being an excluded special
case to a key relation for translating results from the older theory into the new one.
What had also changed was the physical interpretation of the theory, in particular
with regard to its implications for physics outside of gravitation theory.

Concerning Einstein’s new gravitation theory, the only significant property of his
new model of matter that replaces his standard instantiation of the slot for the source
term of pressureless dust is the vanishing of the trace of the stress-energy tensor. All
other aspects of such a theory of matter were irrelevant. As we have seen, he had
merely two tenuous arguments to support his audacious new approach. According to
the first argument, the inclusion of gravitation in an electromagnetic theory of matter
could help to avoid the conflict between the vanishing of the trace of the stress-energy
tensor for electromagnetic fields and its non-vanishing for matter. This argument was,
however, only an unelaborated idea and quite problematic. According to the second
argument, an electromagnetic theory of matter was rendered plausible by the greater
consistency of the theory of gravitation that it made possible.

Since all essential equations, according to Einstein’s assertion, remain the same in
the Ricci and November theories, the question of which theory was to be given pref-
erence was thus a matter of choice between the following two options:

1. to rely on a standard model of matter and to accept the physically unmotivated
restriction of the theory to unimodular transformations and an inexplicable exclu-
sion of certain coordinate systems (November theory);

2. to achieve a generally-covariant theory without special requirements on coordi-
nate systems and with a logically simple structure, but to accept the introduction
of non-trivial consequences for a highly problematic fundamental theory of mat-
ter (Ricci theory).

Einstein’s preference for the second option was affected by the context in which he for-

mulated his new approach, in particular, by the contemporary discussion about an elec-

trodynamic worldview and the parallel work of David Hilbert, which constituted
serious competition for Einstein.?!3 The context of this discussion lent some credibility
to the introduction of speculative assumptions about a fundamental theory of matter.

212 In his paper, Einstein did not address the conflict between the Ricci tensor and the correspondence
principle, cf. (Stachel 1989; Norton 1984). This conflict was somewhat hidden by the fact that the
physical consequences of the Ricci theory were elaborated in terms of the November theory in which
the Newtonian limit can be attained via the Hertz condition which is not in conflict with Einstein’s
default assumption about the static metric. The conflict here arises from to the condition J-g =1,
mediating between the two theories and implying, together with the Hertz condition, the harmonic
condition. It seems that Einstein was, either at that time or when working on the Zurich Notebook, not
aware of this conflict.

213 See (Corry, Renn and Stachel 1997; Sauer 1999).
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7.17 The Mercury Problem as a Theoretical Laboratory for the Ricci Tensor

7.17.1 Einstein’s Motivation

Only seven days after his last note, on 18 November 1915, Einstein presented an
application of his newly found field equation, his “Explanation of the Perihelion
Motion of Mercury from the General Theory of Relativity” (Erkldrung der Perihelbe-
wegung des Merkur aus der allgemeinen Relativitditstheorie) to the Academy. It was
the only one of his November papers which he submitted as a manuscript to the
assembly of the Academy accompanied by oral comment, as is documented by the
protocols.214 He saw the excellent agreement between his calculated value of the
perihelion shift of Mercury (43”) and astronomical observations (45 +/— 5) as a
breakthrough for his new theory. Einstein may also have commented publicly on his
note because he hoped that his achievement would attract the attention of the astrono-
mers attending his presentation to the Academy, such as Karl Schwarzschild 213
Einstein achieved his result in only seven days, a very short time for an involved
calculation. David Hilbert showed himself impressed by Einstein’s rapid success:

Many thanks for your postcard and cordial congratulations on conquering perihelion
motion. If I could calculate as rapidly as you, in my equations the electron would corre-
spondingly have to capitulate, and simultaneously the hydrogen atom would have to pro-
duce its note of apology about why it does not radiate 216

Einstein must have been eager to quickly find convincing physical consequences for
his new theory for three main reasons:

1. he had produced several candidate theories among which no definite decision had
yet been possible; the Entwurf theory, the November theory, and the Ricci theory,

2. he was in close competition with Hilbert who had just sent him a manuscript
about his own gravitational field theory and had to make an effort in order to
secure his priority, and

3. he may have been looking for further confirmation for his bold hypothesis of a
combined electromagnetic and gravitational origin of matter, a hypothesis which
so far had been based mainly on reasons of internal consistency or on general
philosophical arguments.

All three motivations for Einstein’s concern with the perihelion problem are well

documented by his contemporary correspondence with Hilbert.2'® Einstein consid-

214 See (Archiv der Berlin-Brandenburgischen Akademie der Wissenschaften, II-V, vol. 91, sheet 64).

215 See previous note, and for historical discussion, see (Renn, Castagnetti and Damerow 1999).

216 “Vielen Dank fuer Ihre Karte und herzliche Gratulation zu der Ueberwiltigung der Perihelbewegung.
Wenn ich so rasch rechnen konnte wie Sie, muesste bei meinen Gleichg entsprechend das Elektron
kapituliren und zugleich das Wasserstoffatom seinen Entschuldigungszettel aufzeigen, warum es nicht
strahlt.” David Hilbert to Einstein, 19 November 1915, (CPAE 8, 149).

217 See also the discussion in (Earman and Janssen 1993), on which the following relies.

218 See Einstein to David Hilbert, 12 November 1915, Einstein to David Hilbert, 18 November 1915, and
David Hilbert to Einstein, 19 November 1915, (CPAE 8, Docs. 139, 148, 149).
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ered the Mercury calculation as a piece of evidence in favor of an electromagnetic
theory of matter is also confirmed by the abstract of his paper in the Academy pro-
ceedings:

It is shown that the general theory of relativity explains qualitatively and quantitatively

the perihelion motion of Mercury, which was discovered by Leverrier. The hypothesis of

the vanishing of the stress-energy tensor of matter is thus confirmed. Furthermore, it is

shown that the examination of the bending of light rays in the gravitational field makes it
also possible to verify this important hypothesis.219

7.17.2 The Advantages of a Second Attempt

What enabled Einstein to check this physical consequence of the anomalous perihe-
lion advance of Mercury on the basis of the new field equation so rapidly was his ear-
lier attempt in 1913, undertaken jointly with Michele Besso, to calculate the
perihelion shift for the Entwurf theory.220 This earlier attempt had given him a quan-
titative result that is too small (18”) if compared to the empirical value. But this
attempt had given Einstein the tools that could now be applied without any essential
modification to the new field equation based on the Ricci tensor. The additional
resource which the earlier work had laid in Einstein’s hands not only allowed him to
achieve quick success by applying his new theory to a challenging problem. Even
more remarkably, this application also had a profound repercussion on the applied
theory itself. The employment of the Mercury calculation scheme in the context of
the Ricci theory effectively changed the heuristic criteria of Einstein’s search for the
field equation and resulted in a more sophisticated understanding of the correspon-
dence principle.

This far-reaching consequence emerged only after Einstein’s theory was explored
in greater depth with his new calculation of the Mercury problem. His first two
November papers were short and contain hardly any discussion of the physical conse-
quences of the postulated field equations. The addendum of November 11 refers
entirely to the considerations, including the Newtonian limit, that are presented in the
main paper of November 4. The study of the Mercury problem hence constitutes the
first elaboration of the Ricci theory, giving it a justification beyond the field equation
and its immediate consequences. This holds even if one takes into account Einstein’s
earlier consideration of this theory in the Zurich Notebook. But now, in mid-Novem-
ber 1915, a fully fledged calculation scheme permitted the determination of approxi-
mate solutions to the gravitational field equation. This calculation scheme was
inherited form the earlier calculation of the Mercury problem in the context of the

219 “Es wird gezeigt, daB die allgemeine Relativititstheorie die von Leverrier entdeckte Perihelbewegung
des Merkurs qualitativ und quantitativ erklidrt. Dadurch wird die Hypothese vom Verschwinden des
Skalars des Energietensors der “Materie” bestitigt. Ferner wird gezeigt, da3 die Untersuchung der
Lichtstrahlenkriimmung durch das Gravitationsfeld ebenfalls eine Moglichkeit der Priifung dieser
wichtigen Hypothese bietet.” (Einstein 1915¢e)

220 See (CPAE 4, Doc. 14; Earman and Janssen 1993).
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Entwurftheory; it had been developed after Einstein’s struggle with various candidate
field equations in the Zurich Notebook at a time when he believed in the validity of
the Entwurf theory. This scheme had therefore not yet been applied to different candi-
date field equations and had thus not have had effect on the balance between Ein-
stein’s heuristic criteria. The lasting impact of the Mercury problem on the
development of the field equations of general relativity in 1915 was to provide the
judgement about candidate field equations with knowledge about the formalism of a
gravitational field theory that was essentially independent of the field equations and
that had been acquired as early as 1913. The accumulation of this knowledge trig-
gered a process of reflection which guided Einstein to the definite field equation of
general relativity.

Einstein’s calculation of Mercury’s perihelion shift was based on finding an
approximate solution to the gravitational field equation by an iterative procedure. To
find the solution of first order, Einstein and Besso, in 1913, turned directly to the first-
order field equation with which Einstein was familiar from his consideration of the
Newtonian limit (cf. eq. (33)), (CPAE 4, 360). The solution to this equation was hence
given in terms of the canonical metric for a static field (25) which Einstein used to
obtain the Newtonian limit. To obtain the second approximation, Einstein and Besso
wrote down the general form of a spherically symmetric metric in Cartesian coordi-
nates in terms of three unknown functions so as to immediately satisfy one of the con-
straints of the problem with an appropriate ansatz (CPAE 4, 364). These functions
were then determined by the iterative procedure, starting from the first approximation.

