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Preface

The geometry of quantum states is a highly interesting subject in itself, but it is
also relevant in view of possible applications in the rapidly developing fields of
quantum information and quantum computing.

But whatis it? In physics words like ‘states’ and ‘system’ are often used. Skipping
lightly past the question of what these words mean — it will be made clear by
practice — it is natural to ask for the properties of the space of all possible states
of a given system. The simplest state space occurs in computer science: a ‘bit” has
a space of states that consists simply of two points, representing on and off. In
probability theory the state space of a bit is really a line segment, since the bit may
be ‘on’ with some probability between zero and one. In general the state spaces
used in probability theory are ‘convex hulls’ of a discrete or continuous set of
points. The geometry of these simple state spaces is surprisingly subtle — especially
since different ways of distinguishing probability distributions give rise to different
notions of distance, each with their own distinct operational meaning. There is an
old idea saying that a geometry can be understood once it is understood what linear
transformations are acting on it, and we will see that this is true here as well.

The state spaces of classical mechanics are — at least from the point of view that
we adopt — just instances of the state spaces of classical probability theory, with the
added requirement that the sample spaces (whose ‘convex hull” we study) are large
enough, and structured enough, so that the transformations acting on them include
canonical transformations generated by Hamiltonian functions.

In quantum theory the distinction between probability theory and mechanics goes
away. The simplest quantum state space is these days known as a ‘qubit’. There
are many physical realizations of a qubit, from silver atoms of spin 1/2 (assuming
that we agree to measure only their spin) to the qubits that are literally designed
in today’s laboratories. As a state space a qubit is a three-dimensional ball; each
diameter of the ball is the state space of some classical bit, and there are so many
bits that their sample spaces conspire to form a space — namely the surface of the
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ball — large enough to carry the canonical transformations that are characteristic of
mechanics. Hence the word quantum mechanics.

It is not particularly difficult to understand a three-dimensional ball, or to see
how this description emerges from the usual description of a qubit in terms of a
complex two-dimensional Hilbert space. In this case we can take the word geometry
literally: there will exist a one-to-one correspondence between pure states of the
qubit and the points of the surface of the Earth. Moreover, at least as far as the
surface is concerned, its geometry has a statistical meaning when transcribed to the
qubit (although we will see some strange things happening in the interior).

As the dimension of the Hilbert space goes up, the geometry of the state spaces
becomes very intricate, and qualitatively new features arise — such as the subtle way
in which composite quantum systems are represented. Our purpose is to describe this
geometry. We believe it is worth doing. Quantum state spaces are more wonderful
than classical state spaces, and in the end composite systems of qubits may turn out
to have more practical applications than the bits themselves already have.

A few words about the contents of our book. As a glance at the table of contents
will show, there are 15 chapters, culminating in a long chapter on ‘entanglement’.
Along the way, we take our time to explore many curious byways of geometry. We
expect that you — the reader — are familiar with the principles of quantum mechanics
at the advanced undergraduate level. We do not really expect more than that, and
should you be unfamiliar with quantum mechanics we hope that you will find some
sections of the book profitable anyway. You may start reading any chapter: if you
find it incomprehensible we hope that the cross-references and the index will enable
you to see what parts of the earlier chapters may be helpful to you. In the unlikely
event that you are not even interested in quantum mechanics, you may perhaps
enjoy our explanations of some of the geometrical ideas that we come across.

Of course there are limits to how independent the chapters can be of each other.
Convex set theory (Chapter 1) pervades all statistical theories, and hence all our
chapters. The ideas behind the classical Shannon entropy and the Fisher—Rao ge-
ometry (Chapter 2) must be brought in to explain quantum mechanical entropies
(Chapter 12) and quantum statistical geometry (Chapters 9 and 13). Sometimes
we have to assume a little extra knowledge on the part of the reader, but since no
chapter in our book assumes that all the previous chapters have been understood,
this should not pose any great difficulties.

We have made a special effort to illustrate the geometry of quantum mechanics.
This is not always easy, since the spaces that we encounter more often than not
have a dimension higher than three. We have simply done the best we could. To
facilitate self-study each chapter concludes with problems for the reader, while
some additional geometrical exercises are presented in Appendix 3.



Preface Xi

01>

">

Figure 0.1. Black and white version of the cover picture which shows the entropy
of entanglement for a 3-D cross section of the 6-D manifold of pure states of two
qubits. The hotter the colour, the more entangled the state. For more information
study Sections 15.2 and 15.3 and look at Figures 15.1 and 15.2.

We limit ourselves to finite-dimensional state spaces. We do this for two reasons.
One of them is that it simplifies the story very much, and the other is that finite-
dimensional systems are of great independent interest in real experiments.

The entire book may be considered as an introduction to quantum entanglement.
This very non-classical feature provides a key resource for several modern applica-
tions of quantum mechanics including quantum cryptography, quantum computing
and quantum communication. We hope that our book may be useful for graduate
and postgraduate students of physics. It is written first of all for readers who do not
read the mathematical literature everyday, but we hope that students of mathematics
and of the information sciences will find it useful as well, since they also may wish
to learn about quantum entanglement.

We have been working on the book for about five years. Throughout this time
we enjoyed the support of Stockholm University, the Jagiellonian University in
Krakoéw, and the Center for Theoretical Physics of the Polish Academy of Sciences
in Warsaw. The book was completed at Waterloo during our stay at the Perimeter In-
stitute for Theoretical Physics. The motto atits main entrance— AXTIOYAAXTOX
[EPI TEQMETPIAY MHAEIE EIZITQ! - proved to be a lucky omen indeed,
and we are pleased to thank the Institute for creating optimal working conditions

! Let no one uninterested in geometry enter here.
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for us, and to thank all the knowledgable colleagues working there for their help,
advice and support. We also thank the International Journal of Modern Physics A
for permission to reproduce a number of figures.

We are grateful to Erik Aurell for his commitment to Polish—Swedish collabora-
tion; without him the book would never have been started. It is a pleasure to thank
our colleagues with whom we have worked on related projects: Johan Brannlund,
Asa Ericsson, Sven Gnutzmann, Marek Kus, Florian Mintert, Magdalena Sinolecka,
Hans-Jiirgen Sommers and Wojciech Stomczyriski. We are grateful to them and to
many others who helped us to improve the manuscript. If it never reached perfec-
tion, it was our fault, not theirs. Let us mention some of the others: Robert Alicki,
Anders Bengtsson, Iwo Bialynicki-Birula, Rafal Demkowicz-Dobrzaiski, Johan
Grundberg, Soren Holst, Goran Lindblad and Marcin Musz. We have also enjoyed
constructive interactions with Matthias Christandl, Jens Eisert, Peter Harremoés,
Michal, Pawet and Ryszard Horodeccy, Vivien Kendon, Artur Loziriski, Christian
Schaffner, Paul Slater and William Wootters.

Five other people provided indispensable support: Martha and Jonas in Stock-
holm, and Jolanta, Jas and Marysia in Krakéw.

Ingemar Bengtsson Karol Zyczkowski
Waterloo
12 March 2005
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Convexity, colours and statistics

What picture does one see, looking at a physical theory from a distance, so that
the details disappear? Since quantum mechanics is a statistical theory, the most
universal picture which remains after the details are forgotten is that of a convex
set.

Bogdan Mielnik

1.1 Convex sets

Our object is to understand the geometry of the set of all possible states of a quantum
system that can occur in nature. This is a very general question, especially since we
are not trying to define ‘state’ or ‘system’ very precisely. Indeed we will not even
discuss whether the state is a property of a thing, or of the preparation of a thing,
or of a belief about a thing. Nevertheless we can ask what kind of restrictions are
needed on a set if it is going to serve as a space of states in the first place. There
is a restriction that arises naturally both in quantum mechanics and in classical
statistics: the set must be a convex set. The idea is that a convex set is a set such
that one can form ‘mixtures’ of any pair of points in the set. This is, as we will see,
how probability enters (although we are not trying to define ‘probability’ either).
From a geometrical point of view a mixture of two states can be defined as a
point on the segment of the straight line between the two points that represent the
states that we want to mix. We insist that given two points belonging to the set of
states, the straight line segment between them must belong to the set too. This is
certainly not true of any set. But before we can see how this idea restricts the set of
states we must have a definition of ‘straight lines’ available. One way to proceed
is to regard a convex set as a special kind of subset of a flat Euclidean space E".
Actually we can get by with somewhat less. It is enough to regard a convex set as
a subset of an affine space. An affine space is just like a vector space, except that
no special choice of origin is assumed. The straight line through the two points x;
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Figure 1.1. Three convex sets in two dimensions, two of which are affine trans-
formations of each other. The new moon is not convex. An observer in Singapore
will find the new moon tilted but still not convex, since convexity is preserved by
rotations.

and x; is defined as the set of points

X=uX;+uoXo, pr+uz=1. (L.

If we choose a particular point X, to serve as the origin, we see that this is a one
parameter family of vectors X — X in the plane spanned by the vectors x; — X and
X; — Xq. Taking three different points instead of two in Eq. (1.1) we define a plane,
provided the three points do not belong to a single line. A k-dimensional plane
is obtained by taking k + 1 generic points, where k < n. An (n — 1)-dimensional
plane is known as a hyperplane. For k = n we describe the entire space E”. In this
way we may introduce barycentric coordinates into an n-dimensional affine space.
We select n 4 1 points X;, so that an arbitrary point X can be written as

X = (oXo + L1X1 + -0+ WXy, MO+M1++M11:1 (12)

The requirement that the barycentric coordinates u; add up to one ensures that they
are uniquely defined by the point x. (It also means that the barycentric coordinates
are not coordinates in the ordinary sense of the word, but if we solve for 1t in terms
of the others then the remaining independent set is a set of n ordinary coordinates
for the n-dimensional space.) An affine map is a transformation that takes lines to
lines and preserves the relative length of line segments lying on parallel lines. In
equations an affine map is a combination of a linear transformation described by a
matrix A with a translation along a constant vector b, so X' = Ax + b, where A is
an invertible matrix.

By definition a subset S of an affine space is a convex set if for any pair of points
x; and X, belonging to the set it is true that the mixture x also belongs to the set,
where

X=AMX|+AX2, AM+A=1, A, 2>0. (1.3)

Here A; and A, are barycentric coordinates on the line through the given pair of
points; the extra requirement that they be positive restricts x to belong to the segment
of the line lying between the pair of points.
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Figure 1.2. The convex sets we will consider are either convex bodies (like the
simplex on the left or the more involved example in the centre) or convex cones
with compact bases (an example is shown on the right).

It is natural to use an affine space as the ‘container’ for the convex sets since
convexity properties are preserved by general affine transformations. On the other
hand it does no harm to introduce a flat metric on the affine space, turning it into
an Euclidean space. There may be no special significance attached to this notion of
distance, but it helps in visualizing what is going on. From now on, we will assume
that our convex sets sit in Euclidean space, whenever it is convenient to do so.

Intuitively a convex set is a set such that one can always see the entire set from
whatever point in the set one happens to be sitting at. They can come in a variety
of interesting shapes. We will need a few definitions. First, given any subset of the
affine space we define the convex hull of this subset as the smallest convex set that
contains the set. The convex hull of a finite set of points is called a convex polytope.
If we start with p 4+ 1 points that are not confined to any (p — 1)-dimensional
subspace then the convex polytope is called a p-simplex. The p-simplex consists
of all points of the form

X=)\0X0+)»1X1—|—~"—|—)\.px[,, )\.0+)»1+~~'—|—)\.p=1, A >0, (1.4)

(The barycentric coordinates are all non-negative.) The dimension of a convex set is
the largest number n such that the set contains an n-simplex. In discussing a convex
set of dimension n we usually assume that the underlying affine space also has
dimension 7, to ensure that the convex set possesses interior points (in the sense of
point set topology). A closed and bounded convex set that has an interior is known
as a convex body.

The intersection of a convex set with some lower dimensional subspace of the
affine space is again a convex set. Given an n-dimensional convex set S there is
also a natural way to increase its dimension by one: choose a point y not belonging
to the n-dimensional affine subspace containing S. Form the union of all the rays
(in this chapter a ray means a half line), starting from y and passing through S. The
result is called a convex cone and y is called its apex, while S is its base. A ray is
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Cone

Dual cone Self dual cone

Figure 1.3. Left: a convex cone and its dual, both regarded as belonging to Eu-
clidean 2-space. Right: a self dual cone, for which the dual cone coincides with
the original. For an application of this construction see Figure 11.6.

Figure 1.4. A convex body is homeomorphic to a sphere.

in fact a one-dimensional convex cone. A more interesting example is obtained by
first choosing a p-simplex and then interpreting the points of the simplex as vectors
starting from an origin O not lying in the simplex. Then the (p + 1)-dimensional
set of points

X = AoXo + A1X] + --- +)\,po, A >0 (1.5)

is aconvex cone. Convex cones have many appealing properties, including an inbuilt
partial order among its points: x <y if and only if y — x belongs to the cone. Linear
maps to R that take positive values on vectors belonging to a convex cone form a
dual convex cone in the dual vector space. Since we are in the Euclidean vector
space E”, we can identify the dual vector space with E” itself. If the two cones
agree the convex cone is said to be self dual. One self dual convex cone that will
appear now and again is the positive orthant or hyperoctant of E", defined as the
set of all points whose Cartesian coordinates are non-negative. We use the notation
x > 0 to denote the fact that x belongs to the positive orthant.

From a purely topological point of view all convex bodies are equivalent to an
n-dimensional ball. To see this choose any point X in the interior and then for every
point in the boundary draw a ray starting from x, and passing through the boundary
point (as in Figure 1.4). It is clear that we can make a continuous transformation
of the convex body into a ball with radius one and its centre at X, by moving the
points of the container space along the rays.
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Convex bodies and convex cones with compact bases are the only convex sets
that we will consider. Convex bodies always contain some special points that cannot
be obtained as mixtures of other points: whereas a half space does not! These points
are called extreme points by mathematicians and pure points by physicists (actually,
originally by Weyl), while non-pure points are called mixed. In a convex cone the
rays from the apex through the pure points of the base are called extreme rays; a
point X lies on an extreme ray if and only if y < x = y = Ax with A between zero
and one. A subset F of a convex set that is stable under mixing and purification is
called a face of the convex set. This phrase means that if

x=Ax1+({1—-Mx, 0=<ir<Il (1.6)

then x lies in F' if and only if x; and x; lie in F. A face of dimension £ is a k-face.
A O-face is an extremal point, and an (n — 1)-face is also known as a facet. It is
interesting to observe that the set of all faces on a convex body form a partially
ordered set; we say that F| < F, if the face F is contained in the face F,. It is
a partially ordered set of the special kind known as a lattice, which means that a
given pair of faces always has a greatest lower bound (perhaps the empty set) and
a lowest greater bound (perhaps the convex body itself).

To stem the tide of definitions let us quote two theorems that have an ‘obvious’
ring to them when they are stated abstractly but which are surprisingly useful in
practice:

Theorem 1.1 (Minkowski’s) Any convex body is the convex hull of its pure points.

Theorem 1.2 (Carathéodory’s) If X is a subset of R" then any point in the convex
hull of X can be expressed as a convex combination of at most n + 1 points in X.

Thus any point x of a convex body S may be expressed as a convex combination of
pure points:

1

P
Xx=) A%, Mz0, psntl, Y a=I. (1.7)
i=1

This equation is quite different from Eq. (1.2) that defined the barycentric coordi-
nates of X in terms of a fixed set of points X;, because — with the restriction that all
the coefficients be non-negative — it may be impossible to find a finite set of x; so
that every X in the set can be written in this new form. An obvious example is a
circular disc. Given x one can always find a finite set of pure points x; so that the
equation holds, but that is a different thing.

It is evident that the pure points always lie in the boundary of the convex set, but
the boundary often contains mixed points as well. The simplex enjoys a very special
property, which is that any point in the simplex can be written as a mixture of pure
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Figure 1.5. In a simplex a point can be written as a mixture in one and only one
way. In general the rank of a point is the minimal number of pure points needed in
the mixture; the rank may change in the interior of the set as shown in the rightmost
example.

points in one and only one way (as in Figure 1.5). This is because for the simplex
the coefficients in Eq. (1.7) are barycentric coordinates and the result follows from
the uniqueness of the barycentric coordinates of a point. No other convex set has
this property. The rank of a point x is the minimal number p needed in the convex
combination (Eq. (1.7)). By definition the pure points have rank one. In a simplex
the edges have rank two, the faces have rank three, and so on, while all the points
in the interior have maximal rank. From Eq. (1.7) we see that the maximal rank of
any point in a convex body in R” does not exceed n + 1. In a ball all interior points
have rank two and all points on the boundary are pure, regardless of the dimension
of the ball. It is not hard to find examples of convex sets where the rank changes as
we move around in the interior of the set (see Figure 1.5).

The simplex has another quite special property, namely that its lattice of faces is
self dual. We observe that the number of k-faces in an n-dimensional simplex is

n+1 n+1
<k+1>:<n—k>‘ (1.8)

Hence the set of (n — k — 1)-dimensional faces can be put in one-to-one corre-
spondence with the set of k-faces. In particular, the pure points (k = 0) can be
put in one-to-one correspondence with the set of facets (by definition, the (n — 1)-
dimensional faces). For this, and other, reasons its lattice of subspaces will have
some exceptional properties, turning it into what is technically known as a Boolean
lattice.'

There is a useful dual description of convex sets in terms of supporting hyper-
planes. A support hyperplane of S is a hyperplane that intersects the set and is such

! Because it is related to what George Boole thought were the laws of thought; see Varadarajan’s book on quantum
logic (Varadarajan, 1985).
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Figure 1.6. Support hyperplanes of a convex set.

that the entire set lies in one of the closed half spaces formed by the hyperplane
(see Figure 1.6). Hence a support hyperplane just touches the boundary of S, and
one can prove that there is a support hyperplane passing through every point of the
boundary of a convex body. By definition a regular point is a point on the bound-
ary that lies on only one support hyperplane, a regular support hyperplane meets
the set at only one point, and the entire convex set is regular if all its boundary
points as well as all its support hyperplanes are regular. So a ball is regular, while a
convex polytope or a convex cone is not — indeed all the support hyperplanes of a
convex cone pass through its apex. Convex polytopes arise as the intersection of a
finite number of closed half spaces in R”, and any pure point of a convex polytope
saturates n of the inequalities that define the half spaces; again a statement with an
‘obvious’ ring that is useful in practice.

In a flat Euclidean space a linear function to the real numbers takes the form
X — a - X, where a is some constant vector. Geometrically, this defines a family of
parallel hyperplanes. The following theorem is important:

Theorem 1.3 (Hahn-Banach separation) Given a convex body and a point xg
that does not belong to it, then one can find a linear function f that takes positive
values for all points belonging to the convex body, while f(xg) < 0.

This is again almost obvious if one thinks in terms of hyperplanes.’

We will find much use for the concept of convex functions. A real function f(x)
defined on a closed convex subset X of R” is called convex, if for any X,y € X and
A € [0, 1] it satisfies

JOxX+A =Dy < Af )+ A =2 f(Y). (1.9)

The name refers to the fact that the epigraph of a convex function, that is the region
lying above the curve f(x) in the graph, is convex. Applying the inequality k — 1

2 To readers who wish to learn more about convex sets — or who wish to see proofs of the various assertions that
we have left unproved — we recommend Eggleston (1958).
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-0.5 -05
0 0.5 1 0 0.5 1

X X

Figure 1.7. (a) the convex function f(x) = x Inx, and (b) the concave function
g(x) = —x Inx. The names stem from the shaded epigraphs of the functions which
are convex and concave, respectively.

times we see that
k k
f(Zij,-) < Y hifx)), (1.10)
j=1 j=1

wherex; € X and the non-negative weights sum to unity, Z];=1 Aj = L. Ifafunction
f from R to R is differentiable, it is convex if and only if

FO) = fO) =y —x)f'(x). (1.11)

If f is twice differentiable, it is convex if and only if its second derivative is non-
negative. For a function of several variables to be convex, the matrix of second
derivatives must be positive definite. In practice, this is a very useful criterion. A
function f is called concave if — f is convex.

One of the main advantages of convex functions is that it is (comparatively) easy
to study their minima and maxima. A minimum of a convex function is always
a global minimum, and it is attained on some convex subset of the domain of
definition X. If X is not only convex but also compact, then the global maximum
sits at an extreme point of X.

1.2 High-dimensional geometry

In quantum mechanics the spaces we encounter are often of very high dimension;
even if the dimension of Hilbert space is small, the dimension of the space of
density matrices will be high. Our intuition, on the other hand, is based on two- and
three-dimensional spaces, and frequently leads us astray. We can improve ourselves
by asking some simple questions about convex bodies in flat space. We choose to
look at balls, cubes and simplices for this purpose. A flat metric is assumed. Our
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questions will concern the inspheres and outspheres of these bodies (defined as the
largest inscribed sphere and the smallest circumscribed sphere, respectively). For
any convex body the outsphere is uniquely defined, while the insphere is not — one
can show that the upper bound on the radius of inscribed spheres is always attained
by some sphere, but there may be several of those.

Let us begin with the surface of a ball, namely the n-dimensional sphere S". In
equations, a sphere of radius r is given by the set

X+ X7+ - +X2=1r? (1.12)

in an (n + 1)-dimensional flat space E"*!. A sphere of radius one is denoted S”.
The sphere can be parametrized by the angles ¢, 6, ..., 6,_ according to

Xo =rcos¢sinb;sind, ... sinb,

X| =rsin¢gsinf;sind, ... sinb,_;

Xo= rcosésings ...sin6,_, ~ 0<6<7m (1.13)

oo R 0<¢ <2m
X, = 7 cosb,_q

The volume element dA on the unit sphere then becomes
dA = d¢dé, ... db,_;sin6; sin’*6, ... sin" ' 6,_; . (1.14)

We want to compute the volume vol(S") of the n-sphere, that is to say its
‘hyperarea’ — meaning that vol(S?) is measured in square metres, vol(S®) in cubic
metres, and so on. A clever trick simplifies the calculation: consider the well-known
Gaussian integral

I = /e—xﬁ—xf— =X dXedX ... dX, = (V). (1.15)

Using the spherical polar coordinates introduced above our integral splits into two,
one of which is related to the integral representation of the Euler Gamma function,
I'x) = fooo e~'+*~1 dr, and the other is the one we want to do:

o0 2 1 1
1:/ dr/ dAe " = =1 (22 vols™) . (1.16)
o \ 2 2

We do not have to do the integral over the angles. We simply compare these results
and obtain (recalling the properties of the Gamma function)
o ok iftn=2p

= , 1.17)

+1
2

n+1 )

PO et itn=2p+1

vol(S") =2
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where double factorial is the product of every other number, 5!! =5-3 -1 and
6!! = 6-4-2. An alarming thing happens as the dimension grows. For large x we
can approximate the Gamma function using Stirling’s formula

T'(x) = v2me "x" (1 P o(i)> . (1.18)
12x x?2

Hence for large n we obtain

vol(S™) ~ /2 (2:—6> . (1.19)

This is small if n is large! In fact the ‘biggest’ unit sphere — in the sense that it has
the largest hyperarea — is S°, which has

16
vol(S®) = E”3 ~33.1. (1.20)

Incidentally Stirling’s formula gives 31.6, which is already rather good. We hasten
to add that vol(S?) is measured in square metres and vol(S®) in (metre)®, so that the
direct comparison makes no sense.

There is another funny thing to be noticed. If we compute the volume of the
n-sphere without any clever tricks, simply by integrating the volume element dA
using angular coordinates, then we find that

vol(S”):Zn/ desin9/ do sin® 0 / do sin*"'o
0 0 0
(1.21)
:VOI(Sn_l)/ dosin" 1o .
0

As n grows the integrand of the final integral has an increasingly sharp peak close to
the equator 6 = /2. Hence we conclude that when n is high most of the hyperarea
of the sphere is confined to a ‘band’ close to the equator. What about the volume
of an n-dimensional unit ball B"? By definition it has unit radius and its boundary
is §"~!. Its volume, using the radial integral fOl r"~1'dr = 1/n and the fact that
F'x+1)=xI'(x),is

vol(B") =

n—1 5 5
vol(§"™)  =m 1 (%) . (122)

TTE+D Vam

Again, as the dimension grows the denominator grows faster than the numerator
and therefore the volume of a unit ball is small when the dimension is high. We can
turn this around if we like: a ball of unit volume has a large radius if the dimension is
high. Indeed since the volume is proportional to r”, where r is the radius, it follows

n
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that the radius of a ball of unit volume grows like +/n when Stirling’s formula
applies.

The fraction of the volume of a unit ball that lies inside aradius r is r". We assume
r < 1, so this is a quickly shrinking fraction as n grows. The curious conclusion of
this is that when the dimension is high almost all of the volume of a ball lies very
close to its surface. In fact this is a crucial observation in statistical mechanics. It is
also the key property of n-dimensional geometry: when # is large the ‘amount of
space’ available grows very fast with distance from the origin.

