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ABSTRACT

This paper concerns the computation, by means of gra-
dient and Newton methods, of the Karcher mean of a finite
collection of points, both on the manifold of 3 x 3 rotation
matrices endowed with its usual bi-invariant metric and on
the manifold of 3 x 3 symmetric positive definite matrices
endowed with its usual affine invariant metric. An explicit
expression for the Hessian of the Riemannian squared dis-
tance function of these manifolds is given. From this, a con-
dition on the step size of a constant step gradient method
that depends on the data distribution is derived. These ex-
plicit expressions make a more efficient implementation of
the Newton method possible and it is shown that the Newton
method outperforms the gradient method in some cases.

1. INTRODUCTION

In many signal processing applications, it is necessary to
deal with data that belong to a Riemannian manifold. For
instance, in computational anatomy [1, 2], the data are dif-
fusion tensors or symmetric positive definite matrices rep-
resenting the diffusion of water at some voxel in the white
matter of the brain. In computer vision and robotics, the ori-
entation of an object is often represented by a rotation with
respect to a reference frame, see [3, 4]. To reduce a mea-
surement noise on these data or simply to obtain a measure
of centrality, an efficient technique to compute the mean of a
set of points is required.

A notion of mean on Riemannian manifolds has been in-
troduced by Karcher in [5]. A unit step size gradient descent
method to compute this mean has been proposed in [1] for the
set of symmetric positive definite matrices. In [6], a proof of
convergence is given under some conditions on the curvature
of the manifold but no step size selection rule is proposed
to ensure the convergence. On Lie groups, such as the set
of rotation matrices, a unit step size gradient method with a
convergence proof is proposed in [7] and a Newton method
is introduced in [8].

In this paper, the potential interest of using a Newton
method to compute the Karcher mean is discussed. Such a
technique has an asymptotic quadratic rate of convergence.
So in practice, a Newton method requires less iterations than
first order techniques to reach a sufficiently high accuracy.
But the cost per iteration is significantly higher since the Hes-
sian of the objective function must be computed and the sym-
metric linear system of Newton’s equations must be solved
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at each iteration. Consequently, a gain in terms of computa-
tional time is not guaranteed. Here, explicit expressions for
the eigenpairs of the curvature endomorphism are derived
and, from this, an efficient implementation of the Newton
method presented in [8] is proposed. Using this efficient im-
plementation, it is shown that the Newton method is faster
than the gradient technique when a high accuracy is required,
if the data points are not too concentrated around one point.
A convergence analysis for the gradient method on the set of
symmetric positive definite matrices is also given. More pre-
cisely, a condition on the step size, related to the data distri-
bution, is introduced to ensure the convergence. Our analysis
can be seen as a particularization of the result of [7], for the
set of rotations but, to the best of our knowledge, this analysis
is new for the set of symmetric positive definite matrices.

The paper is organized as follows. Section 2 introduces
the Riemannian geometry of the set of rotations in the 3-
dimensional space SO(3) and the set of diffusion tensors of
dimension 3 denoted by P3+ . Some results about the unique-
ness of the Karcher mean are recalled in section 3. An ex-
plicit expression for the Hessian of the Riemannian squared
distance function is given in section 4 and from this a condi-
tion on the step size of the gradient technique is deduced to
ensure the convergence, see section 5. Section 6 gives some
details about the implementation and section 7 compares the
gradient and the Newton technique in terms of computational
time.

2. RIEMANNIAN GEOMETRY OF SO(3) AND Py

In this section, the Riemannian geometries of SO(3) and P3+
are briefly described. An element of SO(3) can be repre-
sented by an orthogonal matrix X of determinant 1:

SO(3) = {X e R¥3 XX =1, det(X) = 1}.

This representation is particularly useful since the applica-
tion of the rotation X to a vector v € R> is given by Xv.
Notice that it is also possible to use unit norm quaternions
or an angle and an axis to represent a rotation. SO(3) has a
Lie group structure and its Lie algebra so(3), or the tangent
space at the identity, is given by the set of skew-symmetric
matrices
s0(3) = {X e R¥3X" = —X}.

