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Abstract. Semantic Space models, which provide a numerical repre-
sentation of words’ meaning extracted from corpus of documents, have
been formalized in terms of Hermitian operators over real valued Hilbert
spaces by Bruza et al. [1]. The collapse of a word into a particular mean-
ing has been investigated applying the notion of quantum collapse of
superpositional states [2]. While the semantic association between words
in a Semantic Space can be computed by means of the Minkowski dis-
tance [3] or the cosine of the angle between the vector representation of
each pair of words, a new procedure is needed in order to establish re-
lations between two or more Semantic Spaces. We address the question:
how can the distance between different1 Semantic Spaces be computed?
By representing each Semantic Space as a subspace of a more general
Hilbert space, the relationship between Semantic Spaces can be com-
puted by means of the subspace distance. Such distance needs to take
into account the difference in the dimensions between subspaces. The
availability of a distance for comparing different Semantic Subspaces
would enable to achieve a deeper understanding about the geometry of
Semantic Spaces which would possibly translate into better effectiveness
in Information Retrieval tasks.

1 Introduction

Semantic Space techniques map words in a high dimensional vector space [4].
The map is usually built by computing lexical co–occurrences between words
appearing in the same context where each vector is assigned to a word and
represents the co–occurrences between the word and others. In this work, we
consider a particular instance of a Semantic Space, the Hyperspace Analogue to
Language (HAL). The HAL space is created through the co–occurrence statistics
within a corpus of documents. This space has been used as a representation
model of semantic memory [5] and has been shown to be compatible with human
reasoning in cognitive science [6]. Within the area of Information Retrieval, HAL
has been used to perform information inference for query expansion [7].

1 We refer to different Spaces, not different instances of the same space, i. e. the same
space rescaled.



In Semantic Spaces (like HAL) words (or concepts [8]) are represented by
points in a high dimensional vector space: their position in the space is related to
their meaning and inter–relationships. The former can be inferred by examining
the components of the high dimensional vector associated with a word, while the
latter can be exploited by a similarity measurement between word vectors. For
example, in [3] the authors propose adopting the Minkowski distance, defined
with respect to two vectors ui and vi of the Semantic Space as:

dM = r

√∑
(|ui − vi|)r (1)

Comparing the word vectors is one way to derive meaning from the Semantic
Space. An alternative is to compare subspaces of documents, or sets of docu-
ments. While Semantic Spaces provide a representation of knowledge generated
from a sample of text, a problem arises when we consider two or more Semantic
Spaces that have been generated from independent samples of text. Specifically,
how do we compare one Semantic Space with another? Once again, the simplest
solution is to consider the distance between the representation of the same word
vector in the two Semantic Spaces, using for example the Minkowski distance.
However, this näıve treatment may be inappropriate, because different words
used in the same sense will not be compared. For example, cat and kitten are se-
mantically related in the context of the concept feline, and thus we would expect
them to share the same vector representation. However, when computing the dis-
tance in a näıve way we do not take into account such relationships. Then, if in
document d1 we refer to the concept of feline with the common word cat, while in
d2 we refer to the close concept but using the term kitten, we might not capture
the semantic relationship between the two documents. To avoid such problem,
we propose to compute the distance between Semantic Spaces not relying on
word–representation similarity, but on the more general subspace distance. The
subspace correspondent to a document or to a set of documents conveys the
meaning expressed by the text traces; comparing subspaces then would provide
a distance based on the meaning/topic area associated to the set as opposed to
the word level.

The paper continues as follow. In Section 2 we illustrate a formalization of
Semantic Spaces in terms of Quantum Theory (QT) as it has been introduced
in [2]. Moreover, we briefly present how to derive a numeric representation of a
Semantic Space from a corpus of documents. In Section 3, several measures to
compute the distance between subspaces are illustrated, guiding the reader to
the definition of a metric which allows comparisons between Semantic Subspaces.
Section 4 illustrates and discusses the preliminary experiments using subspace
distance. The paper concludes providing a discussion of the distance between
Semantic Subspaces, stating the objects of future investigations (Section 5).