In some ways it is easier to see what is going on if we consider hypercubes X,
rather than balls. Take a cube of unit volume. In » dimensions it has 2" corners, and
the longest straight line that we can draw inside the hypercube connects two opposite
corners. It has length L = +/12 + .- + 12 = /n. Or expressed in another way, a
straight line of any length fits into a hypercube of unit volume if the dimension is
large enough. The reason why the longest line segment fitting into the cube is large
is clearly that we normalized the volume to one. If we normalize L = 1 instead we
find that the volume goes to zero like (1/4/n)". Concerning the insphere (the largest
inscribed sphere, with inradius r,) and the outsphere (the smallest circumscribed
sphere, with outradius R,), we observe that

R, = ‘/75 = /nr, . (1.23)

The ratio between the two grows with the dimension, ¢, = R, /r, = /1. Inciden-
tally, the somewhat odd statement that the volume of a sphere goes to zero when
the dimension n goes to infinity can now be interpreted: since vol(X,) = 1 the real

statement is that vol(S™)/vol(X,) goes to zero when n goes to infinity.

Now we turn to simplices, whose properties will be of some importance later on.
We concentrate on regular simplices A, for which the distance between any pair
of corners is one. For n = 1 this is the unit interval, for n = 2 a regular triangle, for
n = 3 aregular tetrahedron, and so on. Again we are interested in the volume, the
radius r,, of the insphere, and the radius R, of the outsphere. We will also compute
Xn» the angle between the lines from the ‘centre of mass’ to a pair of corners. For
a triangle it is arccos(—1/2) = 2w /3 = 120°, but it drops to arccos(—1/3) ~ 110°
for the tetrahedron. A practical way to go about all this is to think of A, as a
(part of) a cone having A,_; as its base. It is then not difficult to show that

1
Ry=nry= |—— and ry= |— (1.24)
2(n+1) 2(n+ n

so their ratio grows linearly, { = R, /r, = n. The volume of aconeis V = Bh/n,
where B is the area of the base, & is the height of the cone and 7 is the dimension.
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AEY

Figure 1.8. Regular simplices in two, three and four dimensions. For A, we also
show the insphere, the outsphere, and the angle discussed in the text.

1 1
vol(A,) = ;,/"; . (1.25)

We can check that the ratio of the volume of the largest inscribed sphere to the
volume of the simplex goes to zero. Hence most of the volume of the simplex sits
in its corners, as expected. The angle x, subtended by an edge as viewed from the
centre is given by

For the simplex we obtain

. Xn 1 n+1
sin — = =
2 2R, 2n

1
& cosy,=——. (1.26)
n

When 7 is large we see that x, tends to a right angle. This is as it should be.
The corners sit on the outsphere, and for large n almost all the volume of the
circumsphere lies close to the equator — hence, if we pick one corner and let it play
the role of the north pole, all the other corners are likely to lie close to the equator.
Finally it is interesting to observe that it is known for convex bodies in general that
the radius of the circumsphere is bounded by

[ n
R, =L m ) (1.27)

where L is the length of the longest line segment contained in the body. The regular
simplex saturates this bound.

The effects of increasing dimension are clearly seen if we look at the ratio
between surface (hyper) area and volume for bodies of various shapes. Rather than
fixing the scale, let us study the dimensionless quantities ¢, = R, /r, and n(X) =
R vol(d X)/vol(X), where X is the body, d X its boundary, and R its outradius. For
n-balls we get

vol(9B") vol(S"™Y)  Rn

m(B") = R oI BY) R By R =" (1.28)
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Next consider a hypercube of edge length L. Its boundary consists of 2n facets,
that are themselves hypercubes of dimension n — 1. This gives

vol(dX,) _ JnL 2n vol(®,_) _ w32 V) (1.29)
vol(X,,) 2 vol(®,) k

nn(lgn) =R

A regular simplex of edge length L has a boundary consisting of n + 1 regular
simplices of dimension n — 1. We obtain the ratio

(A, = R WOIOA) n A DvolA-) _ a5
vol(A,) V2t 1) vol(Ay)

In this case the ratio n,, grows quadratically with n, reflecting the fact that simplices
have sharper corners than those of the cube.

The reader may know about the five regular Platonic solids in three dimensions.
When n > 4 there are only three kinds of regular solids, namely the simplex,
the hypercube, and the cross-polytope. The latter is the generalization to arbitrary
dimension of the octahedron. It is dual to the cube; while the cube has 2" corners
and 2n facets, the cross-polytope has 2n corners and 2" facets. The two polytopes
have the same values of ¢, and 7,,.

These results are collected in Table 14.2. We observe that n,, = n¢, for all these
bodies. There is a reason for this. When Archimedes computed volumes, he did so
by breaking them up into cones and using the formula V = Bh/n, where V is the
volume of the cone and B is the area of its base. Then we get

R Zcones B — ﬁ
(Zcones B) h/n h

If the height / of the cones is equal to the inradius of the body, the result follows.>

M = (1.31)

1.3 Colour theory

How do convex sets arise? An instructive example occurs in colour theory, and
more particularly in the psychophysical theory of colour. (This means that we
will leave out the interesting questions about how our brain actually processes the
visual information until it becomes a percept.) In a way tradition suggests that
colour theory should be studied before quantum mechanics, because this is what
Schrodinger was doing before inventing his wave equation.* The object of our
attention is colour space, whose points are the colours. Naturally one might worry

3 Consult Ball (1997) for more information on the subject of this section. For a discussion of rotations in higher
dimensions consult Section 8.3.

4 Schrisdinger (1926b) wrote a splendid review of the subject. Readers who want a more recent discussion may
enjoy the book by Williamson and Cummins (1983).
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Figure 1.9. Left: the chromaticity diagram, and the part of it that can be obtained
by mixing red, green and blue. Right: when the total illumination is taken into
account, colour space becomes a convex cone.

that the space of colours may differ from person to person but in fact it does not.
The perception of colour is remarkably universal for human beings (colour-blind
persons not included). What has been done experimentally is to shine mixtures
of light of different colours on white screens; say that three reference colours
consisting of red, green and blue light are chosen. Then what one finds is that by
adjusting the mixture of these colours the observer will be unable to distinguish
the resulting mixture from a given colour C. To simplify matters, suppose that the
overall brightness has been normalized in some way, then a colour C is a point on a
two-dimensional chromaticity diagram. Its position is determined by the equation

C=MMR+AG+1B. (1.32)

The barycentric coordinates A; will naturally take positive values only in this ex-
periment. This means that we only get colours inside the triangle spanned by the
reference colours R, G and B. Note that the ‘feeling of redness’ does not enter into
the experiment at all.

But colour space is not a simplex, as designers of TV screens learn to their
chagrin. There will always be colours C’ that cannot be reproduced as a mixture
of three given reference colours. To get out of this difficulty one shines a certain
amount of red (say) on the sample to be measured. If the result is indistinguishable
from some mixture of G and B then C’ is determined by the equation

C'+ 2R =1G+ 1B (1.33)

If not, repeat with R replaced by G or B. If necessary, move one more colour
to the left-hand side. The empirical finding is that all colours can be assigned a
position on the chromaticity diagram in this way. If we take the overall intensity
into account we find that the full colour space is a three-dimensional convex cone
with the chromaticity diagram as its base and complete darkness as its apex (of
course this is to the extent that we ignore the fact that very intense light will cause
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the eyes to boil rather than make them see a colour). The pure colours are those
that cannot be obtained as a mixture of different colours; they form the curved part
of the boundary. The boundary also has a planar part made of purple.

How can we begin to explain all this? We know that light can be characterized
by its spectral distribution, which is some positive function / of the wave length
A. It is therefore immediately apparent that the space of spectral distributions is
a convex cone, and in fact an infinite-dimensional convex cone since a general
spectral distribution /(A) can be defined as a convex combination

I\ = / AT =1, I(W)>0. (1.34)

The delta functions are the pure states. But colour space is only three-dimensional.
The reason is that the eye will assign the same colour to many different spectral
distributions. A given colour corresponds to an equivalence class of spectral distri-
butions, and the dimension of colour space will be given by the dimension of the
space of equivalence classes. Let us denote the equivalence classes by [/()1)], and
the space of equivalence classes as colour space. Since we know that colours can
be mixed to produce a third quite definite colour, the equivalence classes must be
formed in such a way that the equation

)] = [LH)] + [LA)] (1.35)

is well defined. The point here is that whatever representatives of [/; (A)] and [1,(A)]
we choose we always obtain a spectral distribution belonging to the same equiva-
lence class [1(A)]. We would like to understand how this can be so.

In order to proceed it will be necessary to have an idea about how the eye detects
light (especially so since the perception of sound is known to work in a quite different
way). [tis reasonable — and indeed true — to expect that there are chemical substances
in the eye with different sensitivities. Suppose for the sake of the argument that there
are three such ‘detectors’. Each has an adsorption curve A;(A). These curves are
allowed to overlap; in fact they do. Given a spectral distribution each detector then
gives an output

ci = /d)» I(AM)A; (L) . (1.36)

Our three detectors will give us only three real numbers to parametrize the space
of colours. Equation (1.35) can now be derived. According to this theory, colour
space will inherit the property of being a convex cone from the space of spectral
distributions. The pure states will be those equivalence classes that contain the pure
spectral distributions. On the other hand the dimension of colour space will be
determined by the number of detectors, and not by the nature of the pure states.
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Figure 1.10. To the left, we see the MacAdam ellipses, taken from MacAdam,
Journal of the Optical Society of America 32, p. 247 (1942). They show the points
where the colour is just distinguishable from the colour at the centre of the ellipse.
Their size is exaggerated by a factor of ten. To the right, we see how these ellipses
can be used to define the length of curves on the chromaticity diagram — the two
curves shown have the same length.

This is where colour-blind persons come in; they are missing one or two detectors
and their experiences can be predicted by the theory. By the way, frogs apparently
enjoy a colour space of four dimensions while lions make do with one.

Like any convex set, colour space is a subset of an affine space and the convex
structure does not single out any natural metric. Nevertheless colour space does
have a natural metric. The idea is to draw surfaces around every point in colour
space, determined by the requirement that colours situated on the surfaces are just
distinguishable from the colour at the original point by an observer. In the chro-
maticity diagram the resulting curves are known as MacAdam ellipses. We can now
introduce a metric on the chromaticity diagram which ensures that the MacAdam
ellipses are circles of a standard size. This metric is called the colour metric, and
it is curved. The distance between two colours as measured by the colour metric is
a measure of how easy it is to distinguish the given colours. On the other hand this
natural metric has nothing to do with the convex structure per se.

Let us be careful about the logic that underlies the colour metric. The colour
metric is defined so that the MacAdam ellipses are circles of radius €, say. Evidently
we would like to consider the limit when € goes to zero (by introducing increasingly
sensitive observers), but unfortunately there is no experimental justification for this
here. We can go on to define the length of a curve in colour space as the smallest
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number of MacAdam ellipses that is needed to completely cover the curve. This
gives us a natural notion of distance between any two points in colour space since
there will be a curve between them of shortest length (and it will be uniquely
defined, at least if the distance is not too large). Such a curve is called a geodesic.
The geodesic distance between two points is then the length of the geodesic that
connects them. This is how distances are defined in Riemannian geometry, but it is
worthwhile to observe that only the ‘local’ distance as defined by the metric has a
clear operational significance here. There are many lessons from colour theory that
are of interest in quantum mechanics, not least that the structure of the convex set
is determined by the nature of the detectors.

1.4 What is ‘distance’?

In colour space distances are used to quantify distinguishability. Although our use
of distances will mostly be in a similar vein, they have many other uses too — for
instance, to prove convergence for iterative algorithms. But what are they? Though
we expect the reader to have a share of inborn intuition about the nature of geometry,
a few indications of how this can be made more precise are in order. Let us begin by
defining a distance D(X, y) between two points in a vector space (or more generally,
in an affine space). This is a function of the two points that obeys three axioms:

(1) The distance between two points is a non-negative number D(X, y) that equals zero if
and only if the points coincide.

(2) It is symmetric in the sense that D(x,y) = D(y, X).

(3) It satisfies the triangle inequality D(x,y) < D(x,z) + D(z,y).

Actually both axiom (2) and axiom (3) can be relaxed — we will see what can be
done without them in Section 2.3 —but as is often the case it is even more interesting
to try to restrict the definition further, and this is the direction that we are heading
in now. We want a notion of distance that meshes naturally with convex sets, and
for this purpose we add a fourth axiom:

(4) It obeys D(Ax, Ay) = AD(X, y) for non-negative numbers X.

A distance function obeying this property is known as a Minkowski distance. Two
important consequences follow, neither of them difficult to prove. First, any convex
combination of two vectors becomes a metric straight line in the sense that

z=)x+{0-X)y = DXy =DXxz)+ D=y, 0<xr<l.
(1.37)
Second, if we define a unit ball with respect to a Minkowski distance we find that
such a ball is always a convex set.
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Letus discuss the last pointin a little more detail. A Minkowski metric is naturally
defined in terms of a norm on a vector space, that is a real valued function ||x|| that
obeys

i) ||x]|>0, and||x||=0 & x=0.
ii) Ix+yll < IIxI + [lyll - (1.33)
1ii) [1Ax|| =[] |Ix]], A €R.

The distance between two points x and y is now defined as D(x, y) = ||x — y||, and
indeed it has the properties (1)—(4). The unit ball is the set of vectors x such that
|Ix|| <1, and it is easy to see that

x|, lyll=1 = Jlax+d-Wyll<1. (1.39)

So the unit ball is convex. In fact the story can be turned around at this point — any
centrally symmetric convex body can serve as the unit ball for a norm, and hence it
defines a distance. (A centrally symmetric convex body K has the property that, for
some choice of origin, x € K = —x € K.) Thus the opinion that balls are round
is revealed as an unfounded prejudice. It may be helpful to recall that water droplets
are spherical because they minimize their surface energy. If we want to understand
the growth of crystals in the same terms, we must use a notion of distance that takes
into account that the surface energy depends on direction.
We need a set of norms to play with, so we define the /,,-norm of a vector by

1
X1y = (lxil” + [xal” + - +xal?)? . p=1. (1.40)

In the limit we obtain the Chebyshev norm ||X||o, = max;x;. The proof of the
triangle inequality is non-trivial and uses Holder’s inequality

Al 11
Dbyl < lIXllpllylly,  —+==1, (1.41)
i=1 P 9

where p, g > 1. For p = 2 this is the Cauchy-Schwarz inequality. If p < 1 there is
no Holder inequality, and the triangle inequality fails. We can easily draw a picture
(namely Figure 1.11) of the unit balls B, for a few values of p, and we see that they
interpolate beween a hypercube (for p — o0) and a cross-polytope (for p = 1),
and that they fail to be convex for p < 1. We also see that in general these balls are
not invariant under rotations, as expected because the components of the vector in
a special basis were used in the definition. The topology induced by the /,-norms is
the same, regardless of p. The corresponding distances D,(x,y) = ||x —y||, are
known as the [ ,-distances.

Depending on circumstances, different choices of p may be particularly relevant.
The case p = 1 is relevant if motion is confined to a rectangular grid (say, if you are
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Figure 1.11. Left: points at distance 1 from the origin, using the /;-norm for
the vectors (the inner square), the /;-norm (the circle) and the /,,-norm (the outer
square). The /1 -case is shown dashed — the corresponding ball is not convex because

2
the triangle inequality fails, so it is not a norm. Right: in three dimensions one
obtains, respectively, an octahedron, a sphere and a cube. We illustrate the p = 1
case.

a taxi driver on Manhattan). As we will see (in Section 13.1) it is also of particular
relevance to us. It has the slightly awkward property that the shortest path between
two points is not uniquely defined. Taxi drivers know this, but may not be aware of
the fact that it happens only because the unit ball is a polytope, that is it is convex but
not strictly convex. The /;-distance goes under many names: taxi cab, Kolmogorov,
or variational distance.

The case p = 2 is consistent with Pythagoras’ theorem and is the most useful
choice in everyday life; it was singled out for special attention by Riemann when he
made the foundations for differential geometry. Indeed we used a p = 2 norm when
we defined the colour metric at the end of Section 1.3. The idea is that once we have
some coordinates to describe colour space then the MacAdam ellipse surrounding a
point is given by a quadratic form in the coordinates. The interesting thing — that did
not escape Riemann — is the ease with which this ‘infinitesimal’ notion of distance
can be converted into the notion of geodesic distance between arbitrary points. (A
similar generalization based on other /,-distances exists and is called Finslerian
geometry, as opposed to the Riemannian geometry based on p = 2.)

Riemann began by defining what we now call differentiable manifolds of arbi-
trary dimension;> for our purposes here let us just say that this is something that
locally looks like R” in the sense that it has open sets, continuous functions and
differentiable functions; one can set up a one-to-one correspondence between the

5 Riemann lectured on the hypotheses which lie at the foundations of geometry in 1854, in order to be admitted
as a Dozent at Gottingen. As Riemann says, only two instances of continuous manifolds were known from
everyday life at the time: the space of locations of physical objects, and the space of colours. In spite of this he
gave an essentially complete sketch of the foundations of modern geometry. For a more detailed account see (for
instance) Murray and Rice (1993). A very readable, albeit old-fashioned, account is by our Founding Father:
Schrédinger (1950). For beginners the definitions in this section can become bewildering; if so our advice is to
ignore them, and look at some examples of curved spaces first.
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Figure 1.12. The tangent space at the origin of some coordinate system. Note that
there is a tangent space at every point.

points in some open set and n numbers 0!, called coordinates, that belong to some
open set in R". There exists a tangent space T, at every point g in the manifold;
intuitively we can think of the manifold as some curved surface in space and of a
tangent space as a flat plane touching the surface at some point. By definition the
tangent space T, is the vector space whose elements are tangent vectors at g, and a
tangent vector at a point of a differentiable manifold is defined as the tangent vector
of a smooth curve passing through the point. Intuitively, it is a little arrow sitting at
the point. Formally, it is a contravariant vector (with index upstairs). Each tangent
vector V' gives rise to a directional derivative ), V'9; acting on the functions on
the space; in differential geometry it has therefore become customary to think of
a tangent vector as a derivative operator. In particular we can take the derivatives
in the directions of the coordinate lines, and any directional derivative can be ex-
pressed as a linear combination of these. Therefore, given any coordinate system
', the derivatives 9; with respect to the coordinates form a basis for the tangent
space — not necessarily the most convenient basis one can think of, but one that
certainly exists. To sum up, a tangent vector is written as

vV=> Vi, (1.42)
i

where V is the vectoritself and V? are the components of the vector in the coordinate
basis spanned by the basis vectors 9;.

Itis perhaps as well to emphasize that the tangent space T, at a point g bears no a-
priori relation to the tangent space T, at a different point ¢’, so that tangent vectors at
different points cannot be compared unless additional structure is introduced. Such
an additional structure is known as ‘parallel transport’ or ‘covariant derivatives’,
and will be discussed in Section 3.2.
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At every point g of the manifold there is also a cotangent space Ty, the vector
space of linear maps from T, to the real numbers. Its elements are called covariant
vectors. Given a coordinate basis for T, there is a natural basis for the cotangent
space consisting of n covariant vectors d9’ defined by

do'(d;) = ¢&" , (1.43)

with the Kronecker delta appearing on the right-hand side. The tangent vector 0;
points in the coordinate direction, while d9’ gives the level curves of the coordinate
function. A general element of the cotangent space is also known as a one-form. It
can be expanded as U = U;d#', so that covariant vectors have indices downstairs.
The linear map of a tangent vector V is given by

U(V)=U;do"(VId;) = U;VIdo'(3;) = U; V' . (1.44)

From now on the Einstein summation convention is in force, which means that if
an index appears twice in the same term then summation over that index is implied.
A natural next step is to introduce a scalar product in the tangent space, and indeed
in every tangent space. (One at each point of the manifold.) We can do this by
specifying the scalar products of the basis vectors d;. When this is done we have
in fact defined a Riemannian metric tensor on the manifold, whose components in
the coordinate basis are given by

gij = (0, 0;) . (1.45)

It is understood that this has been done at every point g, so the components of the
metric tensor are really functions of the coordinates. The metric g;; is assumed
to have an inverse g”/. Once we have the metric it can be used to raise and lower
indices in a standard way (V; = g;; V7). Otherwise expressed it provides a canonical
isomorphism between the tangent and cotangent spaces.

Riemann went on to show that one can always define coordinates on the manifold
in such a way that the metric at any given point is diagonal and has vanishing first
derivatives there. In effect — provided that the metric tensor is a positive definite
matrix, which we assume — the metric gives a 2-norm on the tangent space at
that special point. Riemann also showed that in general it is not possible to find
coordinates so that the metric takes this form everywhere; the obstruction that
may make this impossible is measured by a quantity called the Riemann curvature
tensor. It is a linear function of the second derivatives of the metric (and will make
its appearance in Section 3.2). The space is said to be flat if and only if the Riemann
tensor vanishes, which is if and only if coordinates can be found so that the metric
takes the same diagonal form everywhere. The 2-norm was singled out by Riemann
precisely because his grandiose generalization of geometry to the case of arbitrary
differentiable manifolds works much better if p = 2.
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With a metric tensor at hand we can define the length of an arbitrary curve
x' = x'(¢) in the manifold as the integral

dxi dx/

along the curve. The shortest curve between two points is called a geodesic, and
we are in a position to define the geodesic distance between the two points just
as we did at the end of Section 1.3. The geodesic distance obeys the axioms that
we laid down for distance functions, so in this sense the metric tensor defines a
distance. Moreover, at least as long as two points are reasonably close, the shortest
path between them is unique.

One of the hallmarks of differential geometry is the ease with which the tensor
formalism handles coordinate changes. Suppose we change to new coordinates
X' = xi/(x). Provided that these functions are invertible the new coordinates are
just as good as the old ones. More generally, the functions may be invertible only
for some values of the original coordinates, in which case we have a pair of partially
overlapping coordinate patches. It is elementary that

ax/
axi'
Since the vector V itself is not affected by the coordinate change — which is after

all just some equivalent new description — Eq. (1.42) implies that its components
must change according to

3 = (1.47)

., . . 9x! "
Vi =V, = V()= va(x) . (1.48)

In the same way we can derive how the components of the metric change when the
coordinate system changes, using the fact that the scalar product of two vectors is
a scalar quantity that does not depend on the coordinates:
axk ax!
We see that the components of a tensor, in some basis, depend on that particular
and arbitrary basis. This is why they are often regarded with feelings bordering on
contempt by professionals, who insist on using ‘coordinate free methods’ and think
that ‘coordinate systems do not matter’. But in practice few things are more useful
than a well-chosen coordinate system. And the tensor formalism is tailor made to
construct scalar quantities invariant under coordinate changes.

In particular the formalism provides invariant measures that can be used to define
lengths, areas, volumes, and so on, in a way that is independent of the choice of
coordinate system. This is because the square root of the determinant of the metric

g UV =g, UV =  gj=
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Figure 1.13. Here is how to measure the geodesic and the chordal distances be-
tween two points on the sphere. When the points are close these distances are also
close; they are consistent with the same metric.

tensor, ,/g, transforms in a special way under coordinate transformations:

, ax"\ !
Ve = (deta) V). (1.50)
The integral of a scalar function f'(x") = f(x), over some manifold M, then behaves
as

I = /M F Vg (x)d'x = /M F)/gx)d"x (1.51)

— the transformation of /g compensates for the transformation of d"x, so that
the measure ,/gd"x is invariant. A submanifold can always be locally defined via
equations of the general form x = x(x), where x’ are intrinsic coordinates on the
submanifold and x are coordinates on the embedding space in which it sits. In this
way Eq. (1.49) can be used to define an induced metric on the submanifold, and
hence an invariant measure as well. Equation (1.46) is in fact an example of this
construction — and it is good to know that the geodesic distance between two points
is independent of the coordinate system.

Since this is not a textbook on differential geometry we leave these matters here,
except that we want to draw attention to some possible ambiguities. First there is
an ambiguity of notation. The metric is often presented in terms of the squared line
element,

ds? = g;;dx'dx’ . (1.52)

The ambiguity is this: in modern notation dx’ denotes a basis vector in cotangent
space, and ds? is a linear operator acting on the tensor product T ® T. There is
also an old-fashioned way of reading the formula, which regards ds? as the length
squared of that tangent vector whose components (at the point with coordinates x)
are dx’. A modern mathematician would be appalled by this, rewrite it as g, (ds, ds),
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and change the label ds for the tangent vector to, say, A. But a liberal reader will be
able to read Eq. (1.52) in both ways. The old-fashioned notation has the advantage
that we can regard ds as the distance between two ‘nearby’ points given by the
coordinates x and x + dx; their distance is equal to ds plus terms of higher order
in the coordinate differences. We then see that there are ambiguities present in the
notion of distance too. To take the sphere as an example, we can define a distance
function by means of geodesic distance. But we can also define the distance between
two points as the length of a chord connecting the two points, and the latter definition
is consistent with our axioms for distance functions. Moreover both definitions are
consistent with the metric, in the sense that the distances between two nearby
points will agree to lowest order. However, in this book we will usually regard it as
understood that once we have a metric we are going to use the geodesic distance to
measure the distance between two arbitrary points.