Notice that so(3) is also equivalent to R* endowed with the
cross product, denoted by X, for the Lie bracket. Table 1
summarizes the two representations. By introducing the fol-
lowing inner product on so(3)

1
gX,)Y)= itrace(XTY),
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gp(v,v) = Ltrace(v'v)

[v,w] =vw—wv

Table 1: Representation of so(3)

we turn SO(3) into a Riemannian manifold. This inner prod-
uct is bi-invariant (on the left and on the right) to the action
of the orthogonal group and SO(3) has the structure of a Rie-
mannian symmetric space [9].

Let P;r be the set of symmetric positive definite matrices

Py ={PcR¥3P=P" P~0}.

This is also the set of ellipsoids in 3 and it is also called the
set of diffusion tensors [2]. This set is a homogeneous space:
the general linear group GL(3) = {g € R>*3|det(g) # 0}
acts on it transitively by congruence P — gPg'. The tangent
space at p is the set of symmetric matrices:

T,Pf ={VeR™"Vv=V"}
When this space is endowed with the Riemannian metric
8p(X,Y) = trace(Xp~'Yp ), (1)

called the affine invariant metric, P3Jr becomes a Riemannian
symmetric space [2].

Using these metrics, we turn these manifolds .# into
metric spaces by introducing the following distance function

[ Vtats) itsias.

This distance is the length of the minimizing geodesic ¢ >
¥(¢) starting at x and ending at y. Since SO(3) is a Lie group
under matrix multiplication, for all A, B € SO(3), there exists
a C € SO(3) such that A = CB. The Riemannian distance
corresponds to the angle of the rotation represented by the
matrix C. Notice that the Riemannian distance cannot exceed
7 since a rotation whose angle of rotationis 1+6, 0< 0 < 7w
is equivalent to a rotation of angle 6 — 7w around the same
axis.

On P3+ , the Riemannian distance between the identity
tensor and another tensor P is

d(1.P) = \/log(d1)? + log(d2)? +log(ds )?

d(x,y) = argmin

y(t)e s.t. y(0)=x, y(1)=y

where P = Udiag(d,dy,d3)U " (eigenvalue decomposition).
Consequently, an ellipsoid on the border of the cone, i.e. a
rank deficient ellipsoid, is at an infinite distance to the iden-
tity. Notice that endowed with this distance function, SO(3)
and P3+ are complete metric spaces.

3. KARCHER MEAN
Let g1, ...,g, be a set of n points on the manifold .# and let

n

o Y d(x.q:)*. 2

F%%R+, n
i=1

A point x € .# is a Karcher mean, see [5], if gradF (x) =
0, i.e. x is a stationnary point of F. Notice that in the lit-
erature, other denominations are used: centroid, barycenter,
Riemannian center of mass.

In general, the Karcher mean is not unique. But on the
Riemannian manifolds with positive sectional curvature K
and injectivity radius inj(.# ), the Karcher mean is unique in
the open ball B(xo, 4 min{inj(.#), % }) if all the data points
belong to that ball. Since the sectional curvature of SO(3)
is 1/4 and its injectivity radius inj(SO(3)) = &, the radius of
the ball is 7/2. On P;", the sectional curvature is negative
and the Karcher mean is unique if no data point lies on the
boundary of the cone. These results are due to Kendall, see
[10].