In his 1915 paper, Einstein no longer proceeded in two separate steps but immedi-
ately started from the generic ansatz for a spherically symmetric metric (Einstein
1915b, 833). In 1915, this approach was not only natural but also necessary. It was
natural because the procedure Einstein and Besso had constructed in 1913 worked
just as well for the first as for the second approximation so that there was really no
reason for proceeding in two steps as they had done when first developing their
method for calculating the Mercury problem. In 1915 it was necessary to begin right
away with the second step since the first step of 1913 no longer worked for the field
equation of the Ricci theory. While Einstein’s default assumption about the metric for
a static field presented no manifest problem in the November theory, as it was com-
patible with the Hertz condition that served to obtain its Newtonian limit, this default
assumption was no longer acceptable in the Ricci theory due to the additional condi-
tion Jjg = 1.The conflict between this condition and Einstein’s earlier understand-
ing of the Newtonian limit is also addressed in a letter Einstein wrote to
Schwarzschild in early 1916, probably referring to a problem analogous to the con-
flict represented by eq. (LXXV):

My comment in this regard in the paper of November 4 no longer applies according to
the new determination of J—Tq = 1, as I was already aware. [At this point he added in
footnote: The choice of coordinate system according to the condition 0g”v/ dx, =0
is not consistent with 4/% = 1.] Since then, I have handled Newton’s case differently,

of course, according to the final theory.221
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In the context of the Ricci theory, Einstein’s generic ansatz for a spherically symmet-
ric metric pointed almost without any further calculation to the existence of non-triv-
ial values for g,;...g3;; in contrast to his default assumption about the metric for
static gravitational fields. Einstein considered the difference to his earlier assumption
about such a metric a remarkable consequence of the application of his methods for
solving the perihelion problem to the new field equation. This is evident from his
contemporary correspondence. After the completion of the final version of general
relativity, he repeatedly mentioned this fact in letters to Michele Besso. In a letter
from 10 December, he remarked:

You will be surprised by the appearance of the g ... g‘33‘ 222

A little more than a week later, Einstein returned to this point, again emphasizing the
remarkable nature of the deviation from what he expected to be the metric for weak
static fields. He was now able to point out how the conflict between this deviation and
the Newtonian limit could be avoided:

Most gratifying is the agreement with perihelion motion and the general covariance;
strangest, however, is the circumstance that Newton’s theory of the field is incorrect
already in the 1st order eq. (appearance of the g,;...g33). Itis just the circumstance that
the g,,...g33 do not appear in first-order approximations of the motion eqs. which
determines the simplicity of Newton’s theory.223

The scheme for calculating a spherically symmetric static metric did not in itself lead
to a way in which the deviation from Einstein’s standard metric could be reconciled
with the correspondence principle. However, it was clear that gravitational fields can-
not be observed directly but only via the motion of bodies within these fields—a
point stressed in Besso’s 1913 memo®2*—so that the equation of motion, at second
glance, suggested a natural way out of this dilemma. This second glance showed that
in first-order approximation only the g,, -component of the metric tensor determines
the motion of a material point and that, accordingly, non-trivial values for g,,...g33

221 “Meine diesbeziigliche Bemerkung in der Arbeit von 4. November gilt gemiss der neuen Festsetzung
Jjg = 1 nicht mehr, wie mir schon bekannt war. [At this point he added in footnote: Die Wahl des
Koordinatensystems gemif3 der Bedingung égw/&x\, = 0 ist nicht vereinbar mit /g = 1.]
Seitdem habe ich ja den Newton’schen Fall nach der endgiiltigen Theorie ja anders behandelt.” Ein-
stein to Karl Schwarzschild, 19 February 1916 (CPAE 8, Doc. 194). For a discussion of the role of
coordinate conditions in general relativity, see also Einstein’s paper on gravitational waves (Einstein
1916¢).

222 “Du wirst iiber das Auftreten der g,,...g53 liberrascht sein.” Einstein to Michele Besso, 10 December
1915, (CPAE 8, Doc. 162).

223 “Das Erfreulichste ist das Stimmen der Perihelbewegung und die allgemeine Kovarianz, das Merk-
wiirdigste aber der Umstand, dass Newtons Theorie des Feldes schon in GI. 1. Ordnung unrichtig ist
(auftreten der g;,...g33). Nur der Umstand, dass die g;...g3; nicht in den ersten Niherungen der
Bewegungsgleichungen des Punktes auftreten, bedingt die Einfachheit von Newtons Theorie.” Ein-
stein to Michele Besso, 21 December 1915, (CPAE 8, Doc. 168).

224 For a facsimile of the relevant passage, see Fig. 2 on p. 300 of “What Did Einstein Know...” (in vol. 2
of this series) and (Renn 2005a, 128).
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do not affect the first-order equation of motion and hence the Newtonian limit of Ein-
stein’s theory.

In a third letter to his friend Besso, Einstein once more returned to this point, now
in order to explain that the new way of obtaining the Newtonian limit is closely
related to the perihelion shift of Mercury and hence to the excellent agreement
between theory and experiment.

The great magnification of the effect against our calculation stems from that, according
to the new theory, the &1;---833 s also appear in the first order and hence contribute to
the perihelion motion 2%

This close connection between the empirical success of the theory and the deviation
from the correspondence principle, as originally conceived by Einstein, stabilized the
modified understanding of this principle and freed it from the aura of a dubious tech-
nical trick.

7.17.3 A New Problem Meets an Old Solution

Einstein repeatedly stressed the fact that only g,, matters for the equation of motion,
a circumstance that must have seemed a strange but lucky coincidence to him. This
solution to the dilemma created by the occurrence of non-trivial diagonal components
in the first-order static metric was in itself as little new in 1915 as the dilemma itself.
We have seen that in 1912-1913 the harmonically reduced and linearized Einstein
tensor had been discarded because it led to a metric for weak static fields with non-
trivial diagonal components (cf. eq. (74)). Furthermore, the very ansatz for a spheri-
cally symmetric static metric used to treat the Mercury problem pointed to the possi-
bility of such non-trivial components. When Einstein first developed this ansatz in
1913, he did not give this possibility serious consideration because he was convinced
of the validity of the Entwurf equation which does not give rise to such components.
It is remarkable is that, even though the dilemma of a non-spatially flat static met-
ric was in mid-1913 no longer (and not yet) a real one for Einstein, it was neverthe-
less at that time already considered and resolved by Besso, and probably also by
Einstein. This is documented by a page in the Einstein-Besso manuscript, written by
Michele Besso on the back of a letter to Einstein. The page can be dated to June 1913
when both worked together in Zurich (CPAE 4, 392). It is one of a couple of pages on
which Besso recapitulated the procedure he and Einstein had applied in order to
determine the perihelion shift of Mercury. The purpose of this recapitulation was evi-
dently not only Besso’s wish to understand more thoroughly a method that in essence
had probably been developed by Einstein, but also his intention to apply this method
to more complex cases such as the field of a rotating sun or the inclusion of the sun’s
pressure in the calculation. Given the reflective character of Besso’s notes, we also

225 “Die starke Vergrosserung des Effektes gegeniiber unserer Rechnung fiihrt daher, dass geméss der
neuen Theorie auch die g,;...g33). in Grossen erster Ordnung auftreten und so zur Perihelbewegung
beitragen.” Einstein to Michele Besso, 3 January 1916, (CPAE 8, Doc. 178).
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find, along with the recapitulation of essentials, general remarks concerning the
nature and plausibility of assumptions which Einstein and Besso had made in the
course of their application of the method. It is among such remarks that one finds the
brief reflection on the assumption of the spatially flat static metric quoted above,
which shows that the assumption of this form of the metric was not an unquestioned
prejudice.226 Besso also considered the more general possibility of a weak-field met-
ric in which components other than the 4—4 one deviated from the Minkowski metric.
He came to the same conclusion as Einstein in his perihelion paper of November
1915, namely that, to first order, only the g,, -component is relevant for the equation
of motion:

The values so derived and inserted in the equations for the motion of the material point
lead to the result that in the latter, [as far as] deviations of the magnitudes g from the rel-
ativity scheme [i.e. the Minkowski metric] [are concerned], only the elements g,, have
any influence 2%’

This observation from June 1913 shows that the possibility of attaining the Newto-
nian limit also for spatially non-flat static metrics was not new. What was new was
the necessity to bring this knowledge to bear on a field equation which seemed to
forclude any other way of satisfying the correspondence principle. The novelty on 18
November 1915 was thus the combination of two chunks of knowledge that had been
available independently for years, i.e., to base field equations on the Ricci tensor and
to attain the Newtonian limit also for spatially non-flat static metrics.??® In the fol-
lowing, we shall see that this combination triggered a new development that would
very soon lead Einstein beyond the Ricci tensor.