1.5 Probability and statistics

The reader has probably surmised that our interest in convex sets has to do with
their use in statistics. It is not our intention to explain the notion of probability,
not even to the extent that we tried to explain colour. We are quite happy with
the Kolmogorov axioms, that define probability as a suitably normalized positive
measure on some set 2. If the set of points is finite, this is simply a finite set of
positive numbers adding up to one. Now there are many viewpoints on what the
meaning of it all may be, in terms of frequencies, propensities and degrees of rea-
sonable beliefs. We do not have to take a position on these matters here because the
geometry of probability distributions is invariant under changes of interpretation.®
We do need to fix some terminology however, and will proceed to do so.

Consider an experiment that can yield N possible outcomes, or in mathematical
terms a random variable X that can take N possible values x; belonging to a
sample space 2, which in this case is a discrete set of points. The probabilities for
the respective outcomes are

PX=x)=p . (1.53)

For many purposes the actual outcomes can be ignored. The interest centres on the
probability distribution P(X) considered as the set of N real numbers p’ such that

N
P >0, Yp=1. (1.54)

i=l

6 The reader may consult the book by von Mises (1957) for one position, and the book by Jaynes (2003) for
another. Jaynes regards probability as quantifying the degree to which a proposition is plausible, and finds that
/i has a status equally fundamental as that of p;.
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(We will sometimes be a little ambiguous about whether the index should be up
or down — although it should be upstairs according to the rules of differential
geometry.) Now look at the space of all possible probability distributions for the
given random variable. This is a simplex with the p’ playing the role of barycentric
coordinates; a convex set of the simplest possible kind. The pure states are those for
which the outcome is certain, so that one of the p' is equal to one. The pure states sit
at the corners of the simplex and hence they form a zero-dimensional subset of its
boundary. In fact the space of pure states is isomorphic to the sample space. As long
as we keep to the case of a finite number of outcomes — the multinomial probability
distribution as it is known in probability theory — nothing could be simpler.

Except that, as a subset of an n-dimensional vector space, an n-dimensional
simplex is a bit awkward to describe using Cartesian coordinates. Frequently it
is more convenient to regard it as a subset of an N = (n + 1)-dimensional vector
space instead, and use the unrestricted pi to label the axes. Then we can use the
l,-norms to define distances. The meaning of this will be discussed in Chapter 2;
meanwhile we observe that the probability simplex lies somewhat askew in the
vector space, and we find it convenient to adjust the definition a little. From now
on we set

1

1 N P
Dp(P,Q>E||P—Q||ps(52|pi—qi|f’> . l<p. (59
i=1

The extra factor of 1/2 ensures that the edge lengths of the simplex equal 1, and also
has the pleasant consequence that all the /,-distances agree when N = 2. However,
it is a little tricky to see what the /,,-balls look like inside the probability simplex.
The case p = 1, which is actually important to us, is illustrated in Figure 1.14;
we are looking at the intersection of a cross-polytope with the probability simplex.
The result is a convex body with N(N — 1) corners. For N = 2 itis a hexagon, for
N = 3 a cuboctahedron, and so on.

The [,-distance has the interesting property that probability distributions with
orthogonal support — meaning that the product p;q; vanishes for each value of i —
are at maximal distance from each other. One can use this observation to show,
without too much effort, that the ratio of the radii of the in- and outspheres for the
[1-ball obeys

Fin 2 . . Fin 2N . .
=,/— if Niseven, =,/——if Nisodd. (1.56)
Rout N Rout N2 - 1

Hence, although some corners have been ‘chopped oft’, the body is only marginally
more spherical than is the cross-polytope. Another way to say the same thing is
that, with our normalization, [[p[l; < [IPll2 < RoulIPIl1/rin-
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L

Figure 1.14. For N = 2 we show why all the /,-distances agree when the def-
inition (Eq. 1.55) is used. For N = 3 the /,-distance gives hexagonal ‘spheres’,
arising as the intersection of the simplex with an octahedron. For N = 4 the same
construction gives an Archimedean solid known as the cuboctahedron.

We end with some further definitions, that will put more strain on the notation.
Suppose we have two random variables X and ¥ with N and M outcomes and de-
scribed by the distributions P; and P,, respectively. Then there is a joint probability
distribution Py, of the joint probabilities,

Po(X =x,Y =y) = ph. (1.57)

This is a set of NM non-negative numbers summing to one. Note that it is not
implied that p}, = p! p3; if this does happen the two random variables are said to
be independent, otherwise they are correlated. More generally K random variables
are said to be independent if

k
P =riph . P, (1.58)

and we may write this schematically as Pi». x = P P, ... Px. A marginal distribu-
tion is obtained by summing over all possible outcomes for those random variables
that we are not interested in. Thus a first order distribution, describing a single
random variable, can be obtained as a marginal of a second order distribution,
describing two random variables jointly, by

=> . (1.59)
J

There are also special probability distributions that deserve special names. Thus
the uniform distribution for a random variable with N outcomes is denoted by Q)
and the distributions where one outcome is certain are collectively denoted by Q).

The notation can be extended to include
1 1

1
=(—,—...,—,0,...,0), 1.60
Qm) (M i i ) (1.60)

with M < N and possibly with the components permuted.
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With these preliminaries out of the way, we will devote Chapter 2 to the study
of the convex sets that arise in classical statistics, and the geometries that can be
defined on them — in itself, a preparation for the quantum case.

Problems

Problem 1.1 Helly’s theorem states that if we have N > n + 1 convex sets in R”
and if for every n 4 1 of these convex sets we find that they share a point, then there
is a point that belongs to all of the N convex sets. Show that this statement is false
if the sets are not assumed to be convex.

Problem 1.2 Compute the inradius and the outradius of a simplex, that is prove
Eq. (1.24).



2

Geometry of probability distributions

Some people hate the very name of statistics, but I find them full of beauty and
interest.
Sir Francis Galton

In quantum mechanics one often encounters sets of non-negative numbers that
sum to unity, having a more or less direct interpretation as probabilities. This
includes the squared moduli of the coefficients when a pure state is expanded in
an orthonormal basis, the eigenvalues of density matrices, and more. Continuous
distributions also play a role, even when the Hilbert space is finite dimensional.
From a purely mathematical point of view a probability distribution is simply a
measure on a sample space, constrained so that the total measure is one. Whatever
the point of view one takes on this, the space of states will turn into a convex set
when we allow probabilistic mixtures of its pure states. In classical mechanics the
sample space is phase space, which is typically a continuous space. This leads to
technical complications but the space of states in classical mechanics does share
a major simplifying feature with the discrete case, namely that every state can
be expressed as a mixture of pure states in a unique way. This was not so in the
case of colour space, nor will it be true for the convex set of all states in quantum
mechanics.

2.1 Majorization and partial order

Our first aim is to find ways of describing probability distributions; we want to be
able to tell when a probability distribution is ‘more chaotic’ or ‘more uniform’ than
another. One way of doing this is provided by the theory of majorization." We will

! This is a large research area in linear algebra. Major landmarks include the books by Hardy, Littlewood and
Pélya (1929), Marshall and Olkin (1979), and Alberti and Uhlmann (1982). See also Ando (1989); all unproved
assertions in this section can be found there.

28
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regard a probability distribution as a vector X belonging to the positive hyperoctant
in RY, and normalized so that the sum of its components is unity.

The set of all normalized vectors forms an (N — 1)-dimensional simplex Ay_;.
We are interested in transformations that take probability distributions into each
other, that is transformations that preserve both positivity and the /;-norm of positive
vectors.

Now consider two positive vectors, X and y. We order their components in
decreasing order, x; > x; > --- > xy. When this has been done we may write x# .
We say that X is majorized by y, written

@: Y xf <Yy for k=1,....N
X <y ifand only if 2.1

G): YN =" .

We assume that all our vectors are normalized in such a way that their components
sum to unity, so condition (ii) is automatic. It is evident that X < X (majorization is
reflexive) and that ¥ < y and y < Z implies X < Z (majorization is transitive) but it
is not true that X < y and y < X implies X = y, because one of these vectors may
be obtained by a permutation of the components of the other. But if we arrange
the components of all vectors in decreasing order then indeed X < y and y < X
does imply X = y; majorization does provide a partial order on such vectors. The
ordering is only partial because given two vectors it may happen that none of them
majorize the other. Moreover there is a smallest element. Indeed, for every vector
X it is true that

I =/N,1/N,...,1/N) <% <(1,0,...,0) = %) . 2.2)
Note also that
X1<y and X<y = (aXx;+—a)xy) <Yy (2.3)

for any real a € [0, 1]. Hence the set of vectors majorized by a given vector is a
convex set. In fact this set is the convex hull of all vectors that can be obtained by
permuting the components of the given vector.

Vaguely speaking it is clear that majorization captures the idea that one vector
may be more ‘uniform’ or ‘mixed’ than another, as seen in Figure 2.1. We can
display all positive vectors of unit /;-norm as a probability simplex; for N = 3 the
convex set of all vectors that are majorized by a given vector is easily recognized
(Figure 2.2). For special choices of the majorizing vector we get an equilateral
triangle or a regular tetrahedron; for N = 4 a number of Platonic and Archimedean
solids appear in this way (an Archimedean solid has regular but not equal faces
(Cromwell, 1997)). See Figure 2.3.
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Figure 2.1. Idea of majorization: in panel (a) the vector X = {xq, ..., xj0} (o) is
majorizedby y = {y1, ..., Y10} (A). In panel (b) we plot the distribution functions

and show that Eq. (2.1) is obeyed.

G

Figure 2.2. The probability simplex for N = 3 and the shaded convex set that
is formed by all vectors that are majorized by a given vector; its pure points are
obtained by permuting the components of the given vector.

Many processes in physics occur in the direction of the majorization arrow
(because the passage of time tends to make things more uniform). Economists
are also concerned with majorization. When Robin Hood robs the rich and helps
the poor he aims for an income distribution that is majorized by the original one
(provided that he acts like an isometry with respect to the /;-norm, that is that
he does not keep anything in his own pocket). We will need some information
about such processes and we begin by identifying a suitable class of transforma-
tions. A stochastic matrix is a matrix B with N rows, whose matrix elements
obey

(i): B;; =0
(2.4)
(i): YN B =1.
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Figure 2.3. Panel (a) shows the probability simplex for N = 4. The set of vectors
majorized by a given vector gives rise to the convex bodies shown in (b)—(f); these
bodies include an octahedron (d), a truncated octahedron (e), and a cuboctahedron

®.

A bistochastic or doubly stochastic matrix is a square stochastic matrix obeying the
additional condition?

(iii): Y0 Bij = 1. 2.5)

Condition (i) means that B preserves positivity. Condition (ii) says that the sum of
all the elements in a given column equals one, and it means that B preserves the
/;-norm when acting on positive vectors, or in general that B preserves the sum
Zi x; of all the components of the vector. Condition (iii) means that B is unital,
that is it leaves the ‘smallest element’ 55( ~) invariant. Hence it causes some kind of
contraction of the probability simplex towards its centre, and the classical result by
Hardy et al. (1929) does not come as a complete surprise:

Lemma 2.1 (Hardy, Littlewood and Pélya’s (HLP)) X < ¥ if and only if there
exists a bistochastic matrix B such that X = BY.

For a proof see Problem 2.4. The product of two bistochastic matrices is
again bistochastic; they are closed under multiplication but they do not form a

group.

2 Bistochastic matrices were first studied by Schur (1923).
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R

Figure 2.4. How T'-transforms, and sequences of 7 -transforms, act on the proba-
bility simplex. The distribution (3/4, 1/4, 0) is transformed to the uniform en-
semble with an infinite sequence of T'-transforms, while for the distribution
(14,7, 3)/24 we use a finite sequence (72 77).

A general 2 x 2 bistochastic matrix is of the form

T:[lt_t ltt}, relo1]. 2.6)
In higher dimensions there will be many bistochastic matrices that connect two
given vectors. Of a particularly simple kind are T-transforms (“T" as in transfer),
that is matrices that act non-trivially only on two components of a vector. It is
geometrically evident from Figure 2.4 that if X < y then it is always possible to find
a sequence of not more than N — 1 T-transforms such thatx = Ty_Ty_> ... T} Y.
(Robin Hood can achieve his aim using T -transforms to transfer income.) On the
other hand (except for the 2 x 2 case) there exist bistochastic matrices that cannot
be written as sequences of T -transforms at all.

A matrix B is called unistochastic if there exists a unitary matrix U such
that B;; = |U;; |>. (No sum is involved — the equality concerns individual matrix
elements.) In the special case that there exists an orthogonal matrix O such that
B;; = (0;; )2 the matrix B is called orthostochastic. Due to the unitarity condition
every unistochastic matrix is bistochastic, but the converse does not hold, except
when N = 2. On the other hand we have the following (Horn, 1954):

Lemma 2.2 (Horn’s) X < y if and only if there exists an orthostochastic matrix
B such that X = BY.

There is an easy to follow algorithm for how to construct such an orthostochastic
matrix (Bhatia, 1997), which may be written as a product of (N — 1) T-transforms
acting in different subspaces. In general, however, a product of an arbitrary number
of T-transforms needs not be unistochastic (Poon and Tsing, 1987).

A theme that will recur is to think of a set of transformations as a space in its
own right. The space of linear maps of a vector space to itself is a linear space of
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its own in a natural way; to superpose two linear maps we define
(CllTl + asz)E = alTIE + a2T25c' . (27)

Given this linear structure it is easy to see that the set of bistochastic matrices forms
aconvex set and in fact a convex polytope. Of the equalities in Eq. (2.4) and Eq. (2.5)
only 2N — 1 are independent, so the dimension is N> — 2N + 1 = (N — 1)>. We
also see that permutation matrices (having only one non-zero entry in each row and
column) are pure points of this set. The converse holds:

Theorem 2.1 (Birkhoff’s) The set of N x N bistochastic matrices is a convex
polytope whose pure points are the N permutation matrices.

To see this note that Eq. (2.4) and Eq. (2.5) define the set of bistochastic matrices
as the intersection of a finite number of closed half spaces in RV =1’ . (An equality
counts as the intersection of a pair of closed half spaces.) According to Section 1.1
the pure points must saturate (N — 1)> = N2 — 2N + 1 of the inequalities in con-
dition (i). Hence at most 2N — 1 matrix elements can be non-zero; therefore at least
one row (and by implication one column) contains one unit and all other entries
zero. Effectively we have reduced the dimension one step, and we can now use
induction to show that the only non-vanishing matrix elements for a pure point in
the set of bistochastic matrices must equal 1, which means that it is a permutation
matrix. Note also that using Carathéodory’s theorem (again from Section 1.1) we
see thatevery N x N bistochastic matrix can be written as a convex combination of
(N — 1)? permutation matrices, and it is worth adding that there exist easy-to-follow
algorithms for how to actually do this.
Functions which preserve the majorization order are called Schur convex;

X <Yy implies f(X) < f(). (2.8)

If x < y implies f(X) > f(y) the function is called Schur concave. Clearly — f(X)
is Schur concave if f(x) is Schur convex, and conversely. The key theorem
here is:

Theorem 2.2 (Schur’s) A differentiable function F(xy, ..., xy) is Schur convex if
and only if F is permutation invariant and if. for all X,
oF OF
x1—x)——-——1]=>0. (2.9)
8)61 8)(,‘2

Permutation invariance is needed because permutation matrices are (the only) bis-
tochastic matrices that have bistochastic inverses. The full proof is not difficult
when one uses T -transforms (Ando, 1989). Using Schur’s theorem, and assuming
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that X belongs to the positive orthant, we can easily write down a supply of Schur
convex functions. Indeed any function of the form

N
FG) =) f) (2.10)
i=1
is Schur convex, provided that f(x) is a convex function on R (in the sense of
Section 1.1). In particular, the /,-norm of a vector is Schur convex. Schur concave
functions include the elementary symmetric functions

2@ =) xx;, 5= xxx, 2.11)

i<j i<j<k

and so on up to sy(X) = [, x;.

This concludes our tour of the majorization order and the transformations that
go with it. Since we laid so much stress on bistochastic matrices, let us end with an
interesting theorem that applies to stochastic matrices in general. We quote it in an
abbreviated form (see Bhatia (1997) for more):

Theorem 2.3 (Frobenius—Perron’s) An irreducible N x N matrix whose matrix
elements are non-negative has a real, positive and simple eigenvalue and a corre-
sponding positive eigenvector. The modulus of any other eigenvalue never exceeds
this.

For a stochastic matrix the leading eigenvalue is 1 and all others lie in the unit
disc of the complex plane — all stochastic matrices have an invariant eigenvector,
although it need not sit in the centre of the probability simplex.

Stochastic maps are also called Markov maps. A Markov chain is a sequence
of Markov maps and may be used to provide a discrete time evolution of proba-
bility distributions. It is not easy to justify why time evolution should be given by
linear maps, but Markov maps are useful in a wide range of physical problems.
In classical mechanics it is frequently assumed that time evolution is governed
by a Hamiltonian. This forces the space of pure states to be infinite dimensional
(unless one adopts finite number fields (Wootters, 1987)). Markovian evolution
does not require this, so we will see a lot of Markov maps in this book. An-
other context in which stochastic matrices appear is the process of coarse graining
(or randomization, as it is known in the statistical literature): suppose that we do
not distinguish between two of three outcomes described by the probability dis-
tribution p. Then we may map (po, p1, p2) to (g0, g1) = (po, p1 + p2) and this
map is effected by a stochastic matrix. In this book we will be much concerned
with functions that are monotonely increasing, or decreasing, under stochastic
maps.
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2.2 Shannon entropy

Let P be a probability distribution for a finite number N of possible outcomes, that
is we have a vector p whose N components obey p; > O and ), p; = 1. We ask
for functions of the variables p; that can tell us something interesting about the
distribution. Perhaps surprisingly there is a single choice of such a function that (at
least arguably) is more interesting than any other. This is the Shannon entropy

N
S(P)=—kY pilnp; . (2.12)
i=1
where k is a positive number that we usually set equal to 1. Note that the entropy is
associated to a definite random variable X and can be written as S(X), but the only
property of the random variable that matters is its probabilitity distribution P. The
reason why it is called entropy was explained by Shannon in a disarming way:

My greatest concern was what to call it. I thought of calling it ‘information’, but the word
was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von
Neumann, he had a better idea. Von Neumann told me, “You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have an advantage.” 3

Entropy is a concept that has evolved a long way from its thermodynamic
origins — and as so often happens a return to the origin may be difficult, but this
will not concern us much in this book. The Shannon entropy can be interpreted as
a measure of the uncertainty about the outcome of an experiment that is known to
occur according to the probability distribution P, or as the amount of information
needed to specify the outcome that actually occurs, or very precisely as the expected
length of the communication needed for this specification. It takes the value zero if
and only if one outcome is certain (that is for a pure state, when one component of
P equals one) and its maximum value k In N when all outcomes are equally likely
(the uniform distribution). In this section only we set k = 1/1In2, which in effect
means that we use logarithms to the base 2 in the definition of S:

N
S(P)y=—_ pilog, pi . (2.13)

i=1
With this choice the entropy is said to be measured in units of bits. If we have
N = 29 possible outcomes we see that the maximum value of S is log, N = a bits,

3 Quoted by Tribus and MclIrvine (1971); Shannon’s original work (Shannon, 1948) is available in book form as
Shannon and Weaver (1949). A version of Eq. (2.12), with all the p; equal to 1/ W, is engraved on Boltzmann’s
tombstone.
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Figure 2.5. ‘Code trees’ for four possible outcomes. The one on the right gives a
shorter expected length if p; > p3 + p4.

which is the length of the string of binary digits one can use to label the outcomes.
If the outcomes occur with unequal probabilities it will pay, on the average, to label
the more likely outcomes with shorter strings, and indeed the entropy goes down.

The context in which the Shannon entropy has an absolutely precise interpretation
along these lines is when we have a source that produces outcomes of an infinite
sequence of independent and identically distributed random variables. Suppose we
want to code the outcomes of a set of such i.i.d. events as a string of binary digits
(zeros and ones). We define a code as a map of a sequence of outcomes into strings
of binary numbers. The coding has to be done in such a way that a given string
has an unambiguous interpretation as a sequence of outcomes. Some examples will
make this clear: if there are four possible outcomes then we can code them as 00,
01, 10 and 11, respectively. These are code words. Without ambiguity, the string
0100010100 then means (01, 00, 01, 01, 00). Moreover it is clear that the length of
string needed to code one outcome is always equal to 2 bits. But other codes may
do better, in the sense that the average number of bits needed to encode an outcome
is less than 2; we are interested in codes that minimize the expected length

L=Y pil, (2.14)

where /; is the length of the individual code words (in bits). In particular, suppose
that p; > p» > p3 > p4, and label the first outcome as 0, the second as 10, the
third as 110 and the fourth as 111. Then the string we had above is replaced by the
shorter string 10010100, and again this can be broken down in only one way, as
(10, 0, 10, 10, 0). That the new string is shorter was expected because we used a
short code word to encode the most likely outcome, and we can read our string in
an unambiguous way because the code has the prefix property: no code word is the
prefix of any other. If we use both 0 and 1 as code words the prefix property is lost
and we cannot code for more than two outcomes. See Figure 2.5 for the structure
of the codes we use.

We are now faced with the problem of finding an optimal code, given the prob-
ability distribution. The expected length L, of the code words used in an optimal
code obeys L, < L, where L is the expected length for an arbitrary code. We will
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not describe the construction of optimal codes here, but once it is admitted that such
acode can be found then we can understand the statement given in the next theorem:

Theorem 2.4 (Shannon’s noiseless coding theorem) Given a source distribution
P, let L, be the expected length of a code word used in an optimal code. Then

S(P) <L, <S(P)+1. (2.15)

For the proof of this interesting theorem — and how to find an optimal code —
we must refer to the literature (Cover and Thomas, 1991). Our point is that the
noiseless coding theorem provides a precise statement about the sense in which the
Shannon entropy is a measure of information. (It may seem as if L, would be a
better measure. It is not for two reasons. First, we do not have a closed expression
for L,. Second, as we will see below, when many code words are being sent the
expected length per code word can be made equal to S.)
The Shannon entropy has many appealing properties. Let us make a list:

* Positivity. Clearly S(P) > O for all discrete probability distributions.

¢ Continuity. S(P) is a continuous function of the distribution.

* Expansibility. We adopt the convention that 0In0 = 0. Then it will be true that
S(p1s-... pn) = S(p1s- ... PN, 0).

Concavity. It is a concave function in the sense of convex set theory; mixing of probability
distributions increases the entropy.

* Schur concavity. As explained in Section 2.1 the Shannon entropy is Schur concave,
so it tells us something about the majorization order that we imposed on the set of all
probability distributions.

Additivity. If we have a joint probability distribution Pj, for two random variables and
if they are independent, so that the joint probabilities are products of the individual
probabilities, then

S(Pi2) = S(P) + S(Py). (2.16)

In words, the information needed to describe two independent random variables is the
sum of the information needed to describe them separately.*
* Subadditivity. If the two random variables are not independent then

S(Pi2) = S(PY) + S(P) (2.17)

with equality if and only if the random variables are independent. Any correlation between
them means that once we know the result of the first trial the amount of information needed
to specify the outcome of the second decreases.

* The recursion property. Suppose that we coarse grain our description in the sense that we
do not distinguish between all the outcomes. Then we are dealing with a new probability

4 In the statistical mechanics community additivity is usually referred to as extensitiviry.
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Figure 2.6. The recursion property illustrated; to the right it is used to determine
S (%, %, }1) in terms of the Shannon entropy for uniform distributions.

distribution Q with components

ki ky N
G=Ypi. @@= Y. P s dr= Y. pi, (2.18)
i=1

i=k+1 i=N—k+1
for some partition N = k; + ko + --- + k.. It is easy to show that
S(P)=S<Q)+qIS<ﬂ,...,&)+ +q5<”"—”—”> @19
q1 q1 qr qr

This is the recursion property and it is illustrated in Figure 2.6; it tells us how a choice
can be broken down into successive choices.

The recursion property can be used as an axiom that singles out the Shannon
entropy as unique.’ Apart from the recursion property we assume that the entropy
is a positive and continuous function of P, so that it is enough to consider rational
values of p; = m; /M, where M = Zi m;. We also define

A(N) = S(1/N,1/N,...,1/N). (2.20)

Then we can start with the equiprobable case of M outcomes and, using Eq. (2.19),
obtain S(P) in an intermediate step:

N
AM) = S(P)+ ) _ piA(m;) . 221)

i=1

In the special case that M = Nm and all the m; are equal to m we get

A(Nm)=A(N)+ A(m) . (2.22)

5 Increasingly elegant sets of axioms for the Shannon entropy were given by Shannon and Weaver (1949), Khinchin
(1957) and Faddejew (1957). Here we only give the key points of the argument.
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Figure 2.7. The Shannon entropy for N = 2 (solid curve). In panel (a) we show
the simple power bounds (Eq. 2.24), and in panel (b) some bounds provided by the
Rényi entropies from Section 2.7, upper bounds with ¢ = 1/5 (dotted) and 1/2
(dashed) and lower bounds with g = 2 (dashed, concave) and 5 (not concave).