To find the Karcher mean inside such a ball, a gradient
technique can be used. The gradient of the function (2), see
[5], is

1 n
gradF (1) = -} expy ' (41), 3)
i=1

where exp; ! (y) stands for the log-mapping that returns a tan-
gent vector v at x such that the geodesic curve 7 — y(¢) with
¥(0) = x and 7(0) = v satisfies (1) = y. In [6], a gradi-
ent method is proved to converge under some assumptions
on the curvature of the manifold. This is, to the best of our
knowledge, the most recent contribution that proves the con-
vergence of the method in a general setting. The algorithm is
the following:

Algorithm 1 Gradient technique

1: Given a set of n points g; € .4 for 1 <i <n and an initial
guess for the Karcher mean pp;
Set uy = tp and k = 1;
until g, (gradF (uy), gradF (1)) < € do
Compute the gradient of F' at L using (3);
Move along the geodesic curve starting at Uy Uy =
expy, (—hu, gradF (l));
: Setk=k+1;
7: end
8: return Ly (the estimation of the Karcher mean)

In this algorithm the step size iy, has to be chosen using
for instance a line search technique. But a line search tech-
nique requires to evaluate the objective function, which is as
expensive as computing the gradient. One possibility is to
fix the step size in advance. For instance we can fix iy, = 1.
This strategy is followed in [7] for SO(3) where a global con-
vergence result is given if the data points are located inside
an open ball of radius m/2. Notice that this result is valid
on any compact Lie group. The same strategy is used in [1]
to compute the Karcher mean on P3+ . But to the best of our

knowledge, there is no convergence proof for P; .

4. EXPLICIT EXPRESSION FOR THE HESSIAN

On P; and SO(3), it is possible to have an explicit formula
for the Hessian of the Riemannian squared distance function
and to derive bounds on the eigenvalues of the Hessian in
function of the data distribution.

Let p and g be two points in .#, Ap € T,.# and s — c(s),
a smooth curve in .2 such that ¢(0) = p and ¢(0) = Ap; the
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Hessian of the Riemannian squared distance function

1
falp) = 5d(p.q)°
is given by
A d
Hessf,(p)[Ap,Ap] = — fo(c(s))ls=o, @)
=8p(/(1),4p), ®)
where J(1) = D,J(t)|;—1 is the covariant derivative of the Ja-

cobi field J(¢) along the geodesic curve ¢ — ¥(t) joining ¢

and p such that y(0) = g and y(1) = p, see [5], that satisfies
DI (1) +R(J (1), ¥(1))¥(t) =0, (6)
J(0)=0eT,#,

J(1)=Ap e T,

Since the curvature endomorphism R is parallel on symmet-
ric spaces, this implies that (6) is a constant coefficient differ-
ential equation and it can be solved explicitly, see [11, 9, 8]
for more details. This yields,

m

HESqu( )AP’AP Z ApaEk (1)Ek(1)7Ap)a
J(1)
(N
= Y gp(Ap. E(1)Pwi(1), @®)
k=1
with
;Lk COt(t\/ 7Lk) if ;Lk >0,
wi(t) =< 1/t if 4 =0,
\/ —lk COth(t\/ —Ak) if ;\,k <0,
where the A;’s are the eigenvalues of the Jacobi operator
J = R(J,7(0))1(0), ©
and the E;’s are its corresponding eigenvectors. Since the

Jacobi operator (9) is a symmetric linear map, it admits
an orthonormal basis of eigenvectors. Let us assume that
E1,...,E, form an orthonormal basis at ¢ = y(0) that can
be extended to a frame E|(t),...,E;(¢) by parallel transport
along the curve # — (). Notice that 7(0) = equ’1 (p) and
l7(0)|| = d(p,q). To compute the eigenpairs of the Jacobi
operator (9), a representation of the tangent vectors 7(0) and
J is required. The representation of 7(0) is denoted by A and
the representation of J by X.

On SO(3), an element of the Lie algebra can be repre-
sented by a 3 x 3 skew-symmetric matrix. Using this repre-
sentation, the curvature endomorphism is given by (see [12])

1

where X,Y,Z € so(3) are skew symmetric matrices. But, us-
ing the vector representation of the Lie algebra, see Table 1
we can write

R(X,Y)Z =

1
R(X,A)A = ZA X (X xA),

2'min 0 %(Gmax cFmin)
Amax d(p,q)*/4 0

Inkinwk(l) d(ﬂzm Cot(d(g‘q)) 1

mkax Wi ( 1 ) 1 Gmaxgcmin COth( O-max;(’min )

Table 2: Largest Amax and smallest A, eigenvalues of the
Jacobi operator (9) and bounds on the Hessian of f, at p.