7.18 Completing the Circle: Einstein’s Return to the Einstein Tensor

7.18.1 Finding the Capstone of General Relativity by Double-Checking
a New Theory of Matter

Einstein’s completion of general relativity in November 1915 was essentially a soli-
tary phase during which he had little correspondence and no collaboration on this
subject, except for the mathematician David Hilbert, with whom Einstein’s corre-
sponded on the progress of their respective efforts. Hilbert had a long-standing inter-
est in physics and was especially interested in foundational issues within his program
of an axiomatization of the natural sciences.??’ When Gustav Mie published a special

226 See (CPAE 4, Doc. 14 [p. 16]). The mention of § 1 is probably a reference to (Einstein and Gross-
mann 1913).

227 “Die so ermittelten Werte in die Gleichg[ung]en fiir die Beweg[ung] des Materiellen Punktes einge-
setzt, ergeben dass in denselben Abweichngen der Grossen g vom Relativitdtsschema nur die Glieder
844 von Einfluss sind.” (CPAE 4, Doc. 14 [p. 16])

228 For Einstein’s continued concern with the problem of the appearance of other components of the met-
ric tensor than g,,, see Albert Einstein to Erwin Freundlich, 19 March 1915, (CPAE 8, Doc. 63).

229 See (Corry 2004).
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relativistic, electromagnetic theory of matter in 1912, he was particularly intrigued by
it, and after Einstein’s visit to Géttingen, at Hilbert’s invitation, in the summer of
1915, Hilbert engaged in an attempt to find a synthesis between Mie’s theory and
Einstein’s approach to gravitation. In November 1915, he was close to finishing his
work and became Einstein’s competitor for priority of the field equation of general
relativity. The two scientists exchanged criticism and preliminary results, directly and
possibly also indirectly via others, so that the question arises of the extent to which
their results can be considered independent achievements. A set of proofs of Hilbert’s
“First Communication on the Foundations of Physics” (Hilbert 1915) rules out the
possibility that Einstein took the last and crucial step in completing general relativity
from the work of David Hilbert. Since this issue is discussed elsewhere in detail >3
we limit ourselves here to the analysis of how Einstein completed this last step along
the pathways of his own prior research.

Einstein considered the calculation of the perihelion shift of Mercury as the suc-
cess of a generally-covariant theory of gravitation based on the Ricci tensor, but also
as confirming the possibility of a new theory of matter. This is clear from the abstract
of his paper quoted above and also from a letter he wrote to his friend Besso:

In these last months I had great success in my work. Generally covariant gravitation
equations. Perihelion motions explained quantitatively. The role of gravitation in the
structure of matter. You will be astonished. I worked horrendously intensely; it is strange
that it is sustainable 23!

But the agreement between theoretical and empirical values for the perihelion shift of
Mercury supported the new theory of matter only through the condition A/—7g = 1.
The precarious role of this condition for further considerations by Einstein is made
evident by a footnote appended to the perihelion paper:

In a forthcoming communication it will be shown that this hypothesis is unnecessary. It
is because such a choice of reference frame is possible that the determinant ‘ guv‘ takes
on the value —1. The following investigation is independent of this choice 232

Einstein reexamined the connection between this determinant condition and his new
theory of matter, which found its essential expression in the vanishing of the trace of
the stress-energy tensor of matter. The requirement of the vanishing trace resulted

230 See (Corry, Renn, and Stachel 1997; Sauer 1999, 2002, 2005; Corry 2004) and further references
cited therein. For a facsimile reproduction of both the proofs and the published version of (Hilbert
1915), see (Renn 2005, 146-173). In this series, the relation between Einstein’s and Hilbert’s work is
further discussed in the section “Including Gravitation in a Unified Theory of Physics” (vol. 4 of this
series).

231 “Ich habe mit grossem Erfolg gearbeitet in diesen Monaten. Aligemein kovariante Gravitationsglei-
chungen. Perihelbewegungen quantitativ erkldrt. Rolle der Gravitation im Bau der Materie. Du wirst
staunen. Gearbeitet habe ich schauderhaft angestrengt; sonderbar, dass man es aushélt.” Einstein to
Michele Besso, 17 November 1915, (CPAE 8, Doc. 147).

232 “In einer bald folgenden Mitteilung wird gezeigt werden, dafl jene Hypothese entbehrlich ist. Wesent-
lich ist nur, da} eine solche Wahl des Bezugssystems moglich ist, dal die Determinante ‘gw‘ den
Wert —1 annimmt. Die nachfolgende Untersuchung ist hiervon unabhéngig.” (Einstein 1915b, 831)
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from the comparison of two equations Einstein had derived in his paper of 4 Novem-
ber 1915, one with the help of the energy-momentum balance, the other directly from
the field equation. With the help of the trace ¢ of the energy-momentum expression
of the gravitational field, these equations can be rewritten as:233

Eax Gxﬁ_m = 0, and (90)
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Comparing these two requirements Einstein had derived the scalar coordinate restric-
tion of his first November paper, eq. (84). Both the empirical success of his perihelion
calculation and the support for his new theory of matter were hinging on this condi-
tion. But there was another way of bringing the trace of the full field equation into
agreement with eq. (83). Possibly feeling uneasy about the far-reaching conse-
quences that this delicate compatibility argument had to support, Einstein reexamined
his earlier reasoning.

From this perspective, the system of equations (90) and (91) provided a represen-
tation in which to explore the optimal way of putting together the pieces of his puz-
zle. This exploration led to yet another modification of the field equation. A reflection
on how conditions (90) and (91) had been derived from the November field equation
may have sufficed for the identification of an appropriate modification of this field
equation by adding a multiple of the trace of the stress-energy tensor of matter to its
right-hand side so as to yield instead:23*

20ap
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This set of equations no longer gives rise to problematic additional conditions.

The compatibility of Einstein’s two conditions could thus be achieved without
requiring ~~¢ = 1 to imply that the trace of the stress-energy tensor must vanish, i.e.
without eq. (61). This was the final step by which Einstein arrived at the definitive
field equations of general relativity, which were presented in his paper of 25 Novem-
ber 1915 (cf. egs. (69), (70)).

The modified source term in the new field equation violated the default assump-
tion eq. (XLI) about the right-hand side of Einstein’s mental model of a gravitational
field equation. But Einstein could accept this violation since the energy-momentum

233 Cf. (Einstein 1915a, eqs. 9 and 10).
234 See “Untying the Knot ...” (in vol. 2 of this series), sec. 7, eqs. 85-91.
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tensor of matter and the energy-momentum expression of the gravitational field now
entered the right-hand side of the field equation in a completely analogous way, (cf.
eq. (68) to eq. (81)). It may also have played a role that the step from the Ricci to the
Einstein tensor was, after all, not unfamiliar given his earlier experience in the Zurich
Notebook. In his paper, Einstein lapidarily noted:

I now quite recently found that one can get away without this hypothesis about the
energy tensor of matter merely by inserting it into the field equations in a slightly differ-
ent way than is done in my earlier papers 2%

What had earlier prevented Einstein from accepting the (harmonically reduced and
linearized) Ricci and Einstein tensors—his understanding of the correspondence
principle —had meanwhile been transformed in the context of the perihelion calcula-
tion. The success of his solution to the Mercury problem included a solution to the
problem of the Newtonian limit, and this solution now effectively replaced the corre-
spondence principle as a criterion for an acceptable field equation.

In summary, the final phase of Einstein’s work in November 1915 was not so
much a phase in which new results challenged old prejudices, but rather one of reflec-
tion on the knowledge that was already available to him and in which different
options were weighed against each other. One of the results of this process of reflec-
tion was that there was no support for a new theory of matter as Einstein had
believed, possibly following Hilbert, in his addendum of 11 November. In the conclu-
sion of his last November paper Einstein explicitly revoked his earlier claim:

With this, we have finally completed the general theory of relativity as a logical structure.
The postulate of relativity in its most general formulation (which makes spacetime coor-
dinates into physically meaningless parameters) leads with compelling necessity to a
very specific theory of gravitation that also explains the movement of the perihelion of
Mercury. However, the postulate of general relativity cannot reveal to us anything new
and different about the essence of the various processes in nature than what the special
theory of relativity taught us already. The opinions I recently voiced here in this regard
have been in error. Every physical theory that complies with the special theory of relativ-
ity can, by means of the absolute differential calculus, be integrated into the system of
general relativity theory — without the latter providing any criteria about the admissibility
of such physical theory.236

235 “Neuerdings finde ich nun, da3 man ohne Hypothese iiber den Energietensor der Materie auskommen
kann, wenn man den Energietensor der Materie in etwas anderer Weise in die Feldgleichungen ein-
setzt, als dies in meinen beiden fritheren Mitteilungen geschehen ist.” (Einstein 1915a, 844)

236 “Damit, ist endlich die allgemeine Relativititstheorie als logisches Gebidude abgeschlossen. Das Rela-
tivitdtspostulat in seiner allgemeinsten Fassung, welches die Raumzeitkoordinaten zu physikalisch
bedeutungslosen Parametern macht, fiihrt mit zwingender Notwendigkeit zu einer ganz bestimmten
Theorie der Gravitation, welche die Perihelbewegung des Merkur erklért. Dagegen vermag das allge-
meine Relativitdtspostulat uns nichts iiber das Wesen der tibrigen Naturvorgidnge zu offenbaren, was
nicht schon die spezielle Relativititstheorie gelehrt hétte. Meine in dieser Hinsicht neulich an dieser
Stelle geduflerte Meinung war irrtiimlich. Jede der speziellen Relativititstheorie geméBe physikali-
sche Theorie kann vermittels des absoluten Differentialkalkiils in das System der allgemeinen Relati-
vititstheorie eingereiht werden, ohne dal letztere irgendein Kriterium fiir die Zuldssigkeit jener
Theorie lieferte.” (Einstein 1915a, 847)
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7.18.2 Reorganizing the Structure of General Relativity

The further history of general relativity shows that this theory could not yet be con-
sidered “logically complete,” as Einstein formulated in the last paragraph of his con-
clusive paper. Even if one disregards later developments such as his modification of
the field equations with a cosmological term, fundamental issues such as the status of
energy-momentum conservation as an independent postulate of the theory still
remained to be clarified. Without this clarification, the theory was initially unconvinc-
ing even to those physicists, such as Ehrenfest and Lorentz, who supported Einstein
and closely followed his work.