The unique solution® of this equation is A(N) = kIn N and k must be positive if
the entropy is positive. Shannon’s formula for the entropy then results by solving
Eq. (2.21) for S(P).

The argument behind Shannon’s coding theorem can also be used to define
the Shannon entropy, provided that we rely on additivity as well. Let the source
produce the outcomes of A independent events. These can be regarded as a single
outcome for a random variable described by a joint probability distribution and
must be provided by a code word. Let Li\/ be the expected length for the code word
used by an optimal code. Because the Shannon entropy is additive for independent
distributions we get

NS(PYy< LY <NS(P)+1. (2.23)

If we divide through by A/ we get the expected length per outcome of the original
random variable — and the point is that this converges to S(P), exactly. By following
this line of reasoning we can give a formulation of the noiseless coding theorem that
is more in line with that used later (in Section 12.2). But here we confine ourselves
to the observation that, in this specific sense, the Shannon entropy is exactly what
we want a measure of information to be!

Now what does the function look like? First we switch back to using the natural
logarithm in the definition (we set k = 1), then we take a look at the Shannon
entropy for N = 2. Figure 2.7 also shows that

21n2 min{x, 1 —x} < S(x) <2In2y/x(1 —x) . (2.24)

Much sharper power (and logarithmic) bounds have been provided by Topsge
(2001). Bounds valid for N = 2 only are more interesting than one might think, as
we will see when we prove the Pinsker inequality in Section 13.1.

6 This is the tricky point: see Rényi (1961) for a comparatively simple proof.
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2.3 Relative entropy

The Shannon entropy is a function that tells us something about a probability
distribution. We now consider two probability distributions P and Q, and we look
for a measure of how different they are — a distance between them, or at least
a distinguishability measure. Information theory offers a favoured candidate: the
relative entropy

N .
SCPIIQ =Y piln 2

L. (2.25)
i=1 qi

It is also known as the Kullback—Leibler entropy or the information divergence.’

In terms of lengths of messages, the relative entropy S(P|| Q) measures how much
the expected length of a code word grows, if the coding is optimal but made under
the erroneous assumption that the random variable is described by the distribution
Q. Relative entropy is not a distance in the sense of Section 1.4 since it is not
symmetric under interchange of P and Q. Nevertheless it does provide a measure
of how different the two distributions are from each other. We should be clear about
the operational context in which a given distinguishability measure is supposed
to work; here we assume that we have a source of independent and identically
distributed random variables, and we try to estimate the probability distribution by
observing the frequency distribution of the various outcomes. The Law of Large
Numbers guarantees that in the limit when the number A of samplings goes to
infinity the probability to obtain any given frequency distribution not equal to the
true probability distribution vanishes. It turns out that the relative entropy governs
the rate at which this probability vanishes as N\ increases.

A typical situation that one might want to consider is that of an experiment with
N outcomes, described by the probability distribution Q. Let the experiment be
repeated V times. We are interested in the probability P that a frequency distribution
P (different from Q) will be observed. To simplify matters, assume N = 2. For
instance, we may be flipping a biased coin described by the (unknown) probability
distribution Q = (g, 1 — g). With Jakob Bernoulli, we ask for the probability P that
the two outcomes occur with frequencies P = (m/N, 1 — m/N). This is a matter
of counting how many strings of outcomes there are with each given frequency, and
the exact answer is

P (%) = (ﬁ:) g"(1 =g (2.26)

7 The relative entropy was introduced by Kullback and Leibler (1951), and even earlier than that by Jeffreys in 1939
(Jeffreys, 1961). Sanov’s theorem (Sanov, 1957) appeared in 1957. In mathematical statistics an asymmetric
distance measure is referred to as a divergence.
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For large N we can approximate this using Stirling’s formula, in the simplified
form In ! ~ N'In N — N. For N’ = 100 it is accurate within a per cent or so.
The result is
m m m m
In (POn/A) ~ —N [ (In 2 = g) + (1= ) (In(1 = ) = In(1 = )|
(P(m/N)) v —a)+d = (Ind—-7) —In(l —q)
(2.27)

and we recognize the relative entropy on the right-hand side. Indeed the probability
to obtain the frequency distribution P is

P(P) ~ e NSPIO) (2.28)

This simple exercise should be enough to advertise the fact that relative entropy
means something.

There are more precise ways of formulating this conclusion. We have the
following theorem:

Theorem 2.5 (Sanov’s) Let an experiment with N outcomes described by the prob-
ability distribution Q be repeated N times, and let E be a set of probability distri-
butions for N outcomes such that E is the closure of its interior. Then, for N large,
the probability P that a frequency distribution belonging to E will be obtained is

P(E) ~ e NSO (2.29)

where P, is that distribution in E that has the smallest value of S(P|| Q).

That E is the closure of its interior means that it is a ‘nice’ set, without isolated
points, ‘spikes’, and so on. An important ingredient in the proof is that the number of
frequency distributions that may be realized is bounded from above by (A + 1)V,
since any one of the N outcomes can occur at most A/ + 1 times. On the other
hand the number of possible ordered strings of outcomes grows exponentially with
N. But this is all we have to say about the proof; our main concern is the geo-
metrical significance of relative entropy, not to prove the theorems of information
theory.3
The relative entropy is always a positive quantity. In fact

N ; 1 N
S(PIIQ) = p ln§ = 32 (pi—a)’ = D3P Q). (2.30)
! i=1

i=1

To prove this, note that any smooth function f obeys

1
fE@=fM+& -+ S - W), Eexy). (2.3D)

8 All unproved assertions in this section are proved in the book by Cover and Thomas (1991). A number of further
results can be found in their chapter 10.
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Figure 2.8. Measures of distinguishability between probability distributions P =
(p,1 — p)and Q = (¢, 1 — q): (a) Euclidean distance, (b) Bhattacharyya distance
(see Section 2.5), (c) and (d) relative entropies S(P||Q) and S(Q||P).
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Now set f(x) = —xInx, in which case f”(x) < —1 when 0 < x < 1. A little
rearrangement proves that the inequality (2.30) holds term by term, so that this is
not a very sharp bound.

The relative entropy is asymmetric. That this is desirable can be seen if we
consider two coins, one fair and one with heads on both sides. Start flipping one of
them to find out which is which. A moment’s thought shows that if the coin we picked
is the fair one, this will most likely be quickly discovered, whereas if we picked
the other coin we can never be completely sure — after all the fair coin can give a
sequence of a thousand heads, too. If statistical distance is a measure of how difficult
it will be to distinguish two probability distributions in a repeated experiment then
this argument shows that such a measure must have some asymmetry built into it.
Indeed, using notation from Eq. (1.60),

S(OmlIQmy) =00 and  S(QlIQw) =InN . (2.32)

The asymmetry is pronounced. For further intuition about this, consult Section
13.1. The asymmetry can also be studied in Figures 2.8(c) and (d) for N = 2 and
in Figure 2.9 for N = 3.

There is a kind of ‘Pythagorean theorem’ that supports the identification of
relative entropy as a (directed) distance squared:

Theorem 2.6 (‘Pythagorean’) The distribution P lies in a convex set E and Q
lies outside E. Choose a distribution P, on the boundary of the convex set such that
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Figure 2.9. Contour lines of the relative entropy S(Q||P) (a) and S(P||Q) for
0 =(0.6,0.4,0.1) (+) as a function of P. Panel (c) shows an analogous picture
for S(Q)|| P), while the contours of S(P||Q3)) consisting of points of the same
Shannon entropy are shown in Figure 2.14(c).

o

Figure 2.10. A Pythagorean property of relative entropy (left), and the same prop-
erty in Euclidean geometry where D%,Q > D? p,t+ D%*Q. The angle is obtuse
because the set to which P belongs is convex (right).

S(P.||Q) assumes its minimum value for P, belonging to E and fixed Q. Then
S(PIIQ) = S(PI|Py) + S(P1Q) . (2.33)

To prove this, consider distributions on the straight line P, = AP 4+ (1 — L) Py,
which lies inside E because E is convex. A minor calculation shows that

d
A=0 = aS(PAIIQ)ZS(PIIQ)—S(PIIP*)—S(P*IIQ). (2.34)

But the derivative cannot be negative at A = 0, by the assumption we made about
P*, and the result follows. It is called a Pythagorean theorem because, under the
same conditions, if we draw Euclidean straight lines between the points and measure
the Euclidean angle at P, then that angle is necessarily obtuse once P, has been
chosen to minimize the Euclidean distance from the convex setto Q. If D p ¢ denotes
the Euclidean distance between the points then Pythagoras’ theorem in its usual
formulation states that D}, > D3, + D} . In this sense the relative entropy
really behaves like a distance squared.
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The convexity properties of the relative entropy are interesting. It is jointly con-
vex. This means that when A € [0, 1] it obeys

SAP+ (1 =DP[201 + (0 = 21)Q2) < AS(P1]|Q1) + (1 = M)S(P[|Q2) -
(2.35)

Convexity in each argument separately is an easy consequence (set Q1 = Q).
Moreover relative entropy behaves in a characteristic way under Markov maps. Let
T be a stochastic map (that is, a matrix that takes a probability vector to another
probability vector). Then we have the following property:

* Monotonicity under stochastic maps.
S(TPITQ) = S(PIQ) . (2.36)

In words, the relative entropy between two probability distributions always de-
creases in a Markov chain, so that the distinguishability of two distributions
decreases with time. It is really this property that makes relative entropy such a
useful concept; functions of pairs of probability distributions that have this prop-
erty are known as monotone functions. The increase of entropy follows if T is
also bistochastic, that is to say that it leaves the uniform probability distribution
invariant. The uniform distribution is denoted Q). Clearly

S(PIIQw) =Y piIn(Np)=InN — S(P). 2.37)

Since T Q(ny = Q(w) the decrease of the relative entropy implies that the Shannon
entropy of the distribution P is increasing with time; we are getting closer to the
uniform distribution. (And we have found an interesting way to show that S(P) is
a Schur concave function.)

The entropy increase can also be bounded from above. To do so we first define the
entropy of a stochastic matrix T with respect to some fixed probability distribution
P as

N
Sp(T) = ZP[S(TI‘); T, = (T, Ty, ..., Ty) . (2.38)
i=l1

(Thus f} are the column vectors of the matrix, which are probability vectors because
T is stochastic.) One can prove that (Stomczynski, 2002)
Sp(T) < S(TP) < Sp(T)+ S(P). (2.39)

Again, this is a result that holds for all stochastic matrices.
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2.4 Continuous distributions and measures

The transition from discrete to continuous probability distributions appears at first
sight to be trivial — just replace the sum with an integral and we arrive at the
Boltzmann entropy

o0
Sp = —/ dx p(x)In p(x) . (2.40)
—00

This is a natural generalization of Shannon’s entropy to continuous probability
distributions, but depending on the behaviour of the distribution function p(x) it
may be ill-defined, and it is certainly not bounded from below in general, since p(x)
need not be bounded from above. To see this let p(x) be a step function taking the
value t~! for x € [0, ¢] and zero elsewhere. The entropy S is then equal to In ¢ and
goes to negative infinity as + — 0. In particular a pure classical state corresponds
to a delta function distribution and has S = —o0. In a way this is as it should be
— it takes an infinite amount of information to specify such a state exactly.

The next problem is that there is no particular reason why the entropy should be
defined in just this way. It is always a delicate matter to take the continuum limit of a
discrete sum. In fact the formula as written will change if we change the coordinate
that we are using to label the points on the real line. In the continuous case random
variables are scalars, but the probability density transforms like a density. What this
means is that

(A) = /dx P(X)A(x) = /dx/ p'(xHA(x)), (2.41)

where A’(x') = A(x). Hence p'(x’) = J~!p(x), where J is the Jacobian of the
coordinate transformation. This means that the logarithm in our definition of the
Boltzmann entropy will misbehave under coordinate transformations. There is a
simple solution to this problem, consisting in the observation that the relative en-
tropy with respect to some prior probability density m(x) does behave itself. In
equations,

o0
Sp = — / dx () In 2 (2.42)
—o0 m(x)
is well behaved. The point is that the quotient of two densities transforms like a scalar
under coordinate changes. Now, depending on how we take the continuum limit of
the Shannon entropy, different densities m(x) will arise. Finding an appropriate m(x)
may be tricky, but this should not deter us from using continuous distributions when
necessary. We cannot avoid them in this book, because continuous distributions
occur also in finite-dimensional quantum mechanics. In most cases we will simply
use the ‘obvious’ translation from sums to integrals along the lines of Eq. (2.40),
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but it should be kept in mind that this really implies a special choice of prior density
m(x).

At this point we begin to see why mathematicians regard probability theory as a
branch of measure theory. We will refer to expressions such as du(x) = p(x)dx as
measures. Mathematicians tend to use a slightly more sophisticated terminology at
this point. Given a suitable subset A of the space coordinatized by x, they define
the measure as a real valued function u such that

w(A) = / du(x) . (2.43)
A

The measure measures the volume of the subset. This terminology can be very
helpful, but we will not use it much.

When the sample space is continuous the space of probability distributions
is infinite dimensional. But in many situations we may be interested in a finite-
dimensional subset. For instance, we may be interested in the two-dimensional
submanifold of normal distributions

1 =w?
(x;p,0) = e (2.44)
u Nzt

with the mean p and the standard deviation o serving as coordinates in the sub-
manifold. In general a finite-dimensional submanifold of the space of probability
distributions is defined by the function p(x; 0',...,06"), where ¢ are coordinates
in the submanifold. When we think of this function as a function of 6¢ it is known
as the likelihood function. This is a setup encountered in the theory of statistical
inference, that is to say the art of guessing what probability distribution governs
an experiment, given only the results of a finite number of samplings, and perhaps
some kind of prior knowledge. (The word ‘likelihood’ is used because, to people of
resolutely frequentist persuasions, there can be no probability distribution for 6¢.)
The likelihood function is a hypothesis about the form that the probability distribu-
tion takes. This hypothesis is to be tested, and we want to design experiments that
allow us to make a ‘best guess’ for the values of the parameters 6¢. As a first step
we want to design a statistical geometry that is helpful for this kind of question.

A somewhat idiosyncratic notation is used in the statistical literature to represent
tangent spaces. Consider the log-likelihood function

I(x;60) =1n p(x;0) . (2.45)

Here x denotes coordinates on the sample space Q2 and 6 are coordinates on a
subspace of probability distributions. The idea is to describe tangent space through
the natural isomorphism between its basis vectors d, (used in Section 1.4) and the
score vectors l,, which are the derivatives with respect to the coordinates 6¢ of the
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log-likelihood function. That is to say

3 al
I, = — . (2.46)
304 304

da

For this to make any sense we must assume that the score vectors form a set of n
linearly independent functions. (It is not supposed to be self-evident why one should
use precisely the log-likelihood function here, but it is an interesting function to
consider —the Shannon entropy is nothing but its expectation value.) The expectation
values of the score vectors vanish. To see this recall that the expectation value is a
sum over the sample space which we denote schematically as an integral:

(la) = / dx p(x;O)la(x;0) = / dx 9, p(x;0) = 2 / dx p(x;6)=0.
Q Q a0 Jo

(2.47)
It is assumed that the interchange of the order of integration with respect to x
and differentiation with respect to 6 is allowed. A general tangent vector A(x) =
A%l,(x) is a linear combination of score vectors; as such it is a random variable
with expectation value zero. These at first sight peculiar definitions actually achieve
something: sets of probability distributions are turned into manifolds, and random
variables are turned into tangent vectors. In the next section we will see that scalar
products between tangent vectors have a statistical meaning, too.

2.5 Statistical geometry and the Fisher—Rao metric

One way of introducing a metric on the space of probability distribution is to
consider the situation where a large number A of samplings are made from a given
probability distribution P, at first assumed to be discrete. This case is sufficiently
simple so that we can do all the details. We ask if we can find out what P actually is,
given only the result of the N samplings. We considered this problem in Section 2.3;
when there are only two possible outcomes the probability to obtain the frequencies

(fi, ) =m/N, 1 —m/N)is
P(ﬁ)=(ﬁjpwl—mNM. (2.48)

We give the answer again because this time we denote the true probability dis-
tribution by P = (p, 1 — p). When W is large, we can use Stirling’s formula to
approximate the result; in textbooks on probability it is usually given as

P(m> 1 -+ ! TR 049
— ) =—¢ 2 /P = — ¢ = Pi . .
N/ 2aNp(d = p) V2a N pip,
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Figure 2.11. Bernoulli’s result: the shapes of the Gaussians will determine how
easily points can be distinguished.

This is consistent with Eq. (2.28) when the observed frequencies are close to P. The
error that we have committed is smaller than k/N, where k is some real number
independent of N'; we assume that N is large enough so that this does not matter.
Figure 2.11 shows that the Gaussians are strongly peaked when the outcomes of
the experiment are nearly certain, while they are much broader in the middle of
the probability simplex. Statistical fluctuations are small when we are close to pure
states; in some sense the visibility goes up there.

The result is easily generalized to the case of N outcomes; we obtain the normal
distribution

NN (f-ph?

P(F)oce 225 o (2.50)

We raised all indices, because we will be doing differential geometry soon! Our
question is: given only the frequencies f’, do we dare to claim that the proba-
bilities take the values p’ = f*, rather than some other values ¢'? This is clearly
a matter of taste. We may choose some number ¢ and decide that we dare to do
it if the probability vector ¢ lies outside an ellipsoid centred at the point p in
the probability simplex, consisting of all probability vectors of the form p + dp,
where

v
dpidpi

Y e (2.51)

— p!

i=1

The analogy to the MacAdam ellipses of colour theory should be clear — and if € is
small we are doing differential geometry already. The vector dp is a tangent vector,
and we introduce a metric tensor g;; through the equation

i LN dpildp 15
ds? = Zg,-jdp’dp/ =3 21: > & gi=-—. (2.52)
i, i=
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Figure 2.12. The convex (flat) and statistical (round) geometry of a simplex when
N =3.

(For clarity, we do not use Einstein’s summation convention here.) This Riemannian
metric is known as the Fisher—Rao metric, or as the Fisher information matrix.?

What is it? To see this, we will try to deform the probability simplex into some
curved space, in such a way that all the little ellipsoids become spheres of equal
size. A rubber model of the two-dimensional case would be instructive to have, but
since we do not have one let us do it with equations. We introduce new coordinates
X', all of them obeying X >0, through

. A . dpt
X=Jp = dxi="_ (2.53)
2V
Then the Fisher—Rao metric takes the very simple form
N . .
ds® =) dx'dx’. (2.54)

i=1
All the little error ellipsoids have become spheres. If we remember the constraint

N N
dor=> x'x'=1, (2.55)
i=1 i=1

then we see that the geometry is that of a unit sphere. Because of the restricted

coordinate ranges we are in fact confined to the positive hyperoctant of S¥~!,

Figure 2.12 illustrates the transformation that we made.

Section 3.1 will provide more details about spheres if this is needed. But we can
right away write down the geodesic distance Dppa between two arbitary probability
distributions P and Q, now regarded as the length of the great circle between them.
This is simply the angle between two vectors, with components X' = \/? and

9 The factor of 1/4 is needed only for agreement with conventions that we use later on. The Fisher—Rao metric
was introduced by Rao (1945), based on earlier work by Fisher (1925) and Bhattacharyya (1943).
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Figure 2.13. For N = 2 the space of discrete probabilities reduces to (a) a straight
line segment along which all the [, distances agree, or (b) a quarter of a circle
equipped with the Bhattacharyya distance, measured by the angle 6.

Yi= \/? Hence

N

cos Dpan = ) _v/p'q’ = B(P. Q). (2:56)

i=1

In statistics this distance is known as the Bhattacharyya distance. The right-hand
side of the equation is known as the Bhattacharyya coefficient, and it looks intrigu-
ingly similar to the scalar product in quantum mechanics. Its square is known as the
classical fidelity. Alternatively we can define the chordal distance Dy as the dis-
tance between the points in the flat embedding space where the round hyperoctant
sits, that is

Dy = (i: (JE _ \/57)2>£ . (2.57)

i=

In statistics this is known as the Hellinger distance. It is clearly a monotone function
of the Bhattacharyya distance.

In writing down these distances we have allowed the geometry to run ahead of
the statistics. The infinitesimal Fisher—Rao distance does have a clear cut opera-
tional significance, in terms of the statistical distinguishability of nearby probability
distributions, in the limit of a large number of samplings. But this is not really the
case for the finite Bhattacharyya and Hellinger distances, at least not as far as we
know. The Kullback-Leibler relative entropy is better in this respect, and should be
connected to the Fisher—Rao metric in some way. Let us assume that two probability
distributions are close, and let us expand the relative entropy (Eq. 2.25) to lowest
order. We find

) pi 1 dpidpi
S(P||P +dP) = 'In——~ = — . 2.58
( || ) Zp pl+dpl 22 pz ( )

i
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Expanding S(P + dP||P) gives the same result — the asymmetry present in the
relative entropy does not make itself felt to lowest order. So the calculation simply
confirms the feeling that developed in Section 2.3, namely that relative entropy
should be thought of as a distance squared. Infinitesimally, this distance is precisely
that defined by the Fisher—Rao metric. Note that we can also regard the Fisher—Rao
metric as the Hessian matrix of the Shannon entropy:

1 1 N
——89;8(p) = Zafaijklnpk. (2.59)

8ij = ]

The fact that Shannon entropy is concave implies that the Fisher—-Rao metric is
positive definite. In Section 3.2 we will tell the story backwards and explain that
relative entropy exists precisely because there exists a ‘potential’ whose second
derivatives form the components of the Riemannian metric.

As we made clear in Section 1.4 there are many ways to introduce the concept
of distance on a given space, and we must ask in what sense, if any, our concept of
statistical distance is unique? There is a clear cut answer to this question. We will
consider maps between two probability distributions P and Q of theform Q = T P,
where T is a stochastic matrix. We define a monotone function as a function of pairs
of probability distributions such that

fTrP,TQ) < f(P,Q). (2.60)
Then there is a comfortable result:

Theorem 2.7 (Cencov’s) For multinomial distributions the Fisher—-Rao metric
is (up to normalization) the only metric whose geodesic distance is a monotone
function.

In this desirable sense the Fisher—Rao metric is unique. It is not hard to see that
the Fisher—Rao metric has the desired property. We must show that the length of an
arbitrary tangent vector dp’ at the point p’ decreases under a stochastic map, that
is to say that

(Tdp) (Tdp) N dpidp!
ITdpll” < lldpl? & Z ST NP e
(Tp) = P

To do so, we first prove that

(pow) < (o) (pro) o

Looking closely at this expression (take square roots!) we see that it is simply the
Cauchy—Schwarz inequality in disguise. Dividing through by the rightmost factor
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and summing over i we find — precisely because ) ; 7;; = 1, that is because the
map is stochastic — that Eq. (2.61) follows.!°

It often happens that one is interested in some submanifold of the probability
simplex, coordinatized by a set of coordinates 6. The Fisher—-Rao metric will
induce a metric on such submanifolds, given by

ap* ap’ 1 3ap'opp’
_ e, 2 -z or 2.63
8ab IXJ: 904 39bgl'/ 4212 p‘ ( )

As long as the submanifold — the statistical model, as it may be referred to here —
is finite dimensional, this equation is easily generalized to the case of continu-
ous probability distributions p(x), where the probability simplex itself is infinite
dimensional:

2 = 1 / dy 2aP%P (2.64)
4 Jo p
This metric is unaffected by reparametrizations of the sample space, that is to say
by changes to new coordinates x’(x) — and indeed obviously so since the derivatives
are with respect to 6.
The odd-looking notation using score vectors comes into its own here. Using
them we can rewrite Eq. (2.64) as

1 1
abh = — dx pl,l, = = (1) . 2.65
» 4/9 © pledy = ) (2.65)

The components of the metric tensor are the scalar products of the basis vectors in
tangent space. A general tangent vector is, in the language we now use, a random
variable with vanishing mean, and the scalar product of two arbitrary tangent vectors
becomes

1 1
Z(A(x)B(x)) = Z/ dx p(x)A(x)B(x) . (2.66)
Q

Except for the annoying factor of 1/4, this is the covariance of the two random
variables.

In order to get used to these things let us compute the Fisher—Rao metric on the
two-dimensional family of normal distributions, with the mean p and variance o
as coordinates. See Eq. (2.44). We have two score vectors

X—u (x—p?* 1
ly=0,Inpx;u, 0)= o2 la=3alnP(X;M,0)=T——-

o
(2.67)
10 We do not prove uniqueness here, butin Section 13.1 we show that the flat metric is not monotone. Unfortunately

Cencov’s  proof is difficult (Cencov, 1982); for an accessible proof of his key point see Campbell (1986). By
the way, Cencov will also appear in our book under the name of Chentsov.
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Taking the appropriate expectation values we find (after a short calculation) that
the statistical metric on the normal family is

1
ds? = m(du2 +2do?). (2.68)

This is a famous metric of constant negative curvature, known as the Poincaré
metric on the upper half plane. The p-axis itself consists of the pure states, and
points there are infinitely far away from any point in the interior of the upper half
plane; if the outcome is certain (so that the standard deviation o is zero) then it is
trivial to distinguish this distribution from any other one.