On SO(3), d(p,q) = |lexp,'(p)|| is the Riemannian dis-

tance between p and g. On P, Omax and Opi, are the
largest and smallest eigenvalues of A, the representation of

7(0) = exp, ' (p).

where A € R represents 7(0) and X € R represents the Ja-
cobi field J. Consequently, the eigenpairs of the Jacobi oper-
ator (9) with the vector representation of the Lie algebra are
described by

e A=0,E;
2
e A=Vl B By
where E] = H%II and [E|,E,,E;] is a positively oriented or-

thonormal basis of R>.

On P3+ , the curvature endomorphism at the identity is also
given by (10) where X, Y, Z are tangent vectors at the identity,
i.e. symmetric matrices, see [8] for more details. Since we
can ‘translate’ the problem to the identity using an isometry,
only the diagonalization of the curvature endomorphism at
the identity is required and we can assume that ¢ = I. Once
again let A be a representation of 7(0). Since A is a sym-
metric matrix, it can be diagonalized by an orthogonal trans-
formation, i.e. A =UXU ' where £ = diag(oy,02,03). Let
e; be the i-th identity vector. The eigenvalues A and related
eigenvectors E of (9) are

e A=0E= Ue,-eiTU—r with 1 <i <3 (3 eigenpairs of this
type);
o A= —%(Gj — Gj)z, E = U%(eie} +€j€7)UT with 1 <

i < j <3 (3 eigenpairs of this type).

The proof is omitted and will appear elsewhere. From these
explicit expressions of the eigenpairs of the curvature endo-
morphism, it is possible to derive bounds on the Hessian of f

and since F (x) = Z 1 fgi(x) with f, (x) = d(x gi)?, these
bounds are also Vahd for F. From (8), we have

minwg(1)[Ap]|* < Hessf, (p)[Ap, Ap] < maxw(1)[|Ap]*.
(11)

The term wy (1) is shown in Figure 1. On P;", the sectional
curvature is negative, i.e. A <0, so wy (1) is greater or equal
to 1 and the Hessian is positive definite. On SO(3), the sec-
tional curvature is positive, i.e. A > 0, and wi(1) is upper
bounded by 1 and is positive if VA < /2. Table 2 gives
upper and lower bounds on the eigenvalue of the Hessian of
fy at p in function of the Riemannian distance d(p,q) on
SO(3) and in function of the largest Omax and the smallest
Omin €igenvalues of A on P3+ .

Observe that this development confirms that the distance
function is convex if d < 7 on SO(3). So, the Karcher mean
is unique on a ball of radius 7 /2 as shown in [7]. And if the
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Figure 1: Graphic of wi(1) in function of y/|2| in the pos-
itive curvature case (red) and in the negative curvature case
(blue)

data belongs to a ball of radius /2 < r < & centered at p,
then the Karcher mean is still unique inside the ball of radius
7 —r. In fact, by the triangle inequality, the distance between
any point inside this ball and the data points cannot exceed
T, see [3].

5. CHOICE OF THE STEP SIZE

This section proposes a convergence analysis of the gradient
technique (Algorithm 1) with constant step size. This follows
the ideas of [13] and [6].