2 Semantic Spaces: a Hilbert space representation

In the following, the formalization of Semantic Space in terms of Hilbert spaces [2]
is presented. Consider a n–dimensional (real valued) Hilbert space H, in which



the inner product is represented by the Euclidean scalar product. In the follow-
ing we limit our focus at real valued Hilbert spaces, discarding the analysis of
complex valued spaces. Such a limitation is driven by the fact that the spaces are
built from statistical data from texts, which uses only real values. Nevertheless,
it is clear that complex numbers plays an important role in the description of
states of a QT systems [9]. Each dimension of the Hilbert space H corresponds to
a word in the vocabulary of a corpus of documents. The global Semantic Space,
i.e. the Semantic Space derived considering the whole corpus, is denoted by Ŝ.
The Semantic Space derived from document d of the considered corpus is rep-
resented by Sd. Similarly the Semantic Space associated to a word w belonging
to the vocabulary V of the corpus is denoted by Sw. It is clear that Ŝ is a sub-
space of the Hilbert space H since its vectors are instances of the vectors in H;
in particular, Ŝ is a n—dimensional subspace. Similarly Sd is a m–dimensional
subspace of H. Note that the subspace relationship Sd ⊆ Ŝ always holds.

We briefly illustrate the procedure to form the high dimensional matrix which
corresponds to the HAL representation of the corpus of documents2. A window
of text is passed over each document in the collection in order to capture co–
occurrences of words. The length of the window is set to l: a typical value of
l is 10; different values capture different levels of relationship between words.
Words that co–occur into a window do so with a strength inversely proportional
to the distance between the two co–occurring words. A thorough study which
investigates the most effective function for encoding the inverse proportional
weighting can be found in [10, Chapter 8.5]. By sliding the window over the whole
collection and recording the co–occurrence values, a co–occurrence matrix A can
be created. Since in our approach, as well as in [1, 2, 7], we are not interested
in the order of the co–occurrences, in contrast with the work of Gärdenfors [8],
therefore we can compute a symmetric matrix by means of Ŝ = A + AT , and
then normalise the columns.

A symmetric matrix obtained by the illustrated procedure is associated to
each subspace and is denoted with the same symbol assigned to the subspace:
it is clear from the use if it refers to the subspace itself or to its symmetric
HAL matrix. Note that subspace Sd can be defined as the range, or the comple-
ment of the range, of matrix Sd. The symmetric matrices Ŝ and each Sd, Sw are
Hermitian linear operators. The following relations between the previous linear
operators hold:

Ŝ =
∑
d∈C

Sd, (2)

Ŝ =
∑
w∈V

Sw (3)

where C is a corpus of documents. In the rest of this paper the focus will be on
subspaces referring to document or set of documents.

2 The interested reader should refer to [3] for a complete investigation of the procedure.



3 A distance measure between (HAL) spaces

We aim to define a distance measure between Semantic Spaces, in order to be
able to geometrically compare Semantic Spaces generated by different sources of
evidence, i.e. compare subspaces formed with different subsets of documents.

Consider the general case of comparing the subspaces Sa and Sb derived by
different sets of documents (a more particular case is when the set D associated
to Sd contains only one document). We can associate to each subspace a n× n
projector operator P . Then the inner product between two subspaces of H is
the trace inner product for projection matrices:

〈Sa, Sb〉 = tr(P ∗aPb) = tr(PaPb) (4)

The appropriate candidate as distance between Semantic Subspaces has to
satisfy several characteristics. Firstly, it would be desirable that the measure
turns to be a metric. The inner product between two subspaces is not a metric:
the inner product of Pa with itself is maximal rather then minimal. Nonethe-
less, it represents a measure of the similarity between the two subspaces: it is
matter of fact that the measure proposed at the end of this Section employs
the inner product between projectors of subspaces. An additional constraint to
the measure has to be added. When comparing Semantic Subspaces, obtained
for example from two documents, it is not guaranteed that they have the same
number of dimensions, on the contrary it is frequently the case that the basis
for such subspaces differ remarkably. Thus, a right candidate to measure the
distance between two Semantic Subspaces should be able to capture differences
in the dimensions of the basis of the Semantic Subspaces. The angle between
the vectors of the subspaces is a key factor not only for the inner product be-
tween projectors, but for a whole family of measures based on the principal
(or minimal) angles.