As our parting shot in this section, consider a statistical inference problem where
we want to find the values of the parameters 6¢ from samplings of some random
variable. A random variable £¢ is said to be an unbiased estimator of the parameter
0 if (£%) = 0. So, there are no systematic errors in the experiment. Still, there is
a limit on how well the unbiased estimators can perform their task:

Theorem 2.8 (Cramér-Rao’s) The variance of an unbiased estimator obeys
1
(6°6") — (£°)(E") = 28 (2.69)
The inequality means that the left-hand side minus the right-hand side is a positive
semi-definite matrix.'!

2.6 Classical ensembles

Let us define an ensemble as a set equipped with a probability measure. Choosing a
probability simplex as our set, we obtain an ensemble of probability distributions,
or states, characterized by a distribution P(p). The physical situation may be that
of a machine producing an unlimited set of independent and identically distributed
copies of a physical system each characterized by the same unknown probability
distribution p, in which case P(p) tells us something about the machine, or about
our knowledge of the machine.

We seem to be on the verge of breaking our promise not to commit ourselves
to any particular interpretation of probability, since we appear to imply that the
original probability p is an inherent property of the individual physical systems that
are being produced. We have not introduced any agent whose degree of reasonable
belief can reasonably be said to be quantified by p. Closer inspection reveals that
the subjective interpretation of probability can be saved. To do so one observes that
there is really only one thing that we are ignorant of, namely the full sequence of

1 We have left much unsaid here. Amari (1985) contains a highly recommended book length discussion of
statistical geometry. We also recommend the review by Ingarden (1981).
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observations. But beyond that we make use of some prior assumptions that specify
exactly what we mean by ‘independent and identically distributed copies’. Then
de Finetti’s theorem tells us that this situation can be treated as if it was described
by the distribution P(p) on the probability simplex. This is a subtle point, and we
refer to the literature for a precise account of our ignorance.'?

We have now explained one setting in which a distribution P(p) arises. Others
can be imagined. From the subjective point of view, the prior should summarize
whatever information we have before the data have been analysed, and it should be
systematically updated as the observations are coming in. The prior should obey
one important requirement: it should lead to manageable calculations in practice.
What we want to do here is much simpler. We ask what we should expect to observe
if the state of a physical system is picked ‘at random’. A random state is a state
picked from the probability simplex according to some measure, and that measure
is now to be chosen in a way that captures our idea of randomness. Hence we ask
for the uniform prior corresponding to complete ignorance. But we are using an
alarmingly vague language. What is complete ignorance?

Presumably, the uniform prior is such that the system is equally likely to be found
anywhere on the simplex, but there are at least two natural candidates for what this
should mean. We could say that the simplex is flat. Then we use the measure

N
dPy = (N —1)!$§ (Zp,- - 1) dpidp,...dpy . (2.70)
i=1
(At the cost of a slight inconsistency, we have lowered the index on p; again. We find
this more congenial!) This probability measure is correctly normalized, because we
get one when we integrate over the positive cone:

1 1—py 1—pi——pn-2
f dPA = (N — l)'/ dp1 / dp2 .. f de,1
RY 0 0 0
1 1 1
= / dpl/ dp2 .. / de,1 =1. (271)
0 0 0

The volume of the simplex is 1/(N — 1)! times the volume of the parallelepiped
spanned by its edges.

But if we use the Fisher—Rao rather than the flat metric, then the simplex is round
rather than flat, and the appropriate density to integrate is proportional to the square
root of the determinant of the Fisher—Rao metric. The measure becomes

rég) (& dpid d
5 1dpy...dpy
AP = —5 8 Y pi—1) ————. (2.72)
0 im1 N PiP2--- PN
12 For an engaging account both backwards (with references to earlier literature) and forwards (to quantum

information theory) see Caves, Fuchs and Schack (2001b). But note that from now on we will use whatever
language we find convenient, rather than get involved in issues like this.
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To check the normalization we first change coordinates to X = /Di, and then use
the fact that we already know the volume of a round hyperoctant — namely 1/2"
times the volume of S¥~!, given in Eq. (1.17). This choice of prior is known as
Jeffreys’ prior and is generally agreed to be the best choice. Jeffreys arrived at his
prior through the observation that for continuous sample spaces the corresponding
expression has the desirable property of being invariant under reparametrizations of
the sample space. Note the implication: somehow Jeffreys is claiming that ‘most’
of the probabilities that we encounter in the world around us are likely to be close
to one or zero.

Further choices are possible (and are sometimes made in mathematical statistics).
Thus we have the Dirichlet distribution

N
dPy o § (Z pi — 1) (pip2...pn) " "dpidps...dpy (2.73)
i=l1

which includes the flat and round measures for s = 1 and s = 1/2, respectively. To
find a simple way to generate probability vectors according to these distributions
study Problem 2.5.

2.7 Generalized entropies

The Shannon entropy is arguably the most interesting function of p that one can
find. But in many situations the only property that one really requires is that
the function be Schur concave, that is consistent with the majorization order.
For this reason we are willing to call any Schur concave function a generalized
entropy. Similarly a generalized relative entropy must be monotone under stochas-
tic maps. Equation (2.10), when adjusted with a sign, provides us with a liberal
supply of Schur concave functions. To obtain a supply of generalized monotone
entropies, let g be a convex function defined on (0, co) such that g(1) = 0. Then the
expression

Se(PI1Q) =" pi g(ai/pi) (2.74)

is monotone under stochastic maps. The choice g(t) = —Int gives the Kullback—
Leibler relative entropy that we have already studied. All of these generalized
relative entropies are consistent with the Fisher—Rao metric, in the sense that

dpi\ _ §"(1) \~ dp:idp;
Sg(P||P+dP)=Zpig(1+ p,-)NTZ o (2.75)

As long as we stay with classical probability theory the Fisher—-Rao geometry itself
remains unique.
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We will study generalized entropies in some detail. We define the moments of a
probability distribution as

N
L = pl. (2.76)
i=1
They are Schur concave for g < 1, and Schur convex for g > 1. The set of moments
fqa(p)forg =2, ..., N determines the vector p up to a permutation of its compo-
nents, just as knowing the traces, TrA*, k = 1,..., N, of a Hermitian matrix A one
can find its spectrum. The analogy is exact: in Chapter 12 we will think of classical
probability distributions as diagonal matrices, and face the problem of generalizing
the definitions of the present chapter to general Hermitian matrices. Instead of the
Shannon entropy, we will have the von Neumann entropy that one can calculate
from the spectrum of the matrix. But it is much easier to raise a matrix A to some
integer power, than to diagonalize it. Therefore it is easier to compute the moments
than to compute the von Neumann entropy.

When g = 2 the moment f; is also known as the purity (because it vanishes
if and only if the state is pure) or as the index of coincidence (because it gives
the probability of getting identical outcomes from two independent and equally
distributed events). The linear entropy is defined as S; = 1 — f, and the partici-
pation number as R = 1/f, (it varies between zero and N and is interpreted as the
‘effective number of events’ that contribute to it).

In order to bring the moments closer to the Shannon entropy we can define the

Havrda—Charvdt entropies 3 as

N
SHC(P) = ﬁ[Zp? -1]. 2.77)

i=1
We now get the Shannon entropy in the limit ¢ — 1. These entropies are Schur

concave but not recursive. They are not additive for independent random variables;
when Pl'é = p’i pé we have

SPC(P) = SJTC(PY) + SJC(P) + (1 = ST C(P)ST(Py) . (2.78)

To ensure additivity a logarithm can be used in the definition. A one parameter

family of Schur concave and additive entropies are the Rényi entropies '*
1 N
Si(P) = 1 h{Z p?] . (2.79)
-4 H=

13 They were first studied by at Havrda and Charvit (1967); in statistical physics they go under the name of Tsallis
entropies. For a review of their uses, see Tsallis (2002) or Kapur (1994).

14 Rényi (1961) introduced them as examples of functions that are additive, and obey all of Khinchin’s axioms
for an entropy except the recursion property.
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Table 2.1. Properties of generalized entropies

Entropy Shannon Rényi Havrda—Charvit

Formula - Z;N=1 pilnp; ﬁ In (Z,N=1 plq) ﬁ <21N=1 p;’ — 1)
Recursivity yes no no
Additivity yes yes no
Concavity yes forO0<g <1 forg > 0

We assume that ¢ > 0. An added advantage of the Rényi entropies is that they are
normalized in a uniform way, in the sense that they vanish for pure states and attain
their maximal value In N at the uniform distribution.

We summarize some properties of generalized entropies in Table 2.1. There we
see a possible disadvantage of the Rényi entropies for ¢ > 1, which is that we
cannot guarantee that they are concave in the ordinary sense. In fact concavity is
lost for ¢ > g, > 1, where ¢, is N dependent.'

Special cases of the Rényi entropies include g = 0, which is the logarithm of
the number of non-zero components of the distribution and is known as the Hartley
entropy.'® When ¢ — 1, we have the Shannon entropy (sometimes denoted S)),
and when ¢ — oo the Chebyshev entropy Soo = — In ppax, a function of the largest
component ppn.. Figure 2.14 shows some iso-entropy curves in the N = 3 prob-
ability simplex; equivalently we see curves of constant f,(p). The special cases
q = 1/2and g = 2 are of interest because their iso-entropy curves form circles, with
respect to the Bhattacharyya and Euclidean distances, respectively. For g = 20 we
are already rather close to the limiting case ¢ — oo, for which we would see the
intersection of the simplex with a cube centred at the origin in the space where
the vector p lives — compare the discussion of /,-norms in Chapter 1. For ¢ = 1/5
the maximum is already rather flat. This resembles the limiting case Sy, for which
the entropy reflects the number of events which may occur: it vanishes at the corners
of the triangle, is equal to In 2 at its sides and equals In 3 for any point inside it.

For any given probability vector P the Rényi entropy is a continuous, non-
increasing function of its parameter,

S(P) < S,(P) forany >gq. (2.80)

To show this, introduce the auxiliary probability vector r; = p{/>", p!. Observe
that the derivative 95, /dq may be written as —S(P[|R)/(1 — ¢)*. Since the relative

15 Peter Harremoés has informed us of the bound g« < 14+1In(4)/In(N —1).
16 The idea of measuring information regardless of its contents originated with Hartley (1928).
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(001)

(100) (010) (100) (010) (100) (010)

Figure 2.14. The Rényi entropy is constant along the curves plotted for (a) ¢ =
1/5;()g =1/2;(c) g = 1;(d) ¢ = 2;(e) ¢ = 5 and (f) ¢ = 20.

entropy S(P||R) is non—negative, the Rényi entropy S, is a non-increasing function
of g. In Figure 2.7(b) we show how this fact can be used to bound the Shannon
entropy 5.

In a similar way one proves (Beck and Schlogl, 1993) analogous inequalities
valid for ¢ > 0:

dfg=1:.1,, < [(1—s$,] = 0 (2.81)
dg | ¢ '] T dg? 2l =7 '
The first inequality reflects the fact that the /,-norm is a non—increasing function.
It allows one to obtain useful bounds on Rényi entropies,

qg—1 s —

1
—8,(P) < Ss(P) for any ¢q <s. (2.82)
q

N

Due to the second inequality the function (1 — g)S, is convex. However, this does
not imply that the Rényi entropy itself is a convex function of ¢;'7 it is non-convex
for probability vectors P with one element dominating.

The Rényi entropies are correlated. For N = 3 we can see this if we superpose
the various panels of Figure 2.14. Consider the superposition of the iso-entropy
curves for ¢ = 1 and 5. Compared with the circle for ¢ = 2 the isoentropy curves
for ¢ <2 and g > 2 are deformed (with a three-fold symmetry) in the opposite
way: together they form a kind of David’s star with rounded corners. Thus if we

17" As erroneously claimed in Zyczkowski (2003).
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Figure 2.15. Rényi entropies S, for N = 20 probability vectors: (a) convex
function for a power-law distribution, p; ~ j~2; (b) non-convex function for
P =543,3,....3).

move along a circle of constant S, in the direction of decreasing S5 the Shannon
entropy S increases, and conversely.

The problem, what values the entropy S, may admit, provided §; is given, has
been solved by Harremoés and Topsge (2001). They proved a simple but not very
sharp upper bound on S; by S,, valid for any distribution P € R¥

$(P) < Si(P) <InN +1/N — exp(—S,(P)) . (2.83)

The lower bound provided by a special case of Eq. (2.80) is not tight. Optimal
bounds are obtained!® by studying both entropies along families of interpolating
probability distributions

Qan@=aQu+ 1 —-a)Qq with ae[0,1]. (2.84)

For instance, the upper bound for S, as a function of S, with ¢ > g can be derived
from the distribution Q(; y)(a). For any value of a we compute S;, invert this relation
to obtain a(S,) and arrive at the desired bound by plotting S,[a(S;)]. In this way we
may bound the Shannon entropy by a function of S5,
SI(P)§(1—N)1 —a. l—a 1+4a(N - 1)1nl+a(N— 1)
N N N N
where a = [(N exp[—S2(P)]/(N — 1)]"/2. This bound is shown in Figure 2.16(c)
and (d) for N = 3 and N = 5, respectively. Interestingly, the set My of possible
distributions plotted in the plane S, versus S, is not convex. All Rényi entropies agree
at the distributions Q), k = 1, ..., N. These points located at the diagonal, S, =
S;, belong to the lower bound. It consists of N — 1 arcs derived from interpolating
distributions Q x+1) with k =1,..., N — 1. As shown Figure 2.16 the set My

. (2.85)

18 This result (Harremogs and Topsge, 2001) was later generalized (Berry and Sanders, 2003) for other entropy
functions.
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0 0.5 1 "8 0 1 o

Figure 2.16. The set My of all possible discrete distributionsfor N = 3and N = 5
in the Rényi entropies plane S, and S;: S5 and S| (a and b); S; and S (c and
d), and S; and S (e and f). Thin dotted lines in each panel stand for the lower
bounds (Eq. (2.80)), dashed-dotted lines in panels (a) and (b) represent bounds
between Sy and S;, while bold dotted curves in panel (c) and (d) are the upper
bounds (Eq. (2.83)).

resembles a medusa'® with N arms. Its actual width and shape depends on the
parameters ¢ and g (Zyczkowski, 2003).

Problems

Problem 2.1 The difference Sy, = S| — S5, called structural entropy, is useful to
characterize the non—homogeneity of a probability vector (Pipek and Varga, 1992).
Plot Sy, for N = 3, and find its maximal value.

Problem 2.2 Let X, ¥ and Z be positive vectors with components in decreasing
order and such that 7 < y. Prove that X -7 < X - y.

19 Polish or Swedish readers will know that a medusa is a (kind of) jellyfish.
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Problem 2.3 (a) Show that any bistochastic matrix B written as a product of two
T -transforms is orthostochastic. (b) Show that the product of (N — 1) T -transforms
of size N acting in different subspaces forms an orthostochastic matrix.

Problem 2.4 Prove the Hardy—Littlewood—Pdlya lemma.

Problem 2.5 Take N independent real (complex) random numbers z; generated
according to the real (complex) normal distribution. Define normalized probability
vector P, where p; = |z;|*/ ZlNzl |zi|> withi = 1, ..., N. What is its distribution
on the probability simplex Ay_;?

Problem 2.6 To see an analogy between the Shannon and the Havrda—Charvat
entropies prove that (Abe, 1997)

o= =Y pnn=-[(Cn)] ., e
siem = (S 1) = [p(Sa)] L. e

where the ‘multiplicative’ Jackson g-derivative reads

D, (f) = L9V =TD e tim Dy (fey = L (288
gx —x g—1 dx

Problem 2.7 For what values of ¢ are the Rényi entropies concave when N = 2?



3
Much ado about spheres

He who undertakes to deal with questions of natural sciences without the help of
geometry is attempting the infeasible.
Galileo Galilei

In this chapter we will study spheres, mostly two- and three-dimensional spheres,
for two reasons: because spheres are important, and because they serve as a vehicle
for introducing many geometric concepts (such as symplectic, complex and Kéhler
spaces, fibre bundles and group manifolds) that we will need later on. It may look
like a long detour, but it leads into the heart of quantum mechanics.

3.1 Spheres

We expect that the reader knows how to define a round n-dimensional sphere
through an embedding in a flat (N = n + 1)-dimensional space. Using Cartesian
coordinates, the n-sphere S” is the surface

n
X-X=) X'X' =XV +X'Y+ - +&x"YV=1, (3.1)
1=0
where we gave a certain standard size (unit radius) to our sphere and also introduced
the standard scalar product in R". The Cartesian coordinates (X°, X', ..., X") =
(X9 Xy = X' wherel <i <nand0 < I < n, are known as embedding coordi-
nates. They are not intrinsic to the sphere but useful anyway.

Our first task is to introduce a few more intrinsic coordinate systems on S”, in
addition to the polar angles used in Section 1.2. Eventually this should lead to the
insight that coordinates are not important, only the underlying space itself counts.
We will use a set of coordinate systems that are obtained by projecting the sphere
from a point on the axis between the north and south poles to a plane parallel to the
equatorial plane. Our first choice is perpendicular projection to the equatorial plane,

62
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Figure 3.1. Three coordinate system that we use. To the left, orthographic pro-
jection from infinity of the northern hemisphere into the equatorial plane. In the
middle, stereographic projection from the south pole of the entire sphere (except
the south pole itself) onto the equatorial plane. To the right, gnomonic projection
from the centre of the northern hemisphere onto the tangent plane at the north pole.

known as orthographic projection among mapmakers. The point of projection is
infinitely far away. We set

n
X'=x X'=Vi-r2, =) xx<1. (3.2)
i=1

This coordinate patch covers the region where X° > 1; we need several coordinate
patches of this kind to cover the entire sphere. The metric when expressed in these
coordinates is

! S 1
ds® = dx°dx’ 4+ ) "dx'dx’ = . [(1—r?)dx - dx 4 (x-dx)’] . (3.3)

2
i1 r

where

n n
x-de=) x'dx' and dx-dr=) deidy’. (3.4)
i=1 i=1
An attractive feature of this coordinate system is that, as a short calculation shows,
the measure defined by the metric becomes simply /g = 1/X°.

An alternative choice of intrinsic coordinates — perhaps the most useful one — is
given by stereographic projection from the south pole to the equatorial plane, so
that

x! 1 : 2x'

X = X0 = .
Xt 1+Xx° < 1+4r2 1+r2

(3.5)
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A minor calculation shows that the metric now becomes manifestly confor-
mally flat, that is to say that it is given by a conformal factor 2 times a flat
metric:
2 2 i 4
ds® = Q%;;dx'dx) = ——= dx -dx . (3.6)
(1+r2)?

This coordinate patch covers the region X° > —1, that is to say the entire sphere
except the south pole itself. To cover the entire sphere we need at least one more
coordinate patch, say the one that is obtained by stereographic projection from
the north pole. In the particular case of S one may collect the two stereographic
coordinates into one complex coordinate z; the relation between this coordinate
and the familiar polar angles is

0 .
z=x'+ix? =tan Ee“” . (3.7

We will use this formula quite frequently.

A third choice is gnomonic or central projection. (The reader may want to know
that the gnomon being referred to is the vertical rod on a primitive sundial.) We
now project one half of the sphere from its centre to the tangent plane touching the
north pole. In equations

XLy X x° ! (3.8)
X = —= = — = —. .
X0 Vi+r? 1+72
This leads to the metric
1
2 _ 2 2

One hemisphere only is covered by gnomonic coordinates. (The formalism pre-
sented in Section 1.4 can be used to transform between the three coordinate systems
that we presented, but it was easier to derive each from scratch.)

All coordinate systems have their special advantages. Let us sing the praise of
stereographic coordinates right away. The topology of coordinate space is R”, and
when stereographic coordinates are used the sphere has only one further point not
covered by these coordinates, so the topology of S” is the topology of R" with
one extra point attached ‘at infinity’. The conformal factor ensures that the round
metric is smooth at the added point, so that ‘infinity’ in coordinate space lies at finite
distance on the sphere. One advantage of these coordinates is that all angles come
out correctly if we draw a picture in a flat coordinate space, although distances far
from the origin are badly distorted. We say that the map between the sphere and the
coordinate space is conformal, that is it preserves angles. The stereographic picture
makes it easy to visualize S*, which is conformally mapped to ordinary flat space
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Figure 3.2. A circle is the sum of two intervals, a 2-sphere is the sum of two discs
glued together along the boundaries, and the 3-sphere is the sum of two balls again
with the boundaries identified. In the latter case the gluing cannot be done in three
dimensions. See Appendix 3 for a different picture in the same vein.

in such a way that the north pole is at the origin, the equator is the unit sphere, and
the south pole is at infinity. With a little training one can get used to this picture,
and learn to disregard the way in which it distorts distances. If the reader prefers
a compact picture of the 3-sphere this is easily provided: use the stereographic
projection from the south pole to draw a picture of the northern hemisphere only.
This gives the picture of a solid ball whose surface is the equator of the 3-sphere.
Then project from the north pole to get a picture of the southern hemisphere. The
net result is a picture consisting of two solid balls whose surfaces must be mentally
identified with each other.

When we encounter a new space, we first ask what symmetries it has, and what
its geodesics are. Here the embedding coordinates are very useful. An infinitesimal
isometry (a transformation that preserves distances) is described by a Killing vector
field pointing in the direction that points are transformed. We ask for the flow lines of
the isometry. A sphere has exactly n(n + 1)/2 linearly independent Killing vectors
at each point, namely

Jig=X10; —X;0r . (3.10)

(Here we used the trick from Section 1.4 to represent a tangent vector as a differential
operator.) On the 2-sphere the flow lines are always circles at constant distance from
a pair of antipodal fixed points where the flow vanishes. The situation gets more
interesting on the 3-sphere, as we will see.

A geodesic is the shortest curve between any pair of nearby points on itself.
On the sphere a geodesic is a great circle, that is the intersection of the sphere
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Figure 3.3. Killing flows and geodesics on the 2-sphere.

with a two-dimensional plane through the origin in the embedding space. Such
a curve is ‘obviously’ as straight as it can be, given that it must be confined to
the sphere. (Incidentally this means that gnomonic coordinates are useful, because
the geodesics will appear as straight lines in coordinate space.) The geodesics can
also be obtained as the solutions of the Euler—Lagrange equations coming from the
constrained Lagrangian

1. .
L=X X+AX-X-1), (3.11)

where A is a Lagrange multiplier and the overdot denotes differentiation with
respect to the affine parameter along the curve. We rescale the affine parameter so
that X - X = 1, and then the general solution for a geodesic takes the form

X'(ty=klcost+1'sint, k-k=I1-1=1, k-1=0. (3.12)

The vectors k! and I’ span a plane through the origin in R¥. Since X/(0) = k' and
X'(0) =1, the conditions on these vectors say that we start on the sphere, with
unit velocity, in a direction tangent to the sphere. The entire curve is determined by
these data.

Let us now choose two points along the geodesic, with different values of the
affine parameter t, and compute

X(t1) - X(n) =cos(t1 — 1) . (3.13)

With the normalization of the affine parameter that we are using |t; — ;] is precisely
the length of the curve between the two points, so we get the useful formula

cosd = X(1y) - X(1o) , (3.14)

where d is the geodesic distance between the two points. It is equal to the angle
between the unit vectors X(t;) and X’(t;) — and we encountered this formula
before in Eq. (2.56).
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Figure 3.4. A paradox? On the left we parallel transport a vector around the edge
of the flat probability simplex. On the right the same simplex is regarded as a round
octant, and the obvious (Levi—Civita) notion of parallel transport gives a different
result. It is the same space but two different affine connections!

3.2 Parallel transport and statistical geometry

Let us focus on the positive octant (or hyperoctant) of the sphere. In the previous
chapter its points were shown to be in one-to-one correspondence to the set of
probability distributions over a finite sample space, and this set was sometimes
thought of as round (equipped with the Fisher metric) and sometimes as flat (with
convex mixtures represented as straight lines). How can we reconcile these two
ways of looking at the octant? To answer this question we will play a little formal
game with connections and curvatures.'