Ehrenfest argued that one can eliminate the stress-energy tensor of matter from
the two postulates of the theory, the conservation equation and the field equation, and
thus arrive at a new differential equation, which the metric tensor has to satisfy in
addition to the field equations. He therefore doubted, apparently following Einstein’s
earlier line of argumentation, that the new field equation was actually generally cova-
riant. On 1 January 1916 Einstein wrote to Lorentz:

I am conducting a discussion with Ehrenfest at present essentially on whether the theory
really does fulfill the general covariance requirement. He also indicated to me that you
had encountered problems or objections to it as well; you would do me a great favor if
you were to inform me of them briefly. I have broken in my hobbyhorse so thoroughly
that with a short hint I certainly also would notice where the crux of the problem lies. 237

It was in the exchange with Ehrenfest that Einstein arrived at the conclusion that

energy-momentum conservation was not an independent postulate but a consequence

of the field equation 238 The substantial clarification of the conservation principle that

Einstein achieved in this debate became a starting point for a rearrangement of the

foundational elements of his theory. The first step was taken in a lengthy letter that

Einstein wrote to Ehrenfest.?®” In this letter he presented a derivation of the field

equation from scratch and showed how energy-momentum conservation can be

derived from it. Einstein proceeded in four steps:

1. He first derived the Lagrangian form of the field equation.

2. He next turned to the conservation principle. However, he did not yet derive the
conservation of energy and momentum from the field equation. Rather, he
assumed an equation that includes an unspecified function that has the form of
energy-momentum conservation of matter, as he had postulated it in the earlier

237 “Mit Ehrenfest stehe ich in einer Diskussion im Wesentlichen dariiber, ob die Theorie die Forderung
der allgemeinen Kovarianz wirklich erfiille. Er deutete mir auch an, dass Sie Schwierigkeiten bezw.
Einwendungen gefunden hitten; Sie wiirden mir groe Freude machen, wenn Sie mir dieselben kurz
mitteilten. Mein Steckenpferd habe ich so griindlich eingeritten, dass ich gewiss auch nach kurzer
Andeutung merke, wo das Wesen der Schwierigkeit liegt.” Einstein to H. A. Lorentz, 1 January 1916
(CPAE 8, Doc. 177).

238 Einstein to Paul Ehrenfest, 29 December 1915, Einstein to Paul Ehrenfest, 3 January 1916, Einstein to
Paul Ehrenfest, 24 January 1916 (CPAE 8, Docs. 174, 179,185).

239 Einstein to Paul Ehrenfest, 24 January 1916 or later (CPAE 8, Doc. 185).
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versions of his theory, and then derived from this equation another equation that
has the form of energy-momentum conservation for matter and gravitation.

3. In the next step, Einstein wrote the gravitational field equation in terms of mixed
tensor densities. He had apparently two reasons for doing so, the first being the
possibility of an immediate physical interpretation of the equation in this form.
The second reason was the preparation of the fourth and final step of his argument
in which the conservation principle is demonstrated.

4. In his last step, Einstein derived energy-momentum conservation with the help of
an indirect proof. He showed that one obtains a contradiction with the field equa-
tion in the mixed form if one does not assume that the unspecified function in the
hypothetical equation for energy-momentum conservation (step 2) vanishes.

Einstein considered this line of argument as a new achievement clarifying the founda-

tions of the theory, as becomes evident from the final passage of his letter:

You will certainly not encounter any more problems now. Show this thing to Lorentz as
well, who also does not yet perceive the need for the structure on the right-hand side of
the field equations. I would appreciate it if you would then give these pages back to me,
because nowhere else do I have these things so nicely in one place.240

Einstein made this new derivation the basis for his exposition in the 1916 review
paper (Einstein 1916a), submitted on 20 March 1916241

In the 1916 review, however, Einstein introduced a further rearrangement of the
foundational elements of his theory. His main new results were a transformation of
the indirect proof of the letter to Ehrenfest into a direct proof of energy-momentum
conservation and the establishment of a connection between this derivation and a
mathematical theorem by Hilbert, which was later generalized by Emmy Noether.
The latter result is particularly important as it amounted, in effect, to a recognition of
the contracted Bianchi identities and their role as integrability conditions for the
sources of the field equation of general relativity.

In his review Einstein proceeded in six steps. We will briefly review these steps
and show how a new deductive structure of general relativity emerged from Ein-
stein’s reflection on his discovery process and from the insights obtained in the con-
troversy with Ehrenfest:

1. Einstein first introduced the field equations for the source-free case. In this step he
transformed his own pathway from the Ricci to the Einstein tensor into a strategy
for justifying the foundations of his theory. He introduced the Ricci equation as
the appropriate gravitational field equation for empty space conceiving it as a
weakening of an equation based on the Riemann tensor (Einstein 1916a, 803).

240 “Du wirst nun wohl keine Schwierigkeit mehr finden. Zeige die Sache auch Lorentz, der die Notwen-
digkeit der Struktur der rechten Seite der Feldgleichungen auch noch nicht empfindet. Es wire mir
lieb, wenn Du mir diese Blétter dann wieder zuriickgébest, weil ich die Sachen sonst nirgends so
hiibsch beisammen habe.” (CPAE 8, Doc. 185)

241 For historical discussions of this paper, see (Janssen 2005, Sauer 2005).
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2. He then developed the Lagrangian formalism and derived an equation for energy-
momentum conservation of the gravitational field alone using the pseudo-tensor
for the stress-energy of the gravitational field.

3. Einstein next reformulated the field equation in “mixed” form, including the trace
term of the pseudo-tensor that suggested the new default setting eq. (81). The
peculiar way in which the matter tensor has to be introduced as the source term of
the Einstein field equation was thus prepared.

4. Einstein then supplemented the source-free field equation with this matter term,
which was introduced in analogy to the pseudo-tensor for the stress-energy of the
gravitational field, and thus arrived at the complete Einstein field equation. With
respect to the paper of 25 November 1915, the context for Einstein’s justification
of his new field equations had changed: Equations corresponding to eq. (92) and
eq. (93) no longer appear in the 1916 review paper since energy-momentum con-
servation is not introduced as an independent postulate. As a consequence, these
equations were no longer available as a justification for the new field equation.
Instead, Einstein introduced the requirement that the energy of matter and the
energy of gravitation enter the field equation on the same footing as the primary
motivation for postulating the particular form of the Einstein field equation (Ein-
stein 1916a, 808). He made it additionally clear that the main justification for his
postulated field equation were the deductive consequences following from it.

5. Again in analogy to the source-free case, Einstein next showed that an energy-
momentum equation holds for matter and the gravitational field. Previously, the
equivalents of this equation in the earlier versions of the theory, going back to and
including the Entwurf theory, were derived from the field equation, together with
the independent postulate of energy-momentum conservation. Einstein had now
succeeded in deriving this equation from the field equation alone.

6. In his final step, Einstein shows how his usual equation for the energy-momentum
conservation of matter in the presence of a gravitational field, which was repre-
sented by the vanishing covariant divergence of the stress-energy tensor of matter,
actually follows from his field equation. In other words, what had been a heuristic
principle useful for selecting appropriate field equations now became a conse-
quence of the field equation that was useful for selecting an appropriate stress-
energy tensor of matter suitable to act as a source of the field equation (Einstein
1916a, 809-810).

In the last step of his deductive construction, Einstein also established a bridge to Hil-

bert’s contemporary work integrating one of its mathematical corner stones into his

own newly established framework of general relativity. As we have just seen, within
this framework the stress-energy tensor of matter is no longer conceived as an inde-
pendent ingredient of the theory with properties that affect its physical interpretation

(such as the selection of preferred coordinates) but this tensor has itself to satisfy cer-

tain constraints imposed by the theory. In a short remark, Einstein characterized this

partly dependent and partly independent status of the material process in his theory of
gravitation:
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Thus the field equations of gravitation contain four conditions which govern the course
of material phenomena. They give the equations of material phenomena completely, if
the latter is capable of being characterized by four differential equations independent of
one another.?+?