Definition 1. For nonzero subspaces Sa and Sb ⊆ S, the principal angle between
Sa and Sb is defined as the number 0 ≤ θ ≤ π

2 that satisfies

cos θ = max
a∈Sa,b∈Sb,‖a‖=‖b‖=1

aTb (5)

The principal angle θ is 0 if and only if Sa ∩ Sb 6= 0, while θ = π
2 if and only if

Sa ⊥ Sb. It is worthwhile to reformulate definition 1 in terms of projectors; this
leads to the following theorem (where the proof is shown in [11])

Theorem 1. If Pa and Pb are the orthogonal projectors onto Sa and Sb respec-
tively, then

cos θ = ‖PaPb‖ = ‖PbPa‖ (6)

These principle angles are related to the eigenvalues of PaPb: in fact, the first m
(where m is the minimum between the subspace dimensions of Sa and Sb) eigen-
values of PaPb are cos2 θ1, . . . , cos2 θm. We are however interested in comparing
subspaces which have different dimensions, i.e. they do not have the same basis



dimension. Unfortunately, the behaviour of a measure based on the principle
angles is quite controversial if the subspaces have a different dimension. In fact,
the principal angles are defined just for the minimum between the subspace di-
mensions: thus the measure does not take into consideration all the dimensions
of both subspaces. For example, consider two subspaces: Sa of dimension p, Sb
of dimension r such that r ≥ p. Subspace Sb is built such that its first p basis
vectors are the same of Sa, while the other r − p basis vectors are arbitrarily
constructed. Consider the geodesic distance [12] as measure based on principal
angles; the measure is defined by:

Definition 2. Let Sa and Sb be two subspaces and θ1, . . . , θm be the m principal
angles between Sa and Sb (where m is the dimension of the smallest subspace).
The geodesic distance between Sa and Sb is

dg(Sa, Sb) =
√
θ21 + . . .+ θ2m (7)

If Sa and Sb are constructed as illustrated before, then the geodesic distance
between Sa and itself will be 0 since each θi is zero implying that Sa ≡ Sa.
However, when measuring the distance between Sa and Sb based on principal
angles, we find that all the p angles that are computed are equal to the null angle
0, since Sb shares p basis vectors with Sa. Thus, the measure does not take into
account the r − p basis vectors of Sb that are not shared with Sa.

A distance measure based on the principal angles between subspaces, such
as the geodesic distance, is then significant if and only if the subspaces have
the same dimensions: this is unlikely to be the case when comparing different
Semantic Spaces. We refer to such problem as the Zero Distance Problem: the
bigger the difference in the number of dimensions of the two subspaces, the
greater the extent of the problem since the number of discarded dimensions in the
computation of the distance grows. Measures based on the principal angles, such
as the geodesic distance, are generally affected by the Zero Distance Problem: the
solution to the problem passes through the chordal distance [13], a monotonic
function of the inner product.