Curvature is not a very immediate property of a space. It has to do with how
one can compare vectors sitting at different points with each other, and we must
begin with a definite prescription for how to parallel transport vectors from one
point to another. For this we require a connection and a covariant derivative, such
as the Levi—Civita connection that is defined (using the metric) in Appendix A1.2.
Then we can transport a vector V' along any given curve with tangent vector X'
by solving the ordinary differential equation X/V;V' =0 along the curve. But
there is no guarantee that the vector will return to itself if it is transported around
a closed curve. Indeed it will not if the curvature tensor is non-zero. It must also
be noted that the prescription for parallel transport can be changed by changing the
connection. Assume that in addition to the metric tensor g;; we are given a totally
symmetric skewness tensor Tjj;. Then we can construct the one-parameter family

! In this section we assume that the reader knows some Riemannian geometry. Readers who have forgotten this
can refresh their memory with Appendix A1.2. Readers who never knew about it may consult, say, Murray and
Rice (1993) or Schrodinger (1950) — or take comfort in the fact that Riemannian geometry is used in only a few
sections of our book.
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of affine connections

(@) o
Pijie = Tiji + 5 Tijic - (3.15)
Here T';j; is the ordinary Levi—Civita connection (with one index lowered using
the metric). Since T;j; transforms like a tensor all a-connections transform as
connections should. The covariant derivative and the curvature tensor will be given
by Egs. (Al.5) and (A1.10), respectively, but with the Levi—Civita connection
replaced by the new «-connection. We can also define «-geodesics, using Eq. (A1.8)
but with the new connection. This is affine differential geometry; a subject that at first
appears somewhat odd, because there are ‘straight lines’ (geodesics) and distances
along them (given by the affine parameter of the geodesics), but these distances
do not fit together in the way they would do if they were consistent with a metric
tensor.”

In statistical geometry the metric tensor has a potential, that is to say that there
is a convex function ® such that the Fisher—Rao metric is

?d

gij(p) = W = 9;0;P(p) . (3.16)
In Eq. (2.59) this function is given as minus the Shannon entropy, but for the moment
we want to play a game and keep things general. Actually the definition is rather
strange from the point of view of differential geometry, because it uses ordinary
rather than covariant derivatives. The equation will therefore be valid only with
respect to some preferred affine coordinates that we call p here, anticipating their
meaning; we use an affine connection defined by the requirement that it vanishes
in this special coordinate system. But if we have done one strange thing we can do
another. Therefore we can define a totally symmetric third rank tensor using the
same preferred affine coordinate system, namely

Tiji(p) = 0;0;0:P(p) - (3.17)

Now we can start the game.
Using the definitions in Appendix A1.2 it is easy to see that

1
Cijr = Eaiajakcb(p) . (3.18)

But we also have an «-connection, namely

(@) 1+«

2 The statistical geometry of a-connections is due to Cencov (1982) and Amari (1985).
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A small calculation is now enough to relate the a-curvature to the usual one:

(o) 5
Rijiw = (1 —a”)Rijis . (3.20)

Equation (3.19) says that the @-connection vanishes when o« = —1, so that the space
is (—1)-flat. Our preferred coordinate system is preferred in the sense that a line
that looks straight in this coordinate system is indeed a geodesic with respect to
the (—1)-connection. The surprise is that Eq. (3.20) shows that the space is also
(+1)-flat, even though this is not obvious just by looking at the (4-1)-connection in
this coordinate system.

We therefore start looking for a coordinate system in which the (41)-connection
vanishes. We try the functions

0P

= 3.21
=y (3.21)

Then we define a new function W(n) through a Legendre transformation, a trick
familiar from thermodynamics:

W@+ O(p)— Y pln' =0. (3.22)

Although we express the new function as a function of its ‘natural’ coordinates ',
it is first and foremost a function of the points in our space. By definition

o LY

l

(3.23)

Our coordinate transformation is an honest one in the sense that it can be inverted
to give the functions p’ = pi(n). Now let us see what the tensors g; ; and T;jx look
like in the new coordinate system. An exercise in the use of the chain rule shows
that

apk ap! ap/ 92w
&) =5 7 50 gu(p(m) o = amian W () (3.24)

For T a slightly more involved exercise shows that
Tij(n) = —0;0;0W(n) . (3.25)

To show this, first derive the matrix equation

Zgik(n)gkj(p) = 4. (3.26)
k=1
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+D
The signin Eq. (3.25)is crucial since itimplies that I" ;;x = 0;in the new coordinate
system the space is indeed manifestly (+1)-flat.
We now have two different notions of affine straight lines. Using the (—1)-
connection they are

(= . . . .
PPV ip=p=0 = pO=py+ip. (3.27)

Using the (4-1)-connection, and working in the coordinate system that comes nat-
urally with it, we get instead

oy A . ,
PWVnt=i=0 = n®=n+t. (3.28)

We will see presently what this means.

There is a final manoeuvre that we can do. We go back to Eq. (3.22), look at it,
and realize that it can be modified so that it defines a function of pairs of points P
and P’ on our space, labelled by the coordinates p and n’, respectively. This is the
function

S(PIIP'y = ®(p(P) + ¥ (n'(P) = Y p'(P)n"(P).  (3.29)

It vanishes when the two points coincide, and since this is an extremum the function
is always positive. It is an asymmetric function of its arguments. To lowest non-
trivial order the asymmetry is given by the skewness tensor; indeed

S(pllp +dp) =Y gjdp'dp’ =Y Tiwdp'dp/dp* +---  (3.30)
i,j i,j.k

S(p+dpllp) = gydp'dp! + > Tiudp'dp/dp* +--- (331
i,j i,j,k

(We are of course entitled to use the same coordinates for both arguments, as we
just did, provided we do the appropriate coordinate transformations.)

To bring life to this construction it remains to seed it with some interesting
function ® and see what interpretation we can give to the objects that come with
it. We already have one interesting choice, namely minus the Shannon entropy.
First we play the game on the positive orthant RY, that is to say we use the index
i ranging from 1 to N, and assume that all the p' > 0 but leave them otherwise
unconstrained. Our input is

N
o(p) = Y p'lnp'. (3.32)
i=1
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Our output becomes

d d . A
ds2_2 P ” de dxi s 4pl = ()2, (3.33)
i=1
n=Inp +1, (3.34)
N

W) = Z D, (3.35)
S(p||p>—Zp ln +Z(p” -p) (3.36)

i=1
(+1)-geodesic : p"(t) =p (O)e’“n” (D=l 'O (3.37)

In Eq. (3.33) the coordinate transformation p’ = 4(x*)? shows that the Fisher—Rao
metric on Rﬁ is flat. To describe the situation on the probability simplex we impose
the constraint

N N
Yop=1 & Z = (3.38)
i=1 i=1
Taking this into account we see that the Fisher—-Rao metric on the probability
simplex is the metric on the positive octant of a round sphere with radius 2. For
maximum elegance, we have chosen a different normalization of the metric, com-
pared with what we used in Section 2.5. The other entries in the list have some
definite statistical meaning, too. We are familiar with the relative entropy S(p||p’)
from Section 2.3. The geodesics defined by the (—1)-connection, that is to say the
lines that look straight in our original coordinate system, are convex mixtures of
probability distributions. The (—1)-connection is therefore known as the mixture
connection and its geodesics are (one-dimensional) mixture families. The space
is flat with respect to the mixture connection, but (in a different way) also with
respect to the (+1)-connection. The coordinates in which this connection vanishes
are the n'. The (+1)-geodesics, that is the lines that look straight when we use
the coordinates ', are known as (one-dimensional) exponential families and the
(+1)-connection as the exponential connection. Exponential families are impor-
tant in the theory of statistical inference; it is particularly easy to pin down (using
samplings) precisely where you are along a given curve in the space of probabil-
ity distributions, if that curve is an exponential family. We notice one interesting
thing: it looks reasonable to define the mean value of p’(0) and p’(1) as p'(1/2),
where the parameter is the affine parameter along a geodesic. If our geodesic is
a mixture family, this is the arithmetic mean, while it will be the geometric mean

p'(1/2) = /p(0)pi(1) if the geodesic is an exponential family.
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Figure 3.5. Here we show three different kinds of geodesics — mixture (m), expo-
nential (e) and metric (0) — on the simplex; since the mixture coordinates p' are
used only the mixture geodesic appears straight in the picture.

Since we have shown that there are three different kinds of straight lines on the
probability simplex — mixture families, exponential families, and geodesics with
respect to the round metric — we should also show what they look like. Figure 3.5
is intended to make this clear. The probability simplex is complete with respect to
the exponential connection, meaning that the affine parameter along the exponen-
tial geodesics goes from minus to plus infinity — whereas the mixture and metric
geodesics cross its boundary at some finite value of the affine parameter.

Our story is almost over. The main point is that a number of very relevant
concepts — Shannon entropy, Fisher—Rao metric, mixture families, exponential
families and the relative entropy — have appeared in natural succession. But the
story can be told in different ways. Every statistical manifold has a totally symmet-
ric skewness tensor built in. Indeed, following Section 2.4, we can use the score
vectors /; and define, using expectation values,

gy ={Ll;) and T = (Ll . (3.39)

In particular, a skewness tensor is naturally available on the space of normal distri-
butions. This space turns out to be (£1)-flat, although the coordinates that make this
property manifest are not those used in Section 2.5. Whenever a totally symmetric
tensor is used to define a family of «-connections one can show that

. (@) . L ()
X o (gi; Y 27) = gij X"V Y Z) + g, YIXE V27 (3.40)

What this equation says is that the scalar product between two vectors remains
constant if the vectors are parallel transported using dual connections (so that their
covariant derivatives along the curve with tangent vector X’ vanish by definition).
The 0-connection, that is the Levi—Civita connection, is self dual in the sense that
the scalar product is preserved if both of them are parallel transported using the
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Levi—Civita connection. It is also not difficult to show that if the «-connection is
flat for any value of « then the equation

(@) (=)

Rijuw = Riju (3.41)
will hold for all values of «. Furthermore it is possible to show that if the space
is «-flat then it will be true, in that preferred coordinate system for which the
a-connection vanishes, that there exists a potential for the metric in the sense of
Eq. (3.96). The point is that Eq. (3.40) then implies that

(—a) (=)
r jki = 8kgij and r [jkli = 0 = 8J-gk,~ — E)kgj,- =0. (342)

The existence of a potential for the metric follows:
8ij = 3,‘Vj and 8lij1 = 0 = Vj = 3j¢ . (343)

At the same time it is fair to warn the reader that if a space is compact, it is often
impossible to make it globally o-flat (Ay and Tuschmann, 2002).

3.3 Complex, Hermitian and Kéhler manifolds

‘We now return to the study of spheres in the global manner and forget about statistics
for the time being. It turns out to matter a lot whether the dimension of the sphere
is even or odd. Let us study the even-dimensional case n = 2m, and decompose the
intrinsic coordinates according to

xh= (X" (3.44)

where the range of a goes from 1 to m. Then we can, if we wish, introduce the
complex coordinates

7% = x4 ix"te 7% = x* —ix"te (3.45)

We delibarately use two kinds of indices here (barred and unbarred) because we
will never contract indices of different kinds. The new coordinates come in pairs
connected by complex conjugation,

) =7°. (3.46)

This equation ensures that the original coordinates take real values. Only the
z% count as coordinates and once they are given the 7% are fully determined. If
we choose stereographic coordinates to start with, we find that the round metric
becomes

ds? = gupdzdz® + 2g,5dz°dz" + g;dz%dz” = 8,5dz%dz" . (3.47)

4
(14722
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Note that we do not make the manifold complex. We would obtain the complexified
sphere by allowing the coordinates x’ to take complex values, in which case the
real dimension would be multiplied by two and we would no longer have a real
sphere. What we actually did may seem like a cheap trick in comparison, but for
the 2-sphere it is anything but cheap, as we will see.

To see if the introduction of complex coordinates is more than a trick we must
study what happens when we try to cover the entire space with overlapping coordi-
nate patches. We choose stereographic coordinates and add a patch that is obtained
by projection from the north pole; we do it in this way:

X4 _ Xm+u

& mta : (3.48)

YT Ix0 1— X0

Now the whole sphere is covered by two coordinate systems. Introducing complex
coordinates in both patches, we observe that

X — ixm+a Z(Xa _ ixm+a) Za
— = == (3.49)
1-X 1+r>—1+4r r

Z/a — x/a + ix/m+a —

These are called the transition functions between the two coordinate systems. In
the special case of 8> we can conclude that

7(2) = ! . (3.50)
Z

Remarkably, the transition functions between the two patches covering the 2-sphere
are holomorphic (that is complex analytic) functions of the complex coordinates.
In higher dimensions this simple manoeuvre fails.

There is another peculiar thing that happens for 82, but not in higher dimensions.
Look closely at the metric:

-2 2 <1 _ kP ) =23.0:In(1+zP). (3.51)
TP T TP T T RR) T S
Again a ‘potential’ exists for the metric of the 2-sphere. Although superficially
similar to Eq. (3.16) there is a difference — Eq. (3.16) is true in very special co-
ordinate systems only, while Eq. (3.51) is true in every complex coordinate sys-
tem connected to the original one with holomorphic coordinate transformations of
the form z' = z/(z). Complex spaces for which all this is true are called Kdhler

manifolds.

The time has come to formalize things. A differentiable manifold is a space which
can be covered by coordinate patches in such a way that the transition functions are
differentiable. A complex manifold is a space which can be covered by coordinate
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patches in such a way that the coordinates are complex and the transition functions
are holomorphic.?

Any even-dimensional manifold can be covered by complex coordinates in such
a way that, when the coordinate patches overlap,

7=7z2, 7=7@32. (3.52)

The manifold is complex if and only if it can be covered by coordinate patches such
that

7=7@, 7=7@. (3.53)

Since we are using complex coordinates to describe a real manifold a point in the
manifold is specified by the n independent coordinates z* — we always require that

7% = (9" . (3.54)

A complex manifold is therefore a real manifold that can be described in a par-
ticular way. Naturally one could introduce coordinate systems whose transition
functions are non-holomorphic, but the idea is to restrict oneself to holomorphic
coordinate transformations (just as, on a flat space, it is convenient to restrict oneself
to Cartesian coordinate systems).

Complex manifolds have some rather peculiar properties caused ultimately by
the ‘rigidity properties’ of analytic functions. By no means all even-dimensional
manifolds are complex, and for those that are there may be several inequivalent
ways to turn them into complex manifolds. Examples of complex manifolds are
C" = R?" and all orientable two-dimensional spaces, including S? as we have seen.
An example of a manifold that is not complex is S*. It may be difficult to decide
whether a given manifold is complex or not; an example of a manifold for which
this question is open is the 6-sphere.*

An example of a manifold that can be turned into a complex manifold in several
inequivalent ways is the forus T?> = C/T". Here I is some discrete isometry group
generated by two (commuting) translations, and T? will inherit the property of
being a complex manifold from the complex plane C. A better way to say this is
that a flat torus is made from a flat parallelogram by gluing opposite sides together.
It means that there is one flat torus for every choice of a pair of vectors. The set of all
possible tori can be parametrized by the relative length and the angle between the
vectors, and by the total area. Since holomorphic transformations cannot change
relative lengths or angles this means that there is a two parameter family of tori

3 A standard reference on complex manifolds is Chern (1979).
4 As we go to press, a rumour is afoot that S.-S. Chern proved, just before his untimely death at the age of 93,
that S® does not admit a complex structure.
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.

Figure 3.6. A flat torus is a parallelogram with sides identified; it is also defined
by a pair of vectors, or by the lattice of points that can be reached by translations
with these two vectors.

that are inequivalent as complex manifolds. In other words the ‘shape space’ of flat
tori (technically known as Teichmiiller space) is two dimensional. Note though that
just because two parallelograms look different we cannot conclude right away that
they represent inequivalent tori — if one torus is represented by the vectors u and v,
then the torus represented by u and v + u is intrinsically the same.

Tensors on complex manifolds are naturally either real or complex. Consider
vectors: since an n complex dimensional complex manifold is a real manifold as
well, it has a real tangent space V of dimension 2n. A real vector (at a point) is an
element of V and can be written as

V =V, + V¥, , (3.55)

where V4 is the complex conjugate of V. A complex vector is an element of the
complexified tangent space V€, and can be written in the same way but with the
understanding that V¢ is independent of V¢. By definition we say that a real vector
space has a complex structure if its complexification splits into a direct sum of two
complex vector spaces that are related by complex conjugation. This is clearly the
case here. We have the direct sum

Ve =y gvOeD, (3.56)
where
Ve, e VIO yig. c yOb (3.57)

If V is the real tangent space of a complex manifold, the space V(9 is known as the
holomorphic tangent space. This extra structure means that we can talk of vectors
of type (1, 0) and (0, 1), respectively; more generally we can define both tensors and
differential forms of type (p, ¢). This is well defined because analytic coordinate
transformations will not change the type of a tensor, and it is an important part of
the theory of complex manifolds.
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We still have to understand what happened to the metric of the 2-sphere. We
define an Hermitian manifold as a complex manifold with a metric tensor of type
(1, 1). In complex coordinates it takes the form

ds? = 2g,;dz°dz" . (3.58)
The metric is a symmetric tensor, hence
8ab = 8ba - (3.59)

The reality of the line element will be ensured if the matrix g,; (if we think of it
that way) is also Hermitian,

(8ap)" = 8pa - (3.60)

This is assumed as well.

Just to make sure that you understand what these conditions are, think of the
metric as an explicit matrix. Let the real dimension 2n = 4 in order to be fully
explicit: then the metric is

0 gu;;:| 0 0 g1 g2
= . 3.61)
|:g&h 0 gn g 0 O

g 8&»n O 0

It is now easy to see what the conditions on the Hermitian metric really are. By the
way g,5 is not the metric tensor, it is only one block of it.

An Hermitian metric will preserve its form under analytic coordinate transfor-
mations, hence the definition is meaningful because the manifold is complex. If
the metric is given in advance the property of being Hermitian is non-trivial, but as
we have seen S? equipped with the round metric provides an example. So does C”
equipped with its flat metric.

Given an Hermitian metric we can construct a differential form

J = 2ig,;dz% AdZ’ . (3.62)

This trick —touse an n x n matrix to define both a symmetric and an anti-symmetric
tensor — works only because the real manifold has even dimension equal to 2n. The
imaginary factor in front of the form J is needed to ensure that the form is a real
2-form. The manifold is Kéhler —and J is said to be a Kdhler form — if J is closed,
that is to say if

dJ = 2igp. dz€ A dz® A dZP + 2igep. dz°dz? AdZ =0, (3.63)
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where the comma stands for differentiation with respect to the appropriate coordi-
nate. Now this will be true if and only if

8abe = 8ac,b > 8ab,c = 8ch,a - (364)

This implies that in the local coordinate system that we are employing there exists
a scalar function K(z, Z) such that the metric can be written as

8ab = 0,0;K . (3.65)

This is a highly non-trivial property because it will be true in all allowed coordinate
systems, that is in all coordinate systems related to the present one by an equation of
the form 7z’ = 7/(z). In this sense it is a more striking statement than the superficially
similar Eq. (3.16), which holds in a very restricted class of coordinate systems only.
The function K(z, 7) is known as the Kdhler potential and determines both the
metric and the Kihler form.

We have seen that S? is a Kihler manifold. This happened because any 2-form
on a two-dimensional manifold is closed by default (there are no 3-forms), so that
every Hermitian two-dimensional manifold has to be Kéhler.

The Levi—Civita connection is constructed in such a way that the length of a
vector is preserved by parallel transport. On a complex manifold we have more
structure worth preserving, namely the complex structure: we would like the type
(p, q) of a tensor to be preserved by parallel transport. We must ask if these two
requirements can be imposed at the same time. For Kéhler manifolds the answer is
‘yes’. On a Kiéhler manifold the only non-vanishing components of the Christoffel
symbols are

T =8aap. T.f =8"8uap - (3.66)

Now take a holomorphic tangent vector, that is a vector of type (1, 0) (such as
V = V“9,). The equation for parallel transport becomes

VxV4=V*4 X1,V =0, (3.67)

together with its complex conjugate. If we start with a vector whose components
V@ vanish and parallel transport it along some curve, then the components V¥ will
stay zero since certain components of the Christoffel symbols are zero. In other
words a vector of type (1, 0) will preserve its type when parallel transported. Hence
the complex structures on the tangent spaces at two different points are compatible,
and it follows that we can define vector fields of type (1, 0) and (0, 1), respectively,
and similarly for tensor fields.

All formulae become simple on a Kihler manifold. Up to index permutations
the only non-vanishing components of the Riemann tensor are

Risea = 8aaT,! ;- (3.68)
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Finally, a useful concept is that of of holomorphic sectional curvature. Choose a
2-plane in the complexified tangent space at the point z such that it is left invariant
by complex conjugation. This means that we can choose coordinates such that the
plane is spanned by the tangent vectors dz* and dz? (and here we use the old-
fashioned notation according to which dz® are the components of a tangent vector
rather than a basis element in the cotangent space). Then the holomorphic sectional
curvature is defined by

Rypeq dz°dzPdz¢dz?
(ds?)?

R(z,dz) = (3.69)
Holomorphic sectional curvature is clearly analogous to ordinary scalar curvature
on real manifolds and (unsurprisingly to those who are familiar with ordinary
Riemannian geometry) one can show that, if the holomorphic sectional curvature
is everywhere independent of the choice of the 2-plane, then it is independent of
the point z as well. Then the space is said to have constant holomorphic sectional
curvature. Since there was a restriction on the choice of the 2-planes, constant
holomorphic sectional curvature does not imply constant curvature.

3.4 Symplectic manifolds

Kihler manifolds have two kinds of geometry: Riemannian and symplectic. The
former concerns itself with a non-degenerate symmetric tensor field, and the latter
with a non-degenerate anti-symmetric tensor field that has to be a closed 2-form
as well. This is to say that a manifold is symplectic only if there exist two tensor
fields €2;; and Q% (not related by raising indices with a metric — indeed no metric
is assumed) such that

Qi =-Q;, Q*Q;=4. (3.70)
This is a symplectic 2-form 2 if it is also closed,
dQ=0 <& Qujn=0. (3.71)

These requirements are non-trivial: it may well be that a (compact) manifold does
not admit a symplectic structure, although it essentially always admits a metric.
Indeed S? is the only sphere that is also a symplectic manifold.

A manifold may have a symplectic structure even if it is not Kéhler. Phase spaces
of Hamiltonian systems are symplectic manifolds, so that — at least in the guise of
Poisson brackets — symplectic geometry is quite familiar to physicists.”> The point
is that the symplectic form can be used to associate a vector field with any function

3 For a survey of symplectic geometry by an expert, see Arnold (2000).
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H (x) on the manifold through the equation
Vi, = QY H . (3.72)

This is known as a Hamiltonian vector field, and it generates canonical transfor-
mations. These transformations preserve the symplectic form, just as isometries
generated by Killing vectors preserve the metric. But the space of canonical trans-
formations is always infinite dimensional (since the function H is at our disposal),
while the number of linearly independent Killing vectors is always rather small —
symplectic geometry and metric geometry are analogous but different. The Poisson
bracket of two arbitrary functions F and G is defined by

{F,G} = 3,FQ"3,G . (3.73)

It is bilinear, anti-symmetric, and obeys the Jacobi identity precisely because the
symplectic form is closed. From a geometrical point of view the role of the sym-
plectic form is to associate an area with each pair of tangent vectors. There is also
an interesting interpretation of the fact that the symplectic form is closed, namely
that the total area assigned by the symplectic form to a closed surface that can be
contracted to a point (within the manifold itself) is zero. Every submanifold of a
symplectic manifold inherits a 2-form from the manifold in which it sits, but there
is no guarantee that the inherited 2-form is non-degenerate. In fact it may vanish. If
this happens to a submanifold of dimension equal to one half of the dimension of the
symplectic manifold itself, the submanifold is Lagrangian. The standard example
is the subspace spanned by the coordinates ¢ in a symplectic vector space spanned
by the coordinates ¢ and p, in the way familiar from analytical mechanics.

A symplectic form gives rise to a natural notion of volume, invariant under
canonical transformations; if the dimension is 2n then the volume element is

V= QA (%Q) A (lQ) . (3.74)

2

The numerical factor can be chosen at will — unless we are on a Kéhler manifold
where the choice just made is the only natural one. The point is that a Kahler
manifold has both a metric and a symplectic form, so that there will be two notions
of volume that we want to be consistent with each other. The symplectic form is
precisely the Kihler form from Eq. (3.62), 2 = J. The special feature of Kéhler
manifolds is that the two kinds of geometry are interwoven with each other and
with the complex structure. On the 2-sphere

lg_ 2 4
27 A+ 2P (1 +r2)y?

This agrees with the volume form as computed using the metric.

1(1
n! 2

dv = ZAdZ = dx Ady =sin6 dd Ad¢ . (3.75)
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3.5 The Hopf fibration of the 3-sphere

The 3-sphere, being odd-dimensional, is neither complex nor symplectic, but like
all the odd-dimensional spheres it is a fibre bundle. Unlike all other spheres (except
S'Yitis also a Lie group. The theory of fibre bundles was in fact created in response
to the treatment that the 3-sphere was given in 1931 by Hopf and by Dirac, and we
begin with this part of the story. (By the way, Dirac’s concern was with magnetic
monopoles.)

The 3-sphere can be defined as the hypersurface

X2+Y2+27224+U0%=1 (3.76)

embedded in a flat four-dimensional space with (X, Y, Z, U) as its Cartesian coordi-
nates. Using stereographic coordinates (Section 3.1) we can visualize the 3-sphere
as R? with the south pole (U = —1) added as a point “at infinity’. The equator of
the 3-sphere (U = 0) will appear in the picture as a unit sphere surrounding the
origin. To get used to it we look at geodesics and Killing vectors.