At this point Einstein appended a footnote in which he referred to Hilbert.>*> Ein-
stein provides here a reinterpretation of the mathematical claim central to Hilbert’s
theory, which constitutes the core of what later became Noether’s theorem >** In fact
on the page referred to by Einstein we find the following passage:

... then in this invariant system of n differential equations for the n quantities there are
always four that are a consequence of the remaining n—4 in this sense, that among the n
differential equations and their total derivatives there are always four linear and linearly
independent combinations that are satisfied identically.245

By referring this general theorem to the relation between his gravitational field equa-
tion and the four differential equations corresponding to the vanishing of the covari-
ant divergence of the stress-energy tensor, Einstein gave a physical interpretation of
this theorem that was quite different from Hilbert’s. Combining his own results with
those of Hilbert, he was able to understand that energy-momentum conservation fol-
lows from the field equations. He had thus finally realized the structural role which
the four differential equations, expressing energy-momentum conservation and math-
ematically corresponding to the contracted Bianchi identities, play for the conserva-
tion principle in the general theory of relativity as we understand it today.

8. THE TRANSITION FROM CLASSICAL PHYSICS TO GENERAL
RELATIVITY AS A SCIENTIFIC REVOLUTION

In the preceding sections, we have reconstructed the complex process by which Ein-
stein’s heuristics led to the formulation of the general theory of relativity. We have
shown that a key role was played by the interaction between the heuristics guiding
the search for the new theory and the concrete representations of intermediate results
in terms of physically interpreted mathematical formalisms. These representations
opened up new possibilities for further development and often required adjustments

242 “Die Feldgleichungen der Gravitation enthalten also gleichzeitig vier Bedingungen, welchen der
materielle Vorgang zu geniigen hat. Sie liefern die Gleichungen des materiellen Vorganges vollstidn-
dig, wenn letzterer durch vier voneinander unabhingige Differentialgleichungen charakterisierbar
ist.” (Einstein 1916a, 810)

243 Cf. (Hilbert 1915, 3). Einstein’s page number actually refers to an offprint of Hilbert’s paper, not to
the published version. Offprints were available to Hilbert already by mid-February 1916, the pub-
lished paper itself appeared on 31 March 1916, see (Sauer 1999, note 74).

244 See (Sauer 1999). For the roots of this theorem in Einstein’s own work, see sec. 3 of “Untying the
Knot ...” (in vol. 2 of this series).

245 ... so sind in diesem invarianten System von n Differentialgleichungen fiir die n GroBen stets vier
eine Folge der n — 4 iibrigen — in dem Sinne, da zwischen den n Differentialgleichungen und ihren
totalen Ableitungen stets vier lineare, von einander unabhingige Kombinationen identisch erfiillt
sind.” (Hilbert 1915, 3). See vol. 4 of this series.)
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of physical concepts and heuristic principles. Einstein’s heuristics, together with such
concrete intermediate results, was evidently capable of generating enough of those
arguments on which the justification of general relativity as an essential part of mod-
ern physics, is still based today.

This heuristics itself and some of Einstein’s conceptual starting points in classical
physics underwent changes that justify the designation of this process as a scientific
revolution. In this final section, we shall first review the beginning and the end of the
development of Einstein’s heuristics in order to highlight the conceptual innovations
brought about by this development with respect to classical physics. We shall then
summarize our answers to the three epistemic paradoxes raised by this scientific rev-
olution. These answers make use of the key elements for an understanding of a scien-
tific revolution that is suggested by historical epistemology: the long-term character
of knowledge development, the architecture of knowledge, and the mechanisms of
knowledge dynamics.

8.1 The Lorentz Model Remodelled

Our analysis has shown that for Einstein’s search, the Lorentz model was structurally
the most significant heuristic element inherited from classical physics. At each stage
of its development, the structure of this mental model and its default settings deter-
mined the way in which the specific problems of finding the field equations could be
addressed. As long as it remained unquestioned, the model thus opened (or closed)
the viable paths of further exploration and determined the possibilities of conceptual
unfolding. In classical physics, the two basic structures of the Lorentz model, the
field equation and equation of motion, are related to each other as independent com-
ponents of which the first determines the creation of a global field by a local source,
while the second determines the effect of the global field on a local probe. Within the
classical framework, source and probe are essentially independent entities entering
into this model.

In general relativity, this basic structure has changed. First, the source can no
longer be independently prescribed from the field. The distribution of matter and
energy acting as a source of the gravitational field can only be described in a given
geometry of spacetime, which in turn is only another aspect of the gravitational field
determined by the field equation. Second, the equation of motion is no longer an
independent aspect of the problem, linked to the description of the gravitational field
by an overarching force concept, but is constrained and in special cases even com-
pletely determined by the field equation 246 These features of general relativity,
which mark its conceptual distinction from classical physics were not yet evident in
1915 when Einstein formulated his field equations. In other words, the corresponding
conceptual innovation was not the presupposition but the result of his research. Thus
Einstein’s heuristics, which was structured by the Lorentz model, led to the develop-

246 For historical discussion of this point, see (Havas 1989, Kennefick 2005).
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ment of a theory whose cognitive content can no longer be adequately captured by
this mental model.

The discovery of general relativity would, however, have been impossible if the
Lorentz model had not at least been adequate for capturing just those partial aspects
of the final theory that made its discovery possible. As we have seen in the previous
sections, it was even possible to construct and interpret the definitive field equation of
general relativity according to this model. Furthermore, the kind of solutions that
Einstein had in mind when he searched for the field equation obscured the new rela-
tion between matter distribution and geometry mentioned above. The solutions that
he seriously considered were given either by Minkowski spacetime (a vacuum solu-
tion) described in various coordinate systems, or weak field solutions that could be
obtained from it by an iterative procedure. The problem of having to first specify the
geometry and then the distribution of matter and energy in order to solve the field
equation turns into an approximation procedure. The further elaboration of the conse-
quences of Einstein’s field equation revealed the changes with respect to the Lorentz
model. That a revision of this mental model was implied by the field equation of gen-
eral relativity was clear to Einstein as soon as he noticed that the field equation of the
new theory would have to be non-linear. As early as 1912, he interpreted this techni-
cal feature as representing the conceptual conclusion that the gravitational field pos-
sessing energy must also act as its own source. However, at that time, this
modification of the model did not appear to be a radical break, since a modification of
only a default setting of the mental model (“linearity of the field equation”) was suffi-
cient to account for the insight that gravitation can act as its own source.

8.2 The Ill-Conserved Conservation Principle

In classical physics, the conservation of energy and momentum is a consequence of
the fundamental laws governing gravitational and electrodynamic interaction. In spe-
cial relativity, the conservation principle has found an elegant formulation as a tenso-
rial equation that unifies the conservation of momentum and energy. In both classical
and special-relativistic physics, momentum and energy are conceived as localizable
physical quantities whose conservation can be described by a partial differential
equation which describes a local balance between the various contributions to the
energy and momentum of a physical system. Einstein’s consideration of a particular
example (the behavior of a pressureless dust of particles in a gravitational field)
formed the basis, as we have seen, for a tentative generalization of the equation
expressing the conservation principle in special relativity, which now also included
the effect of gravitation, interpreted as the effect of an external force. Two distinct
perspectives on this equation exist, one from classical physics and special relativity,
the other from general relativity. The possibility of having these two perspectives on
the same mathematical expression turned out to be crucial for the emergence of gen-
eral relativity.
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From the point of view of classical physics and of special relativity, Einstein’s
postulated equation represented a twofold constraint for the gravitational field equa-
tion to be found: the resulting field theory of gravitation had to be compatible with
this equation, even at the price of restricting its range of applicability, and, further-
more, the field equation should allow this equation to be rewritten as a local, frame-
independent balance between the energy-momentum of matter and that of gravitation.

Further elaboration of the consequences of this equation, however, made this lat-
ter request questionable. In the course of his search, Einstein was forced to realize
that the expression for energy-momentum conservation which he had postulated
turned out to be incompatible with the assumption of a frame-independent stress-
energy tensor of gravitation. If this postulate is accepted, then energy and momentum
of a gravitational field cannot, in contrast to classical physics, be localizable physical
quantities. In this way, a feature of general relativity that is incompatible with classi-
cal physics was suggested by a framework still anchored in its fundamental concepts.
Einstein’s insight into the character of the expression representing the stress-energy
of the gravitational field might have given him good reason to abandon this entire
approach since its results conflicted with his well-founded expectation that the gravi-
tational field has localizable energetic properties just like all the other known physi-
cal fields. Why did he hold on to this equation in spite of its, from the point of view of
classical physics, problematic implications? His reasons were in any case not an
anticipation of those of the later theory of general relativity.

The equation expressing the energy-momentum balance in a gravitational field
that Einstein had postulated at the beginning of his search, and from which the prob-
lematic conceptual consequences summarized above can be inferred is obtained in
general relativity as an integrability condition of the field equation. Technically
speaking, it is a condition to be imposed on an admissible energy momentum tensor,
representing the right-hand side of the field equation, required in order to be compat-
ible with a mathematical identity —the contracted Bianchi identity — valid for the left-
hand side of the field equation. The Bianchi identity ensures that the gravitational
field equation determines the dynamics of the geometry of spacetime without deter-
mining also the coordinate system. It reduces the 10 components of the field equation
for the 10 components of the metric tensor to only 6 component-equations, thus leav-
ing open the choice of four arbitrary functions corresponding to the choice of a coor-
dinate system. The Bianchi identity together with the gravitational field equation then
also determines the evolution of energy and momentum in space and time by way of
the equation which Einstein interpreted as the expression for the conservation of
energy and momentum in the presence of a gravitational field.