The proof of convergence of the constant step algorithm 1
is based on the relaxation principle, i.e. the value of the cost
function at each iteration must be strictly decreasing. So, the
step size h must be chosen to ensure this decrease. Let 1 be
the current iterate and let 4 — y(h) = U be the geodesic
curve such that y(0) = ;. and 7(0) = —gradF (). Using a
Taylor expansion we obtain

F(y(h)) = F(7(0)) — hgy(o) (2radF (v(0)), gradF (¥(0)))
2

+ 2 Hess (y(h) [10"), 7))

such that

with  h* €]0,A[. Let L > O
= LIn0)|* =

HessF (y(h*))[y(h*), 7(h*)] < L|y(h*)|?
L||gradF (7(0))||?, we have

F(y(h)) = F(1(0)) < (—h+ %th)llgradF(Y(O))IV-

To guarantee the decrease of the objective function, the
upper bound on the right hand side must be strictly negative.
This is true if 0 < A < 2/L, and h = 1 /L minimizes the bound.

By taking the sum from 1 to k on the left-hand side and on
the right-hand side, one obtains

(F (1) = F ()

k
dF (w)||* <
Y llgradF (u)||* < (—h+1rL)

i=1

)

which implies ||gradF (u;)|| — O when k — oo since F is
bounded from below.

Notice that our upper and lower bounds on the Hessian,
see Table 2, depend on the distribution of the data points.
Thus we have to assume that all data points lie (strictly) in-
side a ball, to have an estimation of L and so to choose a
step size h that ensures the convergence. Consequently, the
step size must be chosen to ensure that we do not escape
from this ball. This is guaranteed if & €]0,1/L]. In fact, let
h be such that y(h) is on the border of the ball. Since all
the data points lie strictly inside the ball, gradF (y(h)) points
outside the ball and F(7(h)) is increasing at this point. Since
we assume that F is convex inside the ball, there is one and
only one point ' €]0, k[ with y(/') inside the ball such that
LF(y(h))|,_; =0.1f h < 1/Lthen % F(y(h))|; <0and so

h < h which ensures that (k) is inside the ball.

On SO(3), L= 1;see (11) and Table 2. On P, L depends
on the distribution of the data points. To get more insight on
the value of L, it is easier to relate it to the condition number
of the ellipsoids. Given P € P, one can write P = UDU "

(eigenvalues decomposition), and let ¢ = d““’* be its condition

number with respect to the 2-norm; then T = ml?xwk(l) is

given by
1 1
L(e) = 3 log(e)

This function tends to 1 when c is going to 1 and is strictly
increasing for ¢ > 1. So if the condition number of the el-
lipsoids are close to 1, then the upper bound L will be a bit
larger than 1 and the Hessian will be close to the identity.

— (12)

6. IMPLEMENTATION

Given p € SO(3), a tangent vector at p can be represented
by a matrix of the form pv where v is skew-symmetric, see
the definition of the tangent space. But it is also possible to
represent only v € T;SO(3) without forgetting that this tan-
gent vector at the identity or in the Lie algebra is related to
the point p. This approach is computationally more efficient
since it does not require to compute and store the matrix pv.
Furthermore, to represent an element of the Lie algebra, a
vector 7 € R? is used, see Table 1. Using this representation
and the Rodrigues formulas, we have

e exp,(v):s0(3) = SO(3),
-
exp,(v) = pExp(v) = p(I + Mﬁ\\”v\\ 4 mguww 2),
and if [|7]| < 10713, set exp,(v) =p

. exp;l(q) :S0(3) — s0(3),

“R(1,2) +R(2,1)
exp,'(q) = Log(p'q) = 75 | R(1,3) =R(3,1) |,
(S{)Jl) R(3,2)

where R = p "¢ and 8 = arccos
andif 8] < 101, setexp, ! (¢) = 03

where Exp and Log stand for the matrix exponential and the
matrix logarithm.