Definition 3. The chordal Grassmannian distance between two subspaces Sa
and Sb is given by means of the associated projectors Pa and Pb by

dc(Pa, Pb) =
√
m− tr(PaPb) (8)

As for the previous measures, also in the case of the chordal distance a differ-
ence in the dimensionality of the subspaces Sa and Sb is only partially taken into
account: in fact the product PaPb depends on the degree of association (or sim-
ilarity) between the two subspaces, comparing each dimension, but the number
m in equation 8 refers to the dimension of the subspaces Sa and Sb, thus needing
to be of the same dimension. Anyway, the chordal distance opens the path to
the definition of a distance that is not restricted by the dimensionality of the
subspaces to be compared. The first step is to introduce the Hausdorff distance
which measures the distance between two compact subsets of the space. In our



case, we consider the L2–Hausdorff distance between a vector ui and a subspace
V which is expressed by dH(ui, V ) = min||ui − v||, where v ∈ V and ||.|| is
the Euclidean norm. We now have to consider the subspace distance between
subspaces of the same dimension proposed in [14]:

Definition 4. The subspace distance ds(Sa, Sb) for two p–dimensional subspaces
Sa and Sb is defined as

ds(Sa, Sb) =

√√√√ p∑
i=1

d2
H(ui, Sb) (9)

where

1. u1, . . . ,ui, . . . ,up is an orthonormal basis for Sa, and
2. dH(ui, Sb) is the Hausdorff distance from the end point of the basis vector

ui to subspace Sb.

Such distance has been extended to the case where the subspaces have different
dimensions. Let v1, . . . ,vi, . . . ,vr be an orthonormal basis for Sb, then

Definition 5. The subspace distance ds(Sa, Sb) between the p–dimensional sub-
spaces Sa and the r–dimensional subspace Sb is defined as

ds(Sa, Sb) =

√√√√max (p, r)−
p∑
i=1

r∑
j=1

(ui
Tvj)2 (10)

The introduced distance has several properties. In primis, it is invariant to the
choice of the orthonormal basis for the subspaces Sa and Sb. Furthermore, it is
symmetric and not negative, in particular ds(Sa, Sb) = 0 if and only if Sa ≡ Sb.
The upper bound for the subspace distance is given by ds(Sa, Sb) ≤

√
max (p, r)

and corresponds to the orthogonality condition Sa ⊥ Sb. Finally, as proved in
[15], the subspace distance satisfies the triangle inequality, and thus it is a proper
metric defined on subspaces.

The next step is to express the subspace distance in terms of projector opera-
tors, and thus finding a relationship with the chordal distance. As demonstrated
in [16], equation 10 can be re-written as:

ds(Sa, Sb) =

√
1
2
tr
[
(Λp − Λr)2 + (SaSTa − SbSTb )2

]
(11)

where Λi = diag(1, . . . , 1, 0, . . . , 0) is a diagonal matrix with i 1’s and n − i 0’s
elements and Sa, Sb are the symmetric HAL matrices associated to the corre-
sponding subspaces. With some algebraic calculation and since the matrix prod-
ucts SaSTa and SbS

T
b are the projectors Pa and Pb respectively, the subspace

distance can be stated as:

ds(Sa, Sb) =
√

max (p, r)− tr(PaPb) (12)



The proposed subspace distance might be employed to compute the distance
between Semantic Subspaces, aiming to obtain a more precise measurement of
separation than using a näıve distance based on comparison between single word
representations, e.g. the Minkowski distance.

Comparing equation 12 and 8, both formulating the chordal distance between
two subspaces, it appears clear the strong relationship between the two distances,
differing in taking into account the maximum of the subspace dimensions.

Each rank d projector represent a basis of a Hilbert subspace and can be
regarded as a d–(hyper)plane: this provides an embedding of the Grassmannian
of d–plane into a flat vector space. Thus, the rank d projector will sit on a sphere
in this flat space, more precisely it will be point on the surface of a sphere, and its
Euclidian distance provides us with a chordal distance between projectors. The
chordal distance has been successfully used to study the packing problems for
n–planes, where the aim is to find a set of hyper-planes such that the minimum
distance between each pair of planes in the set is as large as possible [17]. Since
the chordal distance provides a natural measure of the distance between bases of
the same rank in a Hilbert spaces, it has been used to detect Mutually Unbiased
Bases (MUB) [18], i.e. bases which spans planes totally orthogonal between them.
This condition is reached when the chordal distance between the two bases is
maximum.