Using Eq. (3.12) it is easy to prove that geodesics appear in our picture either
as circles or as straight lines through the origin. Either way — unless they are great
circles on the equator — they meet the equator in two antipodal points. Now rotate
the sphere in the X-Y plane. The appropriate Killing vector field is

ny = Xay — Yax = xay - yax B (377)

where x, y (and z) are the stereographic coordinates in our picture. This looks like
the flow lines of a rotation in flat space. There is a geodesic line of fixed points
along the z-axis. The flow lines are circles around this geodesic, but with one
exception they are not themselves geodesics because they do not meet the equator
in antipodal points. The Killing vector Jy behaves intrinsically just like Jxy, but
it looks quite different in our picture (because we singled out the coordinate U for
special treatment). It has fixed points at

Jzu =20y —Udz =0 < Z=U=0. (3.78)

This is a geodesic (as it must be), namely a great circle on the equator. By anal-
ogy with Jxy the flow lines must lie on tori surrounding the line of fixed points.
A somewhat boring calculation confirms this; the flow of Jzy leaves the tori of
revolution

(p—aP+z2=a’>—1>0, p>’=x>+y, (3.79)

invariant for any @ > 1. So we can draw pictures of these two Killing vector fields,
the instructive point of the exercise being that intrinsically these Killing vector
fields are really ‘the same’.
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Figure 3.7. Flow lines and fixed points of Jxy and Jzy.

A striking thing about the 3-sphere is that there are also Killing vector fields that
are everywhere non-vanishing. This is in contrast to the 2-sphere; a well-known
theorem in topology states that ‘“you can’t comb a sphere’, meaning to say that every
vector field on S? has to have a fixed point somewhere. An example of a Killing
field without fixed points on S? is clearly

E=Jxyy+Jzv; EIP=X*+Y*+Z2*+U%=1. (3.80)

Given our pictures of Killing vector fields it is clear that this combination must have
flow lines that lie on the tori that we drew, but which wind once around the z-axis
each time they wind around the circle p = 1. This will be our key to understanding
the 3-sphere as a fibre bundle.

Remarkably, all the flow lines of the Killing vector field £ are geodesics as well.
We will prove this in a way that brings complex manifolds back in. The point is
that the embedding space R* is also the complex vector space C2. Therefore we
can introduce the complex embedding coordinates

Z! X +iY
2[5
The generalization to n complex dimensions is immediate. Let us use P, Q, R, ...

to denote vectors in complex vector spaces. The scalar product in R?” becomes an
Hermitian form on C", namely

P-0Q=28,4P*0%=P%Q,. (3.82)
Here we made the obvious move of defining
(2 =27 = Za, (3.83)

so that we get rid of the barred indices.
The odd-dimensional sphere §*'+! is now defined as those points in C"*! that
obey

Z-Z=1. (3.84)
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Translating the formula (3.12) for a general geodesic from the real formulation
given in Section 3.1 to the complex one that we are using now we find

Z%(c)=m%coso +n%sinc, m-m=n-n=1, m-n+n-m=0,
(3.85)
where the affine parameter o measures distance d along the geodesic,

d= |02 — 01| . (386)
If we pick two points on the geodesic, say
Z{ =Z%0o1) Z5=Z%o), (3.87)

then a short calculation reveals that the distance between them is given by
1 - -
cosd:E(Zl o+ 2720 7y). (3.88)

This is a useful formula to have.
Now consider the family of geodesics given by

n® =im® = Z%0)=¢e"m". (3.89)

Through any point on S?**! there will go a geodesic belonging to this family since
we are free to let the vector m* vary. Evidently the equation

Z% =iz* (3.90)
holds for every geodesic of this kind. Its tangent vector is therefore given by
By = 2% + 2%85 = i(Z%0 — Z%35) = Jxy + Jzu = £ . (3.91)

But this is precisely the everywhere non-vanishing Killing vector field that we found
before. So we have found that on S*'*! there exists a congruence — a space-filling
family — of curves that are at once geodesics and Killing flow lines. This is a quite
remarkable property; flat space has it, but very few curved spaces do.

In flat space the distance between parallel lines remains fixed as we move along
the lines, whereas two skew lines eventually diverge from each other. In a positively
curved space — like the sphere — parallel geodesics converge, and we ask if it is
possible to twist them relative to each other in such a way that this convergence
is cancelled by the divergence caused by the fact that they are skew. Then we
would have a congruence of geodesics that always stay at the same distance from
each other. We will call the geodesics Clifford parallels provided that this can be
done. A more stringent definition requires a notion of parallel transport that takes
tangent vectors of the Clifford parallels into each other; we will touch on this in
Section 3.7.
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Figure 3.8. The Hopf fibration of the 3-sphere.

Now the congruence of geodesics given by the vector field & are Clifford parallels
on the 3-sphere. Two points belonging to different geodesics in the congruence must
preserve their relative distance as they move along the geodesics, precisely because
the geodesics are Killing flow lines as well. It is instructive to prove this directly
though. Consider two geodesics defined by

pPY — eicr P(;x , Qa — ei(a+zm)Qg . (3.92)

We will soon exercise our right to choose the constant oy. The scalar product of the
constant vectors will be some complex number

Py- Qo =re?. (3.93)

The geodesic distance between two arbitrary points, one on each geodesic, is there-
fore given by

cosd:%(P-Q+Q~I_’):rc0s(¢—oo). (3.94)

The point is that this is independent of the affine parameter o, so that the distance
does not change as we move along the geodesics (provided of course that we move
with the same speed on both). This shows that our congruence of geodesics consists
of Clifford parallels.

The perpendicular distance d, between a pair of Clifford parallels is obtained by
adjusting the zero point oy so that cos dy = r, that is so that the distance attains its
minimum value. A concise way to express dy is by means of the equation

cosldy=r’>=Py- 00Qo-Po=P-00-P. (3.95)

Before we are done we will see that this formula plays an important role in quantum
mechanics.

It is time to draw a picture — Figure 3.8 — of the congruence of Clifford parallels.
Since we have the pictures of Jxy and Jy already this is straightforward. We draw
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a family of tori of revolution surrounding the unit circle in the z = O plane, and
eventually merging into the z-axis. These are precisely the tori defined in Eq. (3.79).
Each torus is itself foliated by a one parameter family of circles and they are twisting
relative to each other as we expected; indeed any two circles in the congruence are
linked (their linking number is one). The whole construction is known as the Hopf
fibration of the 3-sphere, and the geodesics in the congruence are called Hopf
circles. It is clear that there exists another Hopf fibration with the opposite twist,
that we would arrive at through a simple sign change in Eq. (3.80). By the way the
metric induced on the tori by the metric on the 3-sphere is flat (as you can easily
check from Eq. (3.98) below, where a torus is given by 6 = constant); you can think
of the 3-sphere as a one parameter family of flat tori if you please, or as two solid
tori glued together.

Now the interesting question is: how many Hopf circles are there altogether,
or more precisely what is the space whose points consists of the Hopf circles? A
little thinking gives the answer directly. On each torus there is a one parameter
set of Hopf circles, labelled by some periodic cordinate ¢ € [0, 27[. There is a
one parameter family of tori, labelled by 6 €]0, #[. In this way we account for
every geodesic in the congruence except the circle in the z = 0 plane and the one
along the z-axis. These have to be added at the endpoints of the -interval, at0 = 0
and 6 = m, respectively. Evidently what we are describing is a 2-sphere in polar
coordinates. So the conclusion is that the space of Hopf circles is a 2-sphere.

Itis important to realize that this 2-sphere is not ‘sitting inside the 3-sphere’ in any
natural manner. To find such an embedding of the 2-sphere would entail choosing
one point from each Hopf circle in some smooth manner. Equivalently, we want
to choose the zero point of the coordinate o along all the circles in some coherent
way. But this is precisely what we cannot do; if we could we would effectively have
shown that the topology of 83 is S? ® S! and this is not true (because in S> ® S!
there are closed curves that cannot be contracted to a point, while there are no such
curves in the S?). We can almost do it though. For instance, we can select those
points where the geodesics are moving down through the z = 0 plane. This works
fine except for the single geodesic that lies in this plane; we have mapped all of the
2-sphere except one point onto an open unit disc in the picture. It is instructive to
make a few more attempts in this vein and see how they always fail to work globally.

The next question is whether the 2-sphere of Hopf circles is a round 2-sphere or
not, or indeed whether it has any natural metric at all. The answer turns out to be
‘yes’. To see this it is convenient to introduce the Euler angles, which are intrinsic
coordinates on S* adapted to the Hopf fibration. They are defined by

Z'] _[Xx+iY] _ e%““”cos% (3.96)
z2| L Zz4+iU] " | e Psing | '
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where
O0<t<d4n, 0<¢p<2mr, O0<O<m. 3.97)

We have seen that the periodic coordinate T goes along the Hopf circles, in fact
T = 20 in the congruence (3.89). (Making t periodic with period 2 gives the
Hopf fibration of real projective 3-space — checking this statement is a good way
of making sure that one understands the Hopf fibration.) The coordinate ¢ runs
along Hopf circles of the opposite twist. Finally a little calculation verifies that the
coordinate 6 labels the tori in Eq. (3.79), with cos (8/2) = 1/a. The intrinsic metric
on the 3-sphere becomes

1
ds? = [dZ'|> + |dZ%)* = Z(dr2 + do? + d¢? + 2 cosd drdg) . (3.98)
Here it is easy to see that the tori at & = constant are flat.
To continue our argument: since the coordinates 6 and ¢ label the 2-sphere’s
worth of geodesics in the congruence we can try to map this S? into S? through an
equation of the form

T = 100, 9). (3.99)

But we have already shown that no such map can exist globally, and therefore this
is not the way to define a natural metric on our 2-sphere. We still do not know if it
is a round 2-sphere in any natural way!

Nevertheless the space of Clifford parallels is naturally a round 2-sphere. We
simply define the distance between two arbitrary Clifford parallels as the perpen-
dicular distance dy between them. This we have computed already, and it only
remains to rewrite Eq. (3.95) in terms of the Euler angles. If the coordinates of the
two points on the 2-sphere are (6, ¢;) and (6,, ¢,) we obtain

1
cos’dy = 3 (1 4 cos 6 cos 6, + cos (¢ — ¢)sin6; sinb,) . (3.100)

This formula should be familiar from spherical trigonometry. If the two points are
infinitesimally close to each other we can expand the left-hand side as

cos’dy ~ 1—di = 1—ds*. (3.101)
A short calculation then verifies that that the metric is
1
ds? = Z(d@2 +sin® 0 d¢?) . (3.102)

Precisely one quarter of the usual round metric. From now on, when we talk about
the Hopf fibration it will be understood that the 2- and 3-spheres are equipped with
the above metrics.
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Figure 3.9. Left: the definition of a fibre bundle, including a fibred bundle space
P, a base manifold M and a projection I1. Right: a section of the bundle, that is
an embedding of the base manifold in the bundle space (which may fail to exist
globally).

3.6 Fibre bundles and their connections

Let us now bring in the general theory of fibre bundles.® By definition the fibre of
amap P — M between two spaces is the set of points in P that are mapped to a
given point in M. The situation gets more interesting if all fibres are isomorphic.
The definition of a fibre bundle also requires that there is a group acting on the
fibres: a fibre bundle over a base manifold M consists of a bundle space P and a
structure group G acting on the bundle space in such a way that the base manifold
is equal to the quotient P/G (a point in M is an orbit of G in P; the orbits are
assumed to be isomorphic to each other). In this way we get a canonical projection
IT: P — M. The set of points that project to a particular point p on M is known
as the fibre F' over p. It is also required that the bundle space is locally equal to
a Cartesian product, that is to say that P can be covered by open sets of the form
U x F, where U is an open set in M. A principal fibre bundle is a fibre bundle
such that the fibres are copies of the group manifold of G.

A Cartesian product M x F (as in R?> = R x R) is a trivial example of a fibre
bundle. The 3-sphere on the other hand is non-trivial because it is not just a Cartesian
product of 8% and S!, although locally it behaves like that. It should be clear from
the previous discussion that the 3-sphere really is a principal fibre bundle with
structure group U(1), whose group manifold is indeed a circle. The fact that the
structure group is Abelian is a simplifying feature; in general the fibres can be
many-dimensional and the structure group can be non-Abelian.

For many purposes it is convenient to introduce a local coordinate system on
the bundle that is adapted to the bundle structure. Schematically, let x* be some

6 A standard reference for connections and fibre bundles (and for a taste of the precision used in modern differential
geometry) is Kobayashi and Nomizu (1963). There are many readable introductions for physicists; examples
can be found in Shapere and Wilczek (1989).
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coordinates on the base manifold and t a coordinate along the fibres, assumed one-
dimensional for simplicity. A full set of coordinates is then given by x’ = (t, x%).
On §? the coordinates 6 and ¢ play the part of x* while t is the fibre coordinate.
Now the idea is to restrict oneself to coordinates that can be reached from x¢,
through coordinate transformations of the general form

X4 =x"x), v=17tx71). (3.103)

Such ‘triangular’ coordinate transformations appear because there is no natural way
of identifying the fibres with each other.

To take a section of the bundle means to specify the fibre coordinate T as a
function of x4,

T = 1(x). (3.104)

Locally this defines an embedding of the base manifold into the bundle. In coordi-
nate independent terms, a section is defined as an embedding of the base manifold
into the bundle such that if we follow it up with the projection down to the base
we get back to the point we started out from. For a non-trivial bundle such as
the 3-sphere no global section exists, but it is possible to take local sections on the
coordinate patches U. In the overlap regions where two different local sections are
defined one can go from one to the other provided that one moves along the fibres
according to

T=1tx) — t =1x). (3.105)

Such a transformation along the fibres is known as a local gauge transformation,
for reasons that will become clear later. A key theorem is the following:

Theorem 3.1 A principal fibre bundle admits a global section if and only if it is a
trivial Cartesian product.

Another important fact about fibre bundles is that if one knows all the coordinate
patches U x F as well as the local gauge transformations needed to go from one
patch to another, then one can reconstruct the bundle. It is not always the case that
one can see what the entire bundle looks like, in the intimate manner that one can
see the 3-sphere!

Fibre bundles which are not principal are also of interest. An example is the
vector bundle, where the fibres consist of vector spaces on which the group G
acts, rather than of G itself. Note that the theorem that a fibre bundle has the trivial
product topology if and only if it admits a global section holds for principal bundles,
and only for principal bundles. A famous example of a non-trivial vector bundle
that admits a global section is the Mobius strip; the group G that acts on the fibre is
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the finite group Z, and indeed the principal bundle does not admit a global section.
It is so well known how to construct a Mobius strip made of paper that we simply
recommend the reader to make one and check these statements. The tangent bundle
over a space M is also a vector bundle. The fibre over a point ¢ is the tangent space
T, at this point. The group of general linear transformations acts on the fibres of
the tangent bundle. A section of the tangent bundle — one element of the fibre at
each point in the base space — is just a vector field.

One often wants to /ift a curve in the base manifold M to the bundle P. Since
many curves in the bundle project down to the same curve in M, this requires a
further structure, namely a connection on the bundle. The idea is to decompose the
tangent space of the bundle into vertical and horizontal directions, that is directions
along the fibres and ‘perpendicular’ to the fibres, respectively. Then the idea is that
the horizontal lift of a curve threads its way in the horizontal directions only. The
problem is that there may be no notion of ‘perpendicular’ available, so this must
be supplied. To a mathematician, a connection is a structure that defines a split of
the tangent space into vertical and horizontal. To a physicist, a connection is like the
vector potential in electrodynamics, and it takes a little effort to see that the same
structure is being referred to. The key fact that must be kept in mind throughout
the discussion is that if there is an embedding of one manifold into another, then
a differential form on the latter automatically defines a differential form on the
former (see Appendix A1.3).

We simplify matters by assuming that the fibres are one-dimensional, and let the
coordinate t run along the fibres. We want to decompose tangent space so that

T,=V,®H,. (3.106)

Any tangent vector can then be written as the sum of one vector belonging to the
vertical subspace V,, and one belonging to the horizontal subspace H,,. Since the
vertical vector points along the fibres it must be proportional to

0 €V,. (3.107)

But it is not so clear what a horizontal vector should look like. The trick is to choose
a special 1-form w (that is a covariant vector w;) and to declare that a horizontal
vector i is any vector that obeys

heH, <& wh=0. (3.108)

Such a statement does not require any metric. But how do we choose w? The obvious
guess dt has a problem since we are permitting coordinate transformations under
which

ot at

dr = —dt' +
P= o0 Ty

dx" . (3.109)
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Figure 3.10. Horizontal lifts of a curve in the base manifold, using a notion of
‘horizontal subspaces’.

Hence the naive definition of the horizontal subspace is tied to a particular set of
coordinates. There will be many ways to perform the split. A priori none of them
is better than any other. This is something that we will have to accept, and we
therefore simply choose an w of the general form

w=dr + U = dt + U,dx“ . (3.110)

In this way a connection, that is a decomposition of the tangent space, is equivalent
to the specification of a special 1-form on the bundle.

With a connection in hand, we define parallel transport as follows: Fix a curve
x“%(0) in the base manifold. Lift this curve to a curve in the bundle by insisting that
the 1-form induced on the lifted curve by the connection 1-form w vanishes. Thus

a):dr+U:<d—T+Uadx—>do:O. (3.111)
do do

This leads to an ordinary differential equation that always admits a solution (at least
for some range of the parameter o), and it follows that we can associate a unique
family of curves (‘L’(O’), x“(a)) in the bundle to any curve in the base manifold.
Through any point in the fibre there passes a unique curve. This is the horizontal
lift of the curve in the base manifold.

There are two things to notice. First, that this notion of parallel transport is
somewhat different than that discussed in Section 3.2. There we were transporting
vectors, here we are transporting the position along the fibres. (Actually, the parallel
transport defined in Section 3.2 is a special case, taking place in the tangent bundle.)
Second, it may seem that we now have the means to identify the fibres with each
other. But this is false in general, because parallel transport may depend on the path
—and it may do so even if the bundle is topologically trivial. Indeed the condition that
parallel transport be independent of the path, or in other words that the horizontal
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Figure 3.11. Holonomy. For the 3-sphere, the holonomy 7 — 7; is proportional
to the area surrounded by the loop in the base manifold (i.e. the 2-sphere).

lift of a closed curve is itself closed, is (by Stokes’ theorem, see Appendix Al.1)

%w:/dw:(), 3.112)
c s

where S is any surface enclosed by a curve C that projects to a given closed curve
in the base manifold. The 2-form

1
Q=do=dU = E(Ban—abUa)dx“/\dxh (3.113)

is known as the curvature 2-form. The point is that when the curvature 2—form
is non-zero, and when Stokes’ theorem applies, Eq. (3.112) will not hold. Then
parallel transport along a closed curve will give rise to a shift along the fibre,
known to mathematicians as a holonomy.

Throughout, the connection is a 1-form that is defined on the bundle space — not
on the base manifold. If we take a section of the bundle we have an embedding of
the base manifold into the bundle, and the connection on the bundle will induce
a definite 1-form on the base manifold. This is what happens in electrodynamics;
in this way the physicist’s connection is recovered from that of the mathematician.
There is a catch: if the section is not globally defined, the connection on the base
manifold will be ill-defined in some places. On the other hand there is no such
problem with the curvature 2-form — 2 does exist globally on the base manifold.

Formula (3.113) is valid in this simple form for the case of one-dimensional
fibres only. But in physics we often need many-dimensional fibres — and a non-
Abelian group G. The main novelty is that the connection takes values in the Lie
algebra of G; since the dimension of the Lie algebra is equal to the dimension of the
fibres this will be enough to single out a unique horizontal subspace. One difficulty
that arises is that it is hard to get explicit about holonomies — Stokes’ theorem is
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no longer helpful because the line integrals must be path ordered due to the fact
that the connections at different points along the curve do not commute with each
other.

Coming back to the 3-sphere, we observe that the fibres are the Hopf circles
and the base manifold is a 2-sphere. Now the 3-sphere is not just any fibre bundle.
Its bundle space is equipped with a metric, which means that there is a preferred
connection singled out by the requirement that the vertical and the horizontal sub-
spaces be orthogonal in the sense of that metric. If the horizontal lift of a curve in
the base manifold is parametrized by o its tangent vector is

do = td; + 03 +ddy = h'; . (3.114)
The tangent vector of a fibre is 9; = v'9;. We require
gijv'h! = guit + 8160 + gupp =T +cosp =0, (3.115)
where we used Eq. (3.98) for the metric. Hence the metrically preferred connection
is
w = dr +cosfd¢ . (3.116)

The curvature of this connection is non-vanishing; indeed if parallel transport occurs
along a closed curve 95, bounding a surface S in the base manifold, then the
holonomy is

Tfinal — Tinitial = /d‘L’ = —% C089d¢ = / sin 6 df d¢ . (3117)
EN N

This is proportional to the area of the enclosed surface on S?, so the interplay
between parallel transport and the metric is intimate.

We will now take a section of S3, since we wish to view the base manifold S2
as an embedded submanifold of the 3-sphere so that w induces a 1-form on the
2-sphere. We will work in some coordinate patch, say using the Euler angles. One
local section is defined by the equation

r=¢. (3.118)

It picks out one point on every fibre except — and here we have to recall how the
Euler angles were defined — for that fibre which corresponds to the north pole of
the 2-sphere. The form that is induced by the connection on the 2-sphere is

ot =(1+cosf)de . (3.119)

When looking at this expression we must remember that we are using a coordinate
system on S that is ill-defined at the poles. But we are particularly interested in the
behaviour at the north pole, where we expect this form to be singular somehow. If,
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with a little effort, we transform from 6 and ¢ to our standard complex coordinate
system on S? we find that

N i dz dZ)
= (-=+=). 3.120
@ 1+|z|2< z |z (3.120)

This is indeed ill-defined at the north pole (z = 0). On the other hand there is no
problem at the south pole; transforming to complex coordinates that cover this point
(z = 7/ = 1/z) we find that

i
ot = 7dz —7'd7) 3.121
puErl ) (3.121)
and there is no problem at the south pole (z' = 0).
By taking a different section (say T = —¢) another form is induced on S2. If we
choose T = —¢ we obtain
w” = (cosf —1)d¢ . (3.122)

This turns out to be well defined everywhere except at the south pole. In the region
of the 2-sphere where both sections are well defined — which happens to be the
region where the polar coordinates are well defined — the forms are related by

ot -0 = 2d¢. (3.123)

This is a local gauge transformation in the ordinary sense of the word as used in
electrodynamics.

In spite of the little difficulties there is nothing wrong with the connection; we
have only confirmed the conclusion that no global section of the bundle exists. The
curvature 2-form

Qup = sinb (3.124)

is an everywhere regular 2-form on the base manifold, and in fact equal to the
symplectic form on S?. Quite incidentally, if we regard the 2-sphere as a sphere
embedded in Euclidean 3-space our curvature tensor corresponds to a radially
directed magnetic field. There is a magnetic monopole sitting at the origin — and
this is what Dirac was doing in 1931, while Hopf was fibreing the 3-sphere.

3.7 The 3-sphere as a group

The 3-sphere is not only a fibre bundle, it is also a group. More precisely it is a group
manifold, that is to say a space whose points are the elements of a group. Only two
spheres are group manifolds — the other case is S!, the group manifold of U (1). What
we are going to show for the 3-sphere is therefore exceptional as far as spheres are



94 Much ado about spheres

concerned, but it is typical of all compact semi-simple Lie groups. Compact means
that the group manifold is compact; semi-simple is a technical condition which is
obeyed by the classical groups SO(N), SU(N) and Sp(N), with the exception of
SO(2) = U(1). What we tell below about SU (2) will be typical of all the classical
groups, and this is good enough for us.’

The classical groups are matrix groups consisting of matrices obeying certain
conditions. Thus the group SU (2) is by definition the group of unitary 2 x 2 matrices
of determinant one. An arbitrary group element g in this group can be parametrized
by two complex numbers obeying one condition, namely as

z' 7 12 2,2
gz[_zz 21]’ 1Z'P+ 12 =1. (3.125)
This means that there is a one-to-one correspondence between SU(2) group ele-
ments on the one hand and points on the 3-sphere on the other, that is to say that
whenever X% + Y2 4+ Z% + U? = 1 we have

[ X+iY Z+ iU]
<~ = .

*.1.2,0) T l-z+iU X-iy

(3.126)
We begin to see the 3-sphere in a new light.