Clearly this argument could not have played a role for Einstein when he was still
searching for the correct field equation. He was not even familiar with the Bianchi
identity at the time when he concluded his search with the publication of the field
equation of general relativity in 1915. Instead he only had two comparatively weak
arguments to hold on to this equation even when he recognized that it did not lead
him to an invariant local expression for the energy-momentum of the gravitational
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field. The first argument was that, for the special case of a dust-like cloud of particles,
it was possible to obtain this equation from the equation of motion of a single point-
particle in a gravitational field described by the metric tensor. The second argument
was related to the mathematical form of energy-momentum conservation. The corre-
sponding equation has the form of a generally-covariant divergence equation which is
not only the precise analogon for the corresponding special relativistic equation but
which also reduces to the latter in the absence of a gravitational field. These two argu-
ments reinforced each other and are in turn supported by other aspects of Einstein’s
heuristics, in particular by the generalized relativity principle and all those aspects
which underlay his understanding of motion in a gravitational field and the require-
ment of a close correspondence between special relativistic insights and their gener-
alizations in the new theory to be constructed.

But in whatever way Einstein could support his understanding of energy-momen-
tum conservation by drawing on special cases and analogies, it was, from the point of
view of the deductive structure of the later theory, support for the wrong side of his
argumentative construction, in so far as it stabilized the role of energy-momentum
conservation as an independent first principle rooted in the conviction of the funda-
mental status of energy and momentum conservation for any physical theory. This
understanding motivated its use both as a compatibility requirement and as an addi-
tional constraint on trial field equations. From the perspective of general relativity,
Einstein had thus developed an improper argumentative structure around a proper
equation, whereas from his own perspective at the time, he had attained a partial
insight into the deductive structure of the theory which he attempted to construct.
Only after his achievement of 1915 he was able to reverse this deductive structure and
obtain the vanishing of the covariant divergence of the energy-momentum tensor as a
consequence of the gravitational field equation in the sense explained above. As was
the case for the development of the mental model in Einstein’s research, the structural
and conceptual insights associated with understanding the role of energy-momentum
conservation in general relativity were thus the result and not the presupposition of
finding the correct equations.

8.3 The Lack of Correspondence between the Correspondence Principle
as seen from Classical Physics and from General Relativity

The way in which the classical theory of gravitation is contained in the theory of gen-
eral relativity could, of course, not be anticipated on the basis of classical physics
before that theory was actually formulated. Nevertheless, the same heuristics which
led to the introduction of the principal building block of the new theory, the metric
tensor, also determined, to a large extent, Einstein’s understanding of the relation
between the theory of gravitation which he was looking for and Newton’s theory. All
in all, he developed, as we have seen, in the course of his research three different
arguments in favor of the representation of static gravitational fields by a spatially flat
metric tensor in which, for an appropriate coordinate representation, only one compo-
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nent is variable and a function of the three space coordinates; this function then, so
Einstein’s conclusion, corresponded, under certain limiting conditions, to the Newto-
nian gravitational potential in his new theory, whatever the precise field equation
would be.

The first argument was directly related to the introduction of the metric tensor as
representing a gravito-inertial field, a step that was, as we have seen, motivated by the
equivalence principle. Einstein conceived Newtonian gravitation and inertia as special
cases of a more general interaction. For the case of uniform acceleration he was able
to directly identify inertial effects with a scalar Newtonian gravitational field and he
expected that he would be able to do the same for more general cases by generalizing
the notion of the gravitational field. A model for that generalization was delivered by
electrodynamics. In spite of the obvious differences between gravitation theory and
electrodynamics, the analogy between them was in fact the only available one and
hence determined Einstein’s view of the general pattern according to which a theory
of the static field should be contained as a special case in a general field theory.
According to this pattern, the general potential was represented by a many-component
object such as a vector or a tensor which, in the special case of a static field, reduces to
a single-component object. In the case of gravitation it should naturally be possible to
identify this single-component object with Newton’s gravitational potential. This
expectation was reinforced by the fact that Einstein had developed, even before intro-
ducing a metric formalism, a theory of static gravitational fields in which these are
represented by a single function. When he began to employ a metric formalism, it was
hence natural to describe static fields by a metric with one variable component and to
identify this component with the gravitational potential of his theory of static fields.

Einstein’s “classical” understanding of the transition from his general theory to
Newton’s theory was stabilized by further arguments developed in the course of his
research. The second argument was based on the role of special relativity as an inter-
mediate step in this transition. In order to describe the gravitational effects known
from classical physics as aspects of a more general gravitational field it is necessary
to specify also the conditions under which such an identification is possible. These
physical circumstances require, in particular, the general field to be weak and static.
These conditions are, however, not sufficient for restricting the realm of gravitational
effects to that covered by Newton’s theory. The case in which the masses involved
perform motions of high velocities requires a treatment by the special theory of rela-
tivity. According to this line of reasoning, weak fields, and in particular weak static
fields, should hence play the role of an intermediate case in the transition to Newto-
nian gravitation, an intermediate case to which the special theory of relativity should
be applicable. It should hence be possible to formulate a special relativistic gravita-
tional field equation which holds under these circumstances. As it turned out, the
solutions of such a weak-field equation, as suggested by the appropriate default-set-
tings of the Lorentz model for this case, exactly correspond to Einstein’s classical
expectations.
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Nevertheless, these expectations were, as we have seen, challenged in the course
of Einstein’s research which pointed on several occasions towards a representation of
static fields by a metric tensor whose form does not correspond to the one which he
expected. He therefore felt, at some point, the necessity of developing yet another
argument in favor of this expectation. His third argument, which we have also dis-
cussed above, was completely independent of a particular gravitational field equation.
In essence it consisted in a problematic attempt to deriving the form of the metric ten-
sor for static gravitational fields from the postulate underlying the equivalence princi-
ple that all bodies—no matter what their energy content—fall with the same
acceleration in a gravitational field.

The assertion that the metric for static fields is of the canonical form expected by
Einstein does not belong to the realm of classical physics. It rather appears to be a
specific technical assumption which entered his preliminary gravitational theories as
an inconspicuous and perhaps precisely for this reason fateful prejudice delaying his
progress towards the correct field equation. However, the preceding synopsis of the
reasoning by which this assumption was actually anchored in Einstein’s thinking
shows that, once the metric tensor was introduced as a representation of gravitational
fields, the association of static fields with a metric tensor of the canonical form was a
necessary consequence of Einstein’s understanding of classical physics applied to
this representation.

This entire network of reasoning, and in particular, the procedure for attaining the
Newtonian limit which forms its core, is not compatible with the final theory of gen-
eral relativity. According to this theory, static fields are, in general, not represented by
a metric tensor of the canonical form. A consistent treatment of the problem of the
Newtonian limit in general relativity is an intricate problem247 and indeed requires a
mathematical formalism which did not even exist when Einstein first formulated the
theory in 1915; it was only introduced much later by Cartan and others (Cartan 1923,
1924). It is only in this formalism, by using the concept of an affine connection, that
it is possible to formulate both general relativity and Newton’s theory of gravitation
in a way that makes them mathematically comparable.248 In fact, whereas in general
relativity, the geometry of spacetime is described by a metric structure, in Newtonian
theory of gravitation, the four-dimensional metric structure is degenerate and only an
affine structure can be introduced for spacetime. But since a metric determines also
an affine structure, both theories can, with the help of this mathematical concept,
actually be expressed in the same mathematical terms. Vice versa, the fact that the
spacetime of general relativity carries not only an affine but also a metric structure
represents a conceptual leap with respect to Newtonian physics that cannot be
bridged by considering the special theory of relativity, which also comprises a metric
structure of spacetime, as an intermediate case. It is simply impossible to describe
Newtonian gravitational fields by a non-degenerate four-dimensional metric tensor.

247 See note 44 above.
248 See “The Story of Newstein ...” (in vol. 4 of this series).
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This conceptual leap between general relativity and Newtonian physics, together
with the strong arguments which Einstein had in favor of his classical conception of
the correspondence principle, raise the question as to how he could have ever over-
come the crucial hurdle of dealing with the Newtonian limit of his new theory. The
surprising solution is that it was in fact not the removal of this major stumbling block
which freed his way, but rather its circumvention for the specific problems in the
focus of his attention at the time, in particular for the treatment of the motion of a
point mass in a gravitational field. By showing that, although the spatial curvature is
present even under Newtonian conditions, it remains unobservable if only slowly
moving particles are considered, Einstein found a technical loop-hole through which
he could escape from his dense network of reasons supporting the canonical form of
the metric.

8.4 The Ambiguity of the Equivalence Principle

We have identified the beginning and end points of the development of those aspects
of Einstein’s heuristics which were obviously rooted in classical physics. We have
concluded that this classical heuristics was just sufficient to allow for the formulation
of the key equations of general relativity, whose exploration then, however, led to
conceptual insights with which the original expectations were no longer compatible.
We now turn to those elements of Einstein’s heuristics which were peculiar to his
specific research strategy, the equivalence principle and the generalized relativity
principle. No such principles belonged to the accepted core of classical physics at the
time when he took up his research.