Previous research in QT focused on the derivation of a suitable measure to
judge the distance between quantum states of different preparations. Such a mea-
sure can be used to characterize the degree of distinguishability between states
(and related preparations). In fact, because of the statistical error introduced
when measuring frequencies of possible outcomes for a finite ensemble of iden-
tically prepared systems, it is generally difficult to distinguish between prepara-
tions that slightly differ [19]. The measure thus is used to judge the degree of
separation between states. This is the underlying idea of the statistical distance
between quantum preparations presented in [19], and is determined entirely by
statistical fluctuations. However, it turns out that the statistical distance pro-
vides an identical result to the measure of the angle between rays in a Hilbert
space associated with the pure quantum states of the preparations. Comput-
ing the distance between Semantic Space representations of a word (in terms of
HAL subspaces) is similar to measuring the angle between the representative rays
spanned by the word in its Hilbert space representations. Another distance that
is related to the evaluation of the distinguishability of two quantum states is the
so called Bures distance [20]. It measures the distance of the associated density
operators ρ1 and ρ2 by the formula dB(ρ1, ρ2) =

√
2[1− tr((ρ1/2

1 ρ2ρ
1/2
1 )1/2)]1/2.

The Bures distance has been interpreted as a generalization of transition prob-
abilities to mixed states [21].

4 Pilot experiment

We conducted a pilot investigation in order to examine how well subspace dis-
tance performs. In particular, we experimentally demonstrate that related doc-



uments are at a closer subspace distance between each other than not related
ones. As baseline for the comparison we employed the Minkowski distance with
r = 2 (Euclidian distance) between Semantic Space representations of words. In
the following we describe the details of the experiment, discussing how Semantic
Subspaces have been generated and in which terms we compare the subspace
distance against the baseline.

We employ a standard IR collection, namely WSJ 87–92, as source of docu-
ments used to generate the Semantic Subspaces. This collection has more than
170 thousand newspaper articles, containing over 226 thousand unique terms.
For the purpose of our pilot study we consider two subsets of document, R and
N . Set R contains only documents that have been judged relevant (by human
assessors) to a query q, while set N containing those documents judged as irrel-
evant to the same query, each query belonging to one of the TREC 1 topics. All
the documents have been processed through stop-word removal and stemming.

Two methods for generating the Semantic Spaces have been employed, both
inspired by the HAL paradigm. In both methods a window of text is passed over
the text. The window size is 11, 5 words on the left and 5 on the right of the target
word. We adopted an inverse proportional function to score the strength of co-
occurrences with the target word, i.e. closer the co-occurent term is to the target
word and higher is the score attributed to the pair. The only difference between
the two methods is represented by the text over which the window is passed.
The first method, which sticks to the definition of the generating procedure for
HAL, passes the window over all the text contained in a document. On the
contrary, the second method, which is partially inspired by [2] and [22], passes
the window over traces of text extracted from the document. Such traces are
extracted considering windows centered on target words. For each TREC 1 topic,
target words are extracted from the description of the topic itself. As well as the
documents, also the target words are pre-processed by matching against a stop-
word list and by stemming. From now on, we refer to this Semantic Subspace
generation method as HAL traces.

In tables 1 and 2, we report the preliminary results obtained by our study
using topic 51 of the WSJ 87–92 TREC collection. The values presented in ta-
ble 1 contains the average distance values obtained employing HAL traces, while
table 2 refers to the average distances calculated using the classic HAL represen-
tation. In both tables, the Euclidean distance has been calculated as the square
root of the squared difference between selected word representations associated
with two HAL spaces. The values obtained where then averaged among the
documents contained in the set and reported into the tables. Instead, for what
concern the subspace distance, the reported values refer to the average over the
correspondent set of documents of the following formula:

sims(Sa, Sb) = 1−

√
max (p, r)−

∑p
i=1

∑r
j=1(ui

Tvj)2√
max (p, r)

(13)

which expresses the similarity (driven by the subspace distance) between sub-
spaces Sa and Sb. A value of this similarity close to 0 means that the two



subspaces are almost orthogonal, with sims(Sa, Sb) = 0 representing the case
Sa ⊥ Sb, while a value close to 1 represents high degree of similarity. Thus, the
two distances are not directly comparable. However, it is possible to understand
the behavior of the two measure in discriminating between relevant and not
relevant documents.