On P;" the exponential and logarithm mappings are given
by, see [2],

*1/2)p1/2,
—1/2)p1/2.

exp,(v) = p'/*Exp(p~"*vp
exp,'(q) = p'/*Log(p~"*qp
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rvsn| 4 10 100 1000
T/A [ @100 G.I1D G310 (5.10)
m/2 | (2412) (29.7) (294) (28.5)
3n/4 | (34,14) (45,7) (463) (43.3)

Table 3: Mean (first entry) and standard deviation (second
entry) of the time reduction in % in function of the number
of data points n and the radius of the ball r on SO(3)

Notice that the action x — p~/2xp~1/2 maps p to the identity
I and its differential is the map X, — p~'/2X,p~/2 where
X, is a tangent vector at x. This action is also an isometry
with respect to (1). In the computation, at each iteration, the
current estimate of the mean L, in Algorithm 1 is mapped to
the identity using the isometry x — ;. ~"/2xu,~'/2 and the
same isometry is applied to each data point. This isometry
is stored in memory. So, at the end, the Karcher mean is
computed by applying the inverse of the composition of all
these isometries.

With our explicit expressions for the eigenpairs of the
curvature endomorphism, one can express the Hessian form
(8). This leads to an efficient implementation of the New-
ton method that can outperform the gradient method in some
cases. To implement the Newton method, a basis is needed.
On SO(3) one can choose the canonical basis of %> and on
Py the basis eje]] 1 <i< 3;%(656} +ejel )1 <i<j<3.
Then using (8), one obtains a representation of the Hessian
matrix in the chosen basis. Notice also that, since the current
estimation of the mean is mapped back to / at each iteration,
the diagonalization of the curvature endomorphism is only
required at the identity. The details of the implementation
will appear elsewhere.

7. NUMERICAL RESULTS

A set of n points was generated around the identity, w.l.0.g.
since SO(3) and P;r are homogeneous spaces. The points
are distributed uniformly (radially and in each direction) on a
ball of radius r. The time required to execute the gradient and
Newton algorithms to reach a given accuracy was computed
using the fic; ... toc; function of Matlab and averaged over
100 runs. To be independent of the computer power, we only

report the time reduction (1 — M)IOO (in %). This set
g

radient

of points was generated 100 times for different values of the
radius r. The mean and the standard deviation of the time
reduction is presented in Table 3 for SO(3) and in Table 4 for
A

On SO(3), the accuracy was set to ||gradF (i )|| < 10715.
The unit step size gradient technique was used since it guar-
antees the convergence. Notice that in the case r = 371 /4,
the initial condition was picked randomly inside the ball of
radius 7 /4 since the Karcher mean is unique inside of this
ball, see Section 4. For r = /4, the Newton method does
not perform better than the gradient method but for r = 7/2
and r = 37 /4, one observes a significant improvement with
the Newton method.

On Py, the accuracy is set to 10717, The Newton method
was compared to a unit time step gradient method. This step
size does not guarantee the convergence but it is used in [1]
and [2]. The Newton method performs better if the radius of
the ball is larger than 3. For r > 4, the gradient technique
does not converge all the time and it is stopped if the number

rvsn| 4 10 100 1000
I (1,15 (-13,12) (30,11) (33,10
2 | @L16) (5,100  (-17,11) (-21,14)
301 (38,18) (27,13)  (10,6)  (6,7)
4 | (58,14) 43,11) (27,8)  (25.5)
5 1(7013) (56,12) (427)  (36,6)

Table 4: Mean (first entry) and standard deviation (second
entry) of the time reduction (in %) in function of the number
of data points n and the radius of the ball r on P;

of gradient iterations exceeds 200. To avoid this, it is possible
to reduce the step size in order to ensure the convergence,
see Section 5. But most of the time, even with the best step
size, i.e. the one that minimizes the number of iterations, the
Newton method is faster.

8. CONCLUSIONS

Explicit expressions for the eigenpairs of the curvature en-
domorphism on SO(3) and P; were given. Based on this,
an efficient Newton method for computing the Karcher mean
of a finite set of points was proposed and compared to the
gradient technique studied in [7] and [6]. A condition on the
data distribution was also given to ensure the convergence of
this gradient method. The same analysis can be carried out
on other symmetric spaces like SO(n) and P, for larger n or
the Grassmann manifold.
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