If one separates, however, the mathematical development from that of the physi-
cal theories, then Einstein’s introduction of the principle of equivalence appears to be
much less of an idiosyncrasy than it may seem at first sight. To make this clear, con-
sider the reformulation of the classical Newtonian theory of gravitation as a space-
time theory with a non-trivial geometry. This geometry can be described in terms of
an affine connection determining the notion of parallel transport of vectors and hence
also the geodesic lines in that spacetime. It is a fundamental statement of this refor-
mulation of Newton’s theory that the geodesic lines represent the motions of freely
falling particles according to the law of gravitation. Remarkably, the equality of grav-
itational and inertial mass has become, in this modern formulation, an in-built feature
rather than a contingent fact as in the traditional formulation. In the formulation of
the law of motion as being given by the geodesic lines, the notion of mass appears not
at all, while only the notion of gravitational mass enters the field equation of the the-
ory which determines the geometry of spacetime.

From the point of view of this mathematically advanced formulation, Einstein’s
adoption of the principle of equivalence can hence be recognized as expressing a fun-
damental feature of Newton’s theory of gravitation, shaped, however, by the particu-
lar mathematical formulation of the classical theory which formed his starting point
and which suggested a sharp conceptual and technical distinction between gravita-
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tional and inertial forces. This conclusion indeed frees Einstein’s adherence to the
principle of equivalence from its idiosyncratic appearance. One might even conjec-
ture that, had the development of the appropriate mathematical tools come a little ear-
lier, others as well might have found it attractive to employ them for a new
formalization of the classical knowledge on gravitation, thus arriving at the consider-
ations outlined above even before the advent of general relativity. But it now
emerges, on the other hand, even more as a riddle how a principle expressing the
knowledge of classical mechanics could have served as a crucial heuristic guidance
for overcoming this theory in favor of a theory incompatible with it.

The key to resolving this riddle comes from considering the fact that Einstein
used the principle of equivalence not in order to reorganize the knowledge of classi-
cal mechanics but the knowledge embodied in both, classical mechanics and the spe-
cial theory of relativity. His theory of the static gravitational field as well as his early
attempts to generalize that theory were nothing but a reinterpretation of the special
theory of relativity with the help of the introduction of accelerated frames of refer-
ence. His systematic consideration of such accelerated frames induced him to make
use of generalized Gaussian coordinates in order to describe the coordinate systems
adapted to these frames. It was then a short step for him to consider the metric tensor,
coming with the introduction of such coordinates, also as the representation of gravi-
tational effects when these could not be generated by acceleration. In other words,
with the introduction of the metric tensor Einstein had found an object that was capa-
ble of representing gravitational and inertial effects on the same footing, just as is the
affine connection within the modern reformulation of Newton’s theory.

It was, however, not a mere coincidence governed by the availability of mathe-
matical methods that Einstein directly attempted to implement the principle of equiv-
alence in a theory that was to generalize special relativity rather than concentrating
on a reformulation of classical mechanics. He was aiming from the beginning at a
new theory of gravitation which was to comprise both the knowledge on gravitation
and inertia represented by classical mechanics and the knowledge on the structure of
space and time embodied by special relativity. Effectively, the principle of equiva-
lence acted, according to this reconstruction, as a demand for integrating the knowl-
edge on gravitation and inertia from classical mechanics, which in a modern
formulation can be expressed by means of an affine connection, with the knowledge
on the metric structure of spacetime from special relativity. It thus acted as a particu-
lar instance of Einstein’s general strategy to exploit the entire range of classical and
special-relativistic physics for constructing his new theory of gravitation. The analy-
sis given here does, however, not square with Einstein’s own interpretation of the
principle of equivalence as guiding the development of classical and special-relativis-
tic physics with its privileged systems of reference towards a theory of gravitation
which would have to encompass also a generalized principle of relativity.
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8.5 The Relativity Principle Relativized

Einstein’s view that it made sense to search for a generalization of the relativity prin-
ciple of classical mechanics and special relativity was, as we have seen, based on his
acceptance of a philosophical critique of classical mechanics raised by Mach and oth-
ers. According to this critique, the justification of the privileged role of inertial frames
of reference by the notion of absolute space was problematic, while the inertial forces
experienced in accelerated frames of reference require an explanation in terms of the
interaction between physical masses. Such an explanation would then eliminate any
need for absolute space as a causal agent in the analysis of motion. The generalized
relativity principle would go, so at least was Einstein’s expectation, a long way, and
might actually go all the way, towards an implementation of Mach’s critique of clas-
sical mechanics in the new theory of gravitation.

The implementation of Mach’s critique of classical mechanics by way of the gener-
alized relativity principle in Einstein’s new theory of gravitation was, however, rather
indirect. Rather than explaining inertial properties directly by a physical interaction of
masses, they were described by a gravito-inertial field represented by the metric tensor
in a way that in fact depends on the frame of reference. But the gravito-inertial field
itself would be determined only by the distribution of masses in the universe via a gen-
erally-covariant field equation. It follows that the question of whether or not this
approach would lead to an exhaustive explanation of inertial properties by the relative
distribution of masses depends on the precise nature of the field equation and its solu-
tions. While Einstein was initially convinced that his theory would fully do justice to
the Machian roots of the generalized relativity principle, he felt eventually forced to
introduce what he called Mach’s principle as a separate and additional criterion to be
satisfied by the field equation and its solutions. With the establishment of the General
Theory of Relativity in 1915, Einstein succeeded in formulating a theory which imple-
mented the generalized relativity principle in its utmost form, the theory being gener-
ally covariant; whether it also satisfied Mach’s principle, demanding a complete
determination of the gravito-inertial field by the distribution of matter in the universe,
remained, on the other hand, a much debated issue for a long time to come 2%

On closer inspection, however, even Einstein’s realization of the generalized rela-
tivity principle by his formulation of a generally-covariant theory of gravitation rep-
resented a questionable success of this heuristic principle. In fact, not only the
general theory of relativity of 1915, but also several other theories of gravitation and
in particular also the classical Newtonian theory can be given a generally-covariant
formulation. The demand for general covariance has to be considered as nothing but a
minimal requirement to be imposed on any sensible physical theory, namely to make
assertions about physical processes which do not depend on the specific coordinates
used for describing them. But Einstein’s generalized relativity principle —together
with its broader Machian understanding—effectively corresponded, as we have seen,

249 For extensive discussion, see “The Third Way to General Relativity ...” (in vol. 3 of this series).
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to further requirements beyond the demand for a generally-covariant formulation of
the theory of gravitation. It also comprised the demand for treating inertia and gravi-
tation as aspects of a more general interaction as well as the demand for the absence
of any prior geometry of spacetime. The latter requirement excludes, for instance,
Nordstrom’s theory as being not compatible with Einstein’s heuristics since it
assumes the geometry of spacetime a priori to be Minkowskian, up to a conformal
factor representing the gravitational potential.

Nevertheless, Einstein’s own interpretation of this heuristics can hardly be vindi-
cated by the modern understanding of general relativity. First, the demand for treating
inertia and gravitation as aspects of a more general interaction can, as we have seen in
our discussion of the equivalence principle, already be fulfilled by classical mechan-
ics in an appropriate reformulation. Second, the general covariance of Einstein’s the-
ory does not embody a generalization of the relativity principle from classical
mechanics and the special theory of relativity, since, in the modern understanding,
relativity principles are represented by the symmetry properties of a theory and not
by their behavior under coordinate transformations. Third, “Mach’s principle” in the
sense of Einstein’s demand that the metric structure of space be completely deter-
mined by the material masses makes little sense according to the modern understand-
ing of general relativity, since the very notion of material bodies acting as a “source”
of the gravitational field that can be prescribed independently from the field has
turned out to be problematic.

8.6 The Long-Term Development of Knowledge

In the preceding discussion we have emphasized the differences between Einstein’s
heuristics and the conceptual consequences of the theory whose development was
guided by this heuristics. These differences were the result of a process covering two
eras stretching from the beginning of the relativity revolution in 1905 to the present:
The first era comprised the elaboration of the foundational equations of the new the-
ory guided by the original heuristics, a process that was essentially complete with
Einstein’s formulation of general relativity in 1915 and that also included, as we have
seen, adjustments of the original heuristics. The second era consists in the exploration
of the conceptual consequences of the new theory on the basis of an interpretation of
the results achieved in the first era as well as in the course of its further elaboration, a
process that has still not come to a hold today. In view of the often striking differ-
ences between the modern interpretation of general relativity and Einstein’s original
motivations for searching for such a theory, it represents a remarkable challenge for
the historical reconstruction to explain how these original motivations could have led
him to such a definitive formulation of the new theory of gravitation. In the beginning
we have formulated this challenge in terms of the three epistemic paradoxes of the
emergence of general relativity, the paradox of missing knowledge, the paradox of
deceitful heuristics, and the paradox of discontinuous progress.
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As our reconstruction has shown, an adequate response to the missing-knowledge
paradox can only be found when the long-term development of scientific knowledge
is taken into account. This development led, after all, to the emergence of a theory
whose understanding of how gravity affects motion in terms of spacetime structure is
closer to Aristotle’s concept of natural motion than to Newton’s explanation in terms
of an anthropomorphic force. The knowledge on which the astonishing stability of
general relativity is founded was, as we have seen, accumulated long before its cre-
ation by centuries of physics, astronomy, and mathematics. Our modern acceptance of
general relativity is not only based on experiments or observations related to some of
its special predictions but also on the fact that it incorporates the entire Newtonian
knowledge on gravitation, including its relation to other physical interactions, that has
been accumulated over a long period of time in classical physics and in the special
theory of relativity. This knowledge embraces, among other aspects, Newton’s law of
gravitation including its implications for the conservation of energy and momentum,
the relation between gravitation and inertia, the understanding that no physical action
can propagate with a speed greater than that of light, which was first achieved by the
field theoretic tradition of classical physics and then finally established with the for-
mulation of special relativity, and, more generally, the local properties of space and
time, also formulated in special relativity.