Table 1. Average distance between sets of relevant documents (R) and not relevant
documents (N) obtained by the subspace distance (Subspace in the table) and the
Euclidean distance (Euclidean) computed over subspaces generated by the HAL traces
paradigm.

R N

Subspace Euclidean Subspace Euclidean

R 0.0376± 0.0116 9.3910± 4.6994 0.0182± 0.0072 6.7059± 5.5936

N 0.0182± 0.0072 6.7059± 5.5936 0.0386± 0.0093 3.3816± 2.0667

Table 2. Average distance between sets of relevant documents (R) and not relevant
documents (N) obtained by the subspace distance (Subspace in the table) and the
Euclidean distance (Euclidean) computed over subspaces generated by the traditional
HAL paradigm.

R N

Subspace Euclidean Subspace Euclidean

R 0.1504± 0.0142 19.8121± 4.9445 0.0124± 0.0068 5.7710± 5.1289

N 0.0124± 0.0068 5.7710± 5.1289 0.1181± 0.0173 3.5376± 2.4407

4.1 Discussion of the preliminary results

The results of the preliminary experiments reported in this paper refer to topic
51 of TREC 1. The results show that the subspace distance is able to discriminate
between subspaces associated with relevant documents and the ones generated
from non relevant documents. In fact, in accordance with the values reported for
the subspace distance, the degree of Semantic similarity between the non relevant
set of documents (labeled N) and the relevant set (labeled R) is lower (0.0182
for HAL traces, 0.0124 for classic HAL) than the similarity among occurrences
of relevant documents (HAL traces: 0.0376, classic HAL: 0.1504) or not relevant
documents (HAL traces: 0.0386, classic HAL: 0.1181). The same result is not
achieved by the Euclidean distance. For Semantic Subspaces generated by HAL
traces and by the traditional approach, the Euclidian distance between subspaces
belonging to R is higher than the accumulated average distance between R
subspaces and N ones.



Fig. 1. Frequencies distribution of pairwise subspace distances (a) and Euclidean dis-
tances (b) between subspaces belonging to the set of relevant documents (R) and the
non relevant (N) for topic 51. The subspace generation paradigm adopted is HAL
traces.
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From the tables is possible to evince that the subspace distance tends to
flatten the distance among subspaces to the range [0.9, 1.0], while the Euclidean
distance is able to provide a greater range of values, making easy to detect
significant differences between subspaces.

Fig. 1 illustrates the frequencies distribution of pairwise distance values (ob-
tained by the subspace distance (a) the Euclidean distance (b)) between Seman-
tic Subspaces generated using the paradigm HAL traces, although rather similar
figures are obtained when considering subspaces generated by the standard HAL
derivation. The figures can be interpreted as follow. Subspaces associated to rel-
evant documents (R) are on average at a closer subspace distance to each other
than to non relevant documents (N) (see Fig. 1 (a) ). using the Euclidean dis-
tance the separation between R and N is not as distinct. This suggests that the
subspace distance will be more effective in discriminating relevant documents
from non relevant.

5 Conclusion and Future Work

In this work a distance based on the chordal distance has been introduced in
order to compare Semantic Subspaces constructed from subsets of a document
corpus. Our approach allows to compare directly two sets of documents though
their subspace distance, whereas [3] only deals with comparing a word and its
meaning. Geometrically, this corresponds in considering the projection of a sub-
space into another, rather than the intersection between two subspaces.

Future work will be directed towards applying the proposed measure in a
number of retrieval applications in order to determine its effectiveness.
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