After special relativity had elevated the causality requirements implicit in field
theory to a universal status, gravitation, traditionally a subject at the core of mechan-
ics, had effectively turned into a borderline problem between mechanics and field
theory. As was the case for other borderline problems, its successful solution
depended on the shared knowledge resources taken into account. In the case of the
creation of special relativity, Einstein’s success depended on his combining the heri-
tage of mechanics, embodied in the relativity principle, with the heritage of electro-
dynamics, embodied in the principle of the constancy of the speed of light. In the case
of a relativistic theory of the gravitational field, the combination of the heritage of
mechanics represented by the Newtonian theory of the static gravitational field with
what was known about dynamic fields from electrodynamics was, however, insuffi-
cient to create a new and satisfactory theory—as Einstein’s competitors experienced
to their chagrin. There was, in particular, no clue to the properties of dynamic gravita-
tional fields so that the challenge to build a relativistic field theory of gravitation was
comparable to the development of the entire theory of electromagnetism knowing
only Coulomb’s law.

It was at this point that Einstein’s broad perspective, including the philosophical
critique of classical mechanics by Mach, allowed him to muster additional resources
from classical physics. Einstein exploited the Machian interpretation of the inertial
forces in an accelerated reference frame as being due to the interaction of moving
masses in order to fill the above-described gap in a field theory of gravitation. By
conceiving the inertial forces in accelerated reference frames, such as Newton’s rotat-
ing bucket, as embodying dynamic gravitational fields he managed in fact to antici-
pate essential properties of the relativistic theory of gravitation he was about to
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construct, in particular the necessity to generalize the spatio-temporal framework of
special relativity, which led to the notion of a curved spacetime.

8.7 The Architecture of Knowledge

The answer to the second paradox of how Einstein could have formulated the criteria
for a gravitational field equation years before finding the solution comes, as we have
seen, from considering the architecture of the shared knowledge resources available
to him. These resources were in fact part of a system of knowledge with active com-
ponents capable of providing heuristic guidance to his research.

The characteristics of Einstein’s search have become comprehensible by realizing
that it was guided by a qualitative knowledge representation structure inherited from
classical physics: the mental model of a field theory as embodied in an exemplary
way by Lorentz’s electron theory. Einstein’s preliminary research on a relativistic the-
ory of gravitation in the years between 1907 and 1912 had established default-set-
tings for two of its terminals; the field-slot (filled by assuming that the gravitational
potential is represented by the metric tensor), and the source-slot (filled by the stress-
energy tensor of matter as suggested by relativistic continuum mechanics). In the
context of his research the differential operator describing how the source generates
the field represented an open slot for which Einstein was unable to identify a satisfac-
tory instantiation.

As we have discussed, Einstein’s difficulty did not result from the fact that too lit-
tle was known but rather from the fact that too much knowledge had to be taken into
account to formulate a field equation that responded to the understanding of gravita-
tion as a borderline problem of mechanics and field theory. On the one hand, a physi-
cally plausible instantiation for the differential operator was suggested by knowledge
of the Newtonian static gravitational field as well as of the relation between static and
dynamic fields in electrodynamic field theory. Constructed in this way, the new the-
ory would automatically be compatible with Newton’s theory, thus fulfilling the cor-
respondence principle. On the other hand, a mathematically plausible way to obtain
an instantiation of the differential operator was offered by the knowledge about
dynamic fields incorporated in Einstein’s equivalence principle, which suggested tak-
ing generally-covariant objects such as the Riemann tensor as the starting point. Con-
structed in this way, the new theory would automatically fulfill the generalized
relativity principle. The equivalence principle and the generalized relativity principle
had helped, in addition, to reveal just those elements of the traditional knowledge on
whose integration the new theory could be based. In the modern formulation, they
posed the problem of the compatibility between chronogeometry and gravito-inertial
structure. Within the knowledge system of classical physics, the Lorentz model was,
furthermore, embedded in a network of relations to other frames and mental models;
this network served as a control structure for any acceptable implementation of the
model. In particular, the new theory had to satisfy the conservation principle, general-
izing similar principles from classical and special-relativistic physics.
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In short, Einstein’s heuristics was overdetermined by the knowledge available to
him, explaining why it was so powerful and yet so fortuitous at the same time. The
compatibility of the various requirements it imposed could not be established a priori
but had to be checked by elaborating a mathematical representation of the Lorentz
model, starting from one or the other default setting and shaping it according to the
remaining heuristic criteria. Einstein’s oscillation between a physical strategy starting
from an implementation of the correspondence principle, and a mathematical strategy
starting from an implementation of the generalized relativity principle could thus be
interpreted as realizing alternative and ultimately converging pathways with which to
integrate the knowledge of classical physics.

8.8 Knowledge Dynamics

The third paradox, of discontinuous progress, could only be resolved by taking into
account that the development of knowledge does not only consist of enriching a given
architecture but also comprises processes of reflection by which this architecture is
being transformed. Einstein’s learning experience was, in fact, characterized by a bot-
tom-up process that accommodated the higher-order structures at the core of his heu-
ristic principles to the outcome of the experiences he made implementing these
principles. The interplay between assimilation and accommodation mediated by the
mathematical representation has turned out to be the crucial process determining the
knowledge dynamics leading to the creation of general relativity as a non-classical
theory. Against this background four stages of Einstein’s search for the gravitational
field equation could be distinguished.

The tinkering phase of fall 1912 is documented in the early pages of Einstein’s
Zurich Notebook. It is characterized by his unfamiliarity with the mathematical oper-
ations suitable for constructing a field equation for the metric tensor. Nevertheless,
reflecting on his first attempts to formulate a field equation that satisfied his heuristic
principles, Einstein built up higher-order structures operating on a strategic level that
would later guide his systematic implementation of these principles, in particular, the
physical and the mathematical strategy.

The systematic searching phase from late 1912 to early 1913 is also extensively
documented by the Zurich Notebook. In this phase Einstein systematically examined
candidates according to his heuristic principles alternating between physical and
mathematical strategies. Meanwhile, the relative weight of the heuristic principles
kept changing with the conservation principle emerging as the principal challenge.
Paradoxically, the main result of the pursuit of the mathematical strategy was the der-
ivation of an erroneous theory —the Entwurf theory —along the physical strategy.

The consolidation phase is documented by Einstein’s publications and correspon-
dence between 1913 and mid-1915. During this phase he elaborated the Entwurf the-
ory, essentially following his earlier heuristics but now under the perspective of
consolidation rather than exploration. Paradoxically, however, the main result of the
consolidation period was the creation of the presuppositions for a renewed exploration
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of candidate field equations. Adapting the mathematical strategy to legitimize the Enz-
wurf theory, Einstein found that the resulting mathematical formalism did not single
out this theory but reopened the perspective of examining other candidates, removing,
in particular, the difficulty of implementing the conservation principle. Because of the
extended network of results meanwhile assembled, this reexamination could now take
the form of a reflective reorganization of Einstein’s earlier achievements.

The reflection phase, decisive in resolving the paradox of discontinuous progress,
is documented by the dramatic series of four communications Einstein submitted to
the Prussian Academy in November 1915. The essence of Einstein’s return in the first
of these communications to a field equation related to the Riemann tensor consists in
reinterpreting results achieved in the context of the Entwurf theory. As a conse-
quence, also Einstein’s original heuristic principles received a revised physical inter-
pretation. The crucial step of the transition from the Entwurf theory, still rooted in
classical physics, to the non-classical theory of general relativity was, however, the
shift in the physical interpretation of the representation he had unfolded in the pre-
ceding years.250 This transition was a Copernicus process resembling Einstein’s rein-
terpretation of Lorentz’s auxiliary variable for local time as the time measured in a
moving reference frame. But in passing from the Entwurf theory to general relativity,
however, Einstein was, in a sense, his “own Lorentz” —hence the more isolated char-
acter of the second phase of the relativity revolution. In the case of the transition to
general relativity, it was, in particular, the Christoffel symbol, initially only an auxil-
iary quantity, that assumed a new physical meaning, now representing the gravita-
tional field.

The synthesis represented by general relativity was not without alternatives at the
time of its establishment—nor is it today. Some of these alternatives were even dis-
tinguished by consequences which could be tested empirically. The observational
consequences which distinguish general relativity from its main competitor at the
time, Newton’s and Nordstrom’s theory of gravitation, were, however, by no means
momentous and could have easily gone unnoticed for a long time, or might have
remained irrelevant for a decision between alternative theories of gravitation had Ein-
stein’s research not drawn attention to them. The contemporary discussion about
these alternatives and their elaboration document a process of equilibration between
individual perspectives and shared knowledge resources.”>! Even the most ingenious
phase of the relativity revolution—the phase of reflection—was, from the point of
view of historical epistemology, not the privilege of an outstanding individual, but
just one aspect of the transformation of a system of knowledge.

250 See “Untying the Knot ...” (in vol. 2 of this series).
251 See vols. 3 and 4 of this series.
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