Given two points in a group the group law determines a third point, namely
g3 = 18- For a matrix group it is evident that the coordinates of g3 will be given
by real analytic functions of the coordinates of g; and g,. This property defines a
Lie group. Now a unitary matrix g of unit determinant can always be obtained by
exponentiating a traceless anti-Hermitian matrix m. We can insert a parameter 7 in
the exponent and then we get

g(r) = e™ . (3.127)

From one point of view this is a one parameter subgroup of SU(2), from another
it is a curve in the group manifold 3. When t = 0 we are sitting at a point that is
rather special from the first viewpoint, namely at the unit element 1 of the group.
The tangent vector of the curve at this point is

E(@r=0 = m . (3.128)

In this way we see that the vector space of traceless anti-Hermitian matrices make
up the tangent space at the unit element of the group. (Physicists usually prefer to
work with Hermitian matrices, but here anti-Hermitian matrices are more natural —
to convert between these preferences just multiply by i. Incidentally, the, at first

7 There are many good books on group theory available where the reader will find a more complete story; an
example that leans towards quantum mechanics is Gilmore (1974).
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sight, confusing habit of viewing a matrix as an element of a vector space will grow
upon us.) This tangent space is called the Lie algebra of the group, and it is part
of the magic of Lie groups that many of their properties can be reliably deduced
from a study of their Lie algebras. A reminder about Lie algebras can be found in
Appendix 2.

A group always acts on itself. A group element g; transforms an arbitrary group
element g by left translation g — g1g, by right translation g — gg| ! and by the
adjoint action g — g, ggl’l. (The inverse occurs on the right-hand side to ensure
that g — gg;' — g8,'8,' = g(g2g1)~".) Fix a one parameter subgroup g;(o)
and let it act by left translation; g — g;(o)g. This defines a curve through every
point of 8%, and moreover the group laws ensure that these curves cannot cross
each other, so that they form a congruence. The congruence of Clifford parallels
that we studied in Section 3.5 can be viewed in this light. To do so consider the
one parameter subgroup obtained by exponentiating m = io3, where o; denotes a
Pauli matrix. It gives rise to an infinitesimal transformation §g = mg at every point
g. If we use the coordinates (X, Y, Z, U) to describe g we find that this equation
becomes

X +iY) s(Z+iU)| |1 O X+iY Z+4+1iU (3.129)
—-8(Z+iU) X —iV)|~ |0 —i||-Z+iU X-—ir |~ ’
Working this out we find it to be the same as
(6X.,8Y,8Z,8U) = (Uxy + Jzv)(X, Y, Z,U). (3.130)

This is precisely the Killing vector field that points along a congruence of Hopf
circles. Choosing m = io; and m = io, will give us a total of three nowhere
vanishing linearly independent vector fields. They are

Si=Jdxv+Jdyz, S=Jxz+Juyy, JSH=Jxy+Jzw (3.131)

and they form a representation of the Lie algebra of SU(2). Their number is the
same as the dimension of the manifold. We say that the 3-sphere is parallelizable.
All group manifolds are parallelizable, for the same reason, but among the spheres
only S!, 83 and S7 are parallelizable, so this is an exceptional property shared by
all group manifolds. Such everywhere non-vanishing vector fields can be used to
provide a canonical identification of tangent spaces at different points of the group
manifold. One can then modify the rules for parallel transport of vectors so that
it respects this identification — in fact we can use Eq. (3.15) but with the totally
antisymmetric structure constants of the Lie algebra in the role of the tensor 7; . For
the 3-sphere, this allows us to give a more stringent definition of Clifford parallels
than the one we gave in Section 3.5.
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So much for left translation. Right translations of the group also give rise, in an
analogous way, to a set of three linearly independent vector fields

Ji=Jxv—Jdyz, Jo=Jdxz—Juy, Ji=Jxy—Jz. (3.132)

These three represent another SU(2) Lie algebra and they commute with the pre-
vious three, that is those in Eq. (3.131).

A useful fact about group manifolds is that one can always find a Lie algebra
valued 1-form that is invariant under (say) right translation. This is the Maurer—
Cartan form dgg~'. That it takes values in the Lie algebra is clear if we write g as
an exponential of a Lie algebra element as in Eq. (3.127). That it is invariant under
right translation by a fixed group element g; is shown by the calculation

1

dgg™' — d(gg)(ge) ™' = dggig'g ! = dgg . (3.133)

Given a basis for the Lie algebra the Maurer—Cartan form can be expanded. For
SU(2) we use the Pauli matrices multiplied with i for this purpose, and get

dgg™! = i010; + 1020, + 10305 . (3.134)

Doing the explicit calculation, that is multiplying two 2 x 2 matrices, we can read
off that

®, =-UdX — ZdY + YdZ + XdU = %(sintde —cos T sinf do)
O, =—-ZdX +UdY + XdZ —YdU = %(cosrde +sint sinfd¢) (3.135)

©; = —YdX + XdY — UdZ + ZdU = 1 (dr + cos0 dg) .

In the last step we use Euler angles as coordinates; ®3 is evidently our familiar
friend, the connection from Eq. (3.116). There exists a left invariant Maurer—Cartan
form g~! dg as well.

It is now natural to declare that the group manifold of SU(2) is equipped with its
standard round metric; the round metric is singled out by the requirement that left
and right translations correspond to isometries. Since left and right translations can
be performed independently, this means that the isometry group of any Lie group
G equipped with its natural metric is G x G, with a discrete factor divided out. For
the 3-sphere the isometry group is S O(4), and it obeys the isomorphism

SO4) = SUR)x SUQ2)/Z, . (3.136)

The Z; in the denominator arises because left and right translations with —1 cancel
each other. It is this peculiar isomorphism that explains why the 3-sphere manages
to serve as the manifold of a group; no other SO(N) group splits into a product in
this way. In general (for the classical groups) the invariant metric is uniquely, up to
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a constant, given by
2__£ -1 -1 __l -1 —1 a2 2 2
ds” = 3 Tr(dgg 'dgg ) = 2Tr(g dgg 'dg) =07+05;4+05. (3.137)

In the second step we rewrote the metric in terms of the left invariant Maurer—Cartan
form, so it is indeed invariant under G x G. The final step is for SU(2) only. The
square root of the determinant of this metric is the Haar measure on the group
manifold, and will figure prominently in Chapter 14.

Entirely by the way, but not uninterestingly, we observe that we can insert a real
parameter « into the 3-sphere metric:

ds* = O] + @] +a03. (3.138)

For o« =1 this is the metric on the group and for o = 0 it is the metric on the
2-sphere since it does not depend on the fibre coordinate t. Because it is made from
right invariant forms itis an $ O(3) invariant metric on S* for any intermediate value
of «. It is said to be the metric on a squashed 3-sphere; 3-spheres that are squashed
in this particular way are called Berger spheres.

The three everywhere non-vanishing Killing vector fields in Eq. (3.131) do not
commute and therefore it is impossible to introduce a coordinate system such that
all three coordinate lines coincide with the Killing flow lines. But they are linearly
independent, they form a perfectly good basis for the tangent space at every point,
and any vector can be written as a linear combination of the J;, where / runs from
one to three. We can introduce a basis ®; in the dual cotangent space through

O;Jy) = 8. (3.139)

The ©; are precisely the three forms given in Eq. (3.135). There is no globally
defined function whose differential is our connection ®3 because we are no longer
using a coordinate basis.

We do have a number of coordinate systems especially adapted to the group struc-
ture at our disposal. The coordinate lines will arise from exponentiating elements
in the Lie algebra. First we try the canonical parametrization

g= ei(xo1+y(rz+zr73) . (3140)
If we switch to spherical polars after performing the exponentiation we obtain

g_[ X +iY Z+iU}

_ [cosr+isinrcos®  isinrsing e
—7Z+1iU X —1Y ’

_[ isinrsin@ e¢ cosr —isinrcos@
(3.141)

The metric when expressed in these coordinates becomes

ds? = dr? + sin r(d6? + sin” 6 d¢?) . (3.142)
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So these are geodesic polar coordinates — the parameter r is the arc length along
geodesics from the origin. The Euler angles from Section 3.5 is another choice;
following in Euler’s footsteps we write an arbitrary group element as

—e 2 siny e”: cos 3
Equation (3.96) results. It seems fair to warn the reader that although similar coordi-
nate systems can be erected on all classical group manifolds, the actual calculations
involved in expressing, say, the metric tensor in terms of coordinates tend to become
very long, except for SU(2).

3.8 Cosets and all that

We have already used the notion of quotient spaces such as M/ H quite freely. The
idea is that we start with a space M and a group H of transformations of M; the
quotient space is then a space whose points consists of the orbits of G, that is to say
that by definition a point in M/ H is an equivalence class of points in M that can be
transformed into each other by means of transformations belonging to H. We have
offered no guarantees that the quotient space is a ‘nice’ space however. In general
no such guarantee can be given. We are in a better position when the space M is
a Lie group G and H is some subgroup of G. By definition a left coset is a set of
elements of a group G that can be written in the form gh, where £ is an any element
of a fixed subgroup H. This gives a partition of the group into disjoint cosets, and
the space of cosets is called the coset space and denoted by G/H. The points of
the coset space are written schematically as g H; they are in fact the orbits of H in
G under right action. For coset spaces there is a comfortable theorem saying that
G/H is always a manifold of dimension

dim(G/H) = dim(G) — dim(H) . (3.144)

Right cosets and right coset spaces can be defined in an analogous way.

A description of a space as a coset space often arises as follows: we start with
a space M that is a homogeneous space, which means that there is a group G of
isometries such that every pointin M can be reached from any given point by means
of a transformation belonging to G. Hence there is only one G orbit, and, since G
is a symmetry group, the space looks the same at each point. The technical term
here is that the group G acts transitively on M. Now fix a point p and consider the
isotropy or little group at this point; by definition this is the subgroup H C G of
transformations / that leave p invariant. In this situation it follows that M = G/H.
At first sight it may seem that this recipe depends on the choice of the point where
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the isotropy group was identified but in fact it does not; if we start from another
point p’ = gp where g € G then the new little group H' is conjugated to H in the
sense that H' = gHg™!. The coset spaces G/H and G/H’ are then identical, it is
only the description that has changed a little.

A warning: the notation G/H is ambiguous unless it is specified which partic-
ular subgroup H (up to conjugation) that is meant. To see how an ambiguity can
arise consider the group SU(3). It has an Abelian subgroup consisting of diagonal
matrices

ele 0 0
h=| 0 ¢* 0 . (3.145)
0 0 e’i@h

In the group manifold this is a two-dimensional surface known as the Cartan torus.
Now consider the coset space SU(3)/U(1), where the subgroup U(1) forms a
circle on the Cartan torus. But there are infinitely many different ways in which
a circle can wind around on a 2-torus, and the coset space will get dramatically
different properties depending on the choice one makes. On the other hand the
space SU(3)/U(1) x U(1) suffers from no such ambiguities — any two-dimensional
Abelian subgroup of SU(3) is related by conjugation to the subgroup of diagonal
matrices.

It is interesting to ask again why the 2-sphere of Hopf fibres is naturally a round
2-sphere, this time adopting our new coset space view of things. We can write a
point in the coset space as 2k, where Q2 is the coset representative and h is an
element in H. The group SU(2)/Z, = SO(3) acts naturally on this coset space
through left action;

g~ g18g = Qh— g1Qh. (3.146)

It is therefore natural to select a coset space metric that is invariant under SO(3),
and for S? the round metric is the answer. In general this construction gives rise also
to a uniquely defined measure on the coset space, induced by the Haar measure on
the group manifold.

If we take stock of the situation we see that we now have a rich supply of principal
fibre bundles to play with, since any coset space G/H is the base manifold of a
principal bundle with bundle space G and fibre H. This construction will occur
again and again. To see how common it is we show that every sphere is a coset
space. We start from an orthogonal matrix belonging to SO(N). Its first column
is a normalized vector in RY and we can choose coordinates so that it takes the
form (1,0, ..., 0). The group SO(N) clearly acts transitively on the space of all
normalized vectors (that is, on the sphere SV~!), and the isotropy group of the
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chosen point consists of all matrices of the form

1 0 0
0
h=| . (3.147)
: SO(N —1)
0
It follows that
SNl = SO(N)/SO(N — 1) = O(N)/O(N — 1), (3.148)

with the subgroup chosen according to Eq. (3.147). The round metric on S¥~!
arises naturally because it is invariant under the group S O(N) that acts on the coset
space. A similar argument in CV, where a column of a unitary matrix is in effect a
normalized vector in R2V, shows that

S2V-1 = SU(N)/SU(N — 1) = U(N)/U(N —1). (3.149)

And with this observation we finally know enough about spheres.

Problems

Problem 3.1 Derive the intrinsic metric of the sphere using stereographic projec-
tion. For the sake of variety, project from the south pole to the tangent plane at the
north pole rather than to the equatorial plane.

Problem 3.2 A coordinate patch covering part of the sphere — a map from the
sphere to the plane — can be obtained by projecting from an arbitrary point in space.
Show geometrically (by drawing a figure!) that the only conformal projection — a
projection that preserves angles — is the stereographic projection from a point on
the sphere.

Problem 3.3 On the complex plane, identify points connected by x — x + 1 and
also y — y + 1. Do the same for x — x + 1 and y — y + 2. Show that the two
quotient spaces are inequivalent as complex manifolds.

Problem 3.4 Show that the Poisson brackets obey the Jacobi identity because the
symplectic form is closed.

Problem 3.5 Verify that the geodesics on S* meet the equator in two antipodal
points.

Problem 3.6 The coordinates t and ¢ run along Hopf circles, and they appear
symmetrically in the metric (3.98). But 0 < t < 47 and 0 < ¢ < 2. Why this
difference?
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Problem 3.7 Take sections of the Hopf bundle by choosing t = —¢, T = ¢ and
T = ¢ + 7 respectively, and work out what they look like in the stereographic
picture.

Problem 3.8 Everybody knows how to make a Mobius strip by means of a piece
of paper and some glue. Convince yourself that the Mobius strip is a fibre bundle
and show that it admits a global section. Identify the group acting on its fibres
and construct its principal bundle. Show that the principal bundle does not admit a
global section, and hence that the bundle is non-trivial.
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Complex projective spaces

In the house of mathematics there are many mansions and of these the most
elegant is projective geometry.
Morris Kline

An attentive reader of Chapter 3 will have noticed that there must exist a Hopf
fibration of any odd-dimensional sphere; it is just that we studiously avoided to
mention what the resulting base space is. In this chapter it will be revealed that

Ccp" = 818t . 4.1)

The space on the left-hand side is called complex projective space or — when it is
used as a space of pure states in quantum mechanics — projective Hilbert space. It
is not a sphere unless n = 1. The study of projective spaces was actually begun by
artists during the Renaissance, and this is how we begin our story.

4.1 From art to mathematics

Painters, engaged in projecting the ground (conveniently approximated as a flat
plane) onto a flat canvas, discovered that parallel lines on the ground intersect
somewhere on a vanishing line or line at infinity that exists on the canvas but not
on the ground, where parallel lines do not meet. Conversely, a line exists on the
ground (right below the artist) that does not appear on the canvas at all. When the
subject was taken over by mathematicians this led to the theory of the projective
plane or real projective 2-space RP?. The idea is to consider a space whose points
consists of the one-dimensional subspaces of a three-dimensional vector space R>.
Call them rays. The origin is placed at the eye of the artist, and the rays are his lines
of sight. The ground and the canvas serve as two affine coordinate planes for RP?.
A projective line is a certain one parameter family of points in the projective plane,
and is defined as the space of rays belonging to some two-dimensional subspace
R2. In itself, this is the real projective 1-space RP'. To see how all this works out

102
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Figure 4.1. Affine coordinates for (almost all of) the projective plane.

in formulae, we observe that any triple of real numbers defines a one-dimensional
subspace of R3. But the latter does not determine the triple of numbers uniquely.
Hence a point of RP? is given by an equivalence class

(X% X', X% ~ k(x° X', X% keR k0. 4.2)

The numbers X® are known as homogeneous coordinates on RP?. If we want to
use true coordinates, one possibility is to choose a plane in R such as X° =1,
representing an infinite canvas, say. We think of this plane as an affine plane (a
vector space except that the choice of origin and scalar product is left open). We
can then label a ray with the coordinates of the point where it intersects the affine
plane. This is an affine coordinate system on the projective plane; it does not cover
the entire projective plane since the rays lying in the plane X° = 0 are missing. But
this plane is a vector space R?, and the space of rays lying in it is the projective line
RP'. Hence the affine coordinates display the projective plane as an infinite plane
to which we must add an extra projective line ‘at infinity’.

Why did we define our rays as one-dimensional subspaces, and not as directed
lines from the origin? The answer does not matter to the practising artist, but for
the mathematician our definition results in simple incidence properties for points
and lines. The projective plane will now obey the simple axioms that

(1) Any two different points lie on a unique line.
(2) Any two different lines intersect in a unique point.

There are no exceptional cases (such as parallel lines) to worry about. That axiom
(2) holds is simply the observation that two planes through the origin in R3 always
intersect, in a unique line.
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Figure 4.2. Renaissance painter, engaged in changing affine coordinates.

There is nothing special about the line at infinity; the name is just an artefact of
a special choice of affine coordinates. Every projective line is the space of rays in
some two-dimensional subspace of R?, and it has the topology of a circle — to its
image in the affine plane we must add one point ‘at infinity’.

It is interesting to observe that the space of all lines in RP? is another RP? since
one can set up a one-to-one correspondence between rays and planes through the
origin in R?. In fact there is a complete duality between the space of points and the
space of lines in the projective plane. The natural way to select a specific one-to-
one correspondence between RP? and the dual RP? is to introduce a metric in the
underlying vector space, and to declare that a ray in the vector space is dual to that
plane through the origin to which it is orthogonal. But once we think of the vector
space as a metric space as well as a linear one we will be led to the round metric
as the natural metric to use on RP2. Indeed a moment’s reflection shows that RP”
can be thought of as the sphere S” with antipodal points identified,

RP" =S"/Z, . 4.3)

This is one of the reasons why the real projective plane is so famous: it is a space
of constant curvature where every pair of geodesics intersect once (as opposed to
twice, as happens on a sphere). In fact all of Euclid’s axioms for points and straight
lines are valid, except the fifth, which shows that the parallel axiom is independent
of the others.

In general a specific one-to-one map between a projective space and its dual is
known as a polarity, and choosing a polarity singles out a particular metric on the
projective space as being the most natural one.

There are other geometrical figures apart from points and lines. A famous
example is that of the conic section. Consider a (circular, say) cone of rays with its
vertex at the origin of R?. In one affine coordinate system the points of intersection
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Figure 4.3. Real projective space is the sphere with antipodal points identified.
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Figure 4.4. Polarity: a metric for the projective plane.

of the cone with the affine plane will appear as a circle, in another as a hyperbola.
Hence circles, ellipses and hyperbolae are projectively equivalent. In homogeneous
coordinates such a conic section appears as

XN+ (XD = (X°). 4.4)

This equation defines a submanifold of RP? because it is homogeneous in the X¢,
and therefore unaffected by scaling. If we use affine coordinates for which X° = 1
it appears as a circle, but if we use affine coordinates for which X! = 1 it appears as
a hyperbola. We can use this fact to give us some further insight into the somewhat
difficult topology of RP?: if we draw our space as a disc with antipodal points
on the boundary identified — this would be the picture of the topology implied by
Figure 4.3 — then we see that the hyperbola becomes a topological circle because
we are adding two points at infinity. Its interior is an ordinary disc while its exterior
is a Mobius strip because of the identifications at the boundary — if you glue a disc
to the boundary of a M&bius strip you obtain a projective plane. By the way RP?,
unlike RP!, is a non-orientable space; this means that a ‘right-handed’ basis in the
tangent space can be turned into a ‘left-handed’” one by moving it around so that
in fact the distinction between right- and left-handedness cannot be upheld. See
Figure 4.5.

If you think a little bit further about the RP? topology you will also notice a —
possibly reassuring — fact, namely that there is a topological difference between
projective lines and conic sections. Although they are both circles intrinsically, the
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Figure 4.5. The topology of the real projective plane. For a different view, see
Figure 4.12.

conic sections have the property that they can be continually deformed to a point
within the projective plane, while the lines cannot. Indeed if you cut the projective
plane open along a projective line it remains connected, while it splits into two
pieces if you cut along a conic section.

We could go on to discuss n-dimensional real projective spaces RP”, but we
confine ourselves to two topological remarks: that RP" = S"/Z, (obvious), and
that RP?"+! is orientable while RP?" is not (easy to prove).

‘We can change our field from the real numbers R to rational, complex or quater-
nionic numbers. In fact one can also use finite fields, such as the integers modulo p
where p is some prime number. If we repeat the construction of the projective plane
starting from a three-dimensional vector space over the field of integers modulo p
then we will obtain a projective plane with exactly p + 1 points on each line. This
is an interesting construction, but like real and quaternionic projective spaces it is
of only secondary importance in quantum mechanics, where complex projective
space occupies the centre of the stage.

4.2 Complex projective geometry

Complex projective space is in some respects easier to study than is its real cousin,
mainly because the complex numbers form a closed field (that is to say, every poly-
nomial equation has a root). The most effective presentation of CP” starts directly
in the vector space CN = C"*!, known as Hilbert space in quantum mechanics;
our convention is always that N = n + 1. By definition CP” is the space of rays in
C"*!, or equivalently the space of equivalence classes of n + 1 complex numbers,
not all zero, under

z°,z', ...,z ~ 2% ZY, ..., 2", reC  r#£0. (4.5)
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We will use Greek indices to label the homogeneous coordinates. We can cover
CP" with affine coordinate patches like

z¢=(1,z', ..., Z°=@E" 1,7 .., (4.6)

and so on. This leads to two important observations. The first is that one coordinate
patch covers all of CP" except that subset which has (say)

Z%=(0,2",...,Z". 4.7

But the set of all such rays is a CP"~!. Hence we conclude that topologically CP"
is like C" with a CP"~! attached ‘at infinity’. Iterating this observation we obtain
the cell decomposition

CPr=C"uC™!'u...uc’. (4.8)

Evidently CP? is topologically a point and CP' is a 2-sphere, while for n > 1
we get something new that we will have to get used to as we proceed. The second
observation is that in a region where the coordinate systems overlap, they are related
by (say)
, Za+1 ZO Za+1 Za—H

R R B @9
which is clearly an analytic function on the overlap region. Hence CP” is a complex
manifold.

The linear subspaces of CP" are of major importance. They are defined as the
images of the subspaces of C"! under the natural map from the vector space
to the projective space. Equivalently they are given by a suitable number of lin-
ear equations in the homogeneous coordinates. Thus the hyperplanes are (n — 1)-
dimensional submanifolds of CP” defined by the equation

a

Z

P,Z% =0 (4.10)

for some fixed set of n + 1 complex numbers P,. This definition is unaffected
by a change of scale for the homogeneous coordinates, and also by a change of
scale in P,. Hence the n + 1 complex numbers P, themselves are homogeneous
coordinates for a CP”; in other words the hyperplanes in a projective n-space can
be regarded as the points of another projective n-space which is dual to the original.

If we impose a set of m < n independent linear equations on the Z* we obtain
a linear subspace of complex dimension n — m which is itself a CP"~". Geomet-
rically this is the intersection of m hyperplanes. The space whose points consist of
all such (n — m)-dimensional subspaces of CP" is known as a Grassmannian — it
is only in the case of hyperplanes (and the trivial case of points) that the Grassman-
nian is itself a CP". A linear subspace of complex dimension one is known as a
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complex projective line, a linear subspace of dimension two is a complex projective
plane and so on, while CP is just a point. The complex projective line is a CP' —
topologically this is a sphere and this may boggle some minds, but it is a line in the
sense that one can draw a unique line between any pair of points (this is essentially
the statement that two vectors in C**! determine a unique two-dimensional sub-
space). It also behaves like a line in the sense that two projective lines in a projective
space intersect in a unique point if they intersect at all (this is the statement that
a pair of two-dimensional subspaces are either disjoint or they share one common
ray or they coincide). In general the intersection of two linear subspaces A and B
is known as their meet A N B. We can also define their join A U B by taking the
linear span of the two subspaces of the underlying vector space to which A and B
correspond, and then go back down to the projective space. These two operations —
meet and join — turn the set of linear subspaces into a partially ordered structure
known as a lattice, in which every pair of elements has a greatest lower bound (the
meet) and a least upper bound (the join). This is the starting point of the subject
known as quantum logic (Jauch, 1968; Varadarajan, 1985). It is also the second
time we encounter a lattice — in Section 1.1 we came across the lattice of faces of a
convex body. In Chapter 8 we will find a convex body whose lattice of faces agrees
with the lattice of subspaces of a vector space. By then it will be a more interesting
lattice, because we will have an inner product on CV, so that a given subspace can
be associated with its orthogonal complement.

But we have not yet introduced any inner product in CV, or any metric in CP". In
fact we will continue to do without it for some time; projective geometry is precisely
that part of geometry that can be done without a metric. There is an interesting group
theoretical view of this, originated by Felix Klein. All statements about linear
subspaces — such as when two linear subspaces intersect — are invariant under
general linear transformations of CV. They form the group GL(N, C), but only a
subgroup acts effectively on CP". (Recall that N = n + 1. A transformation is said
to act effectively on some space if it moves at least one point.) Changing the matrix
with an overall complex factor does not change the transformation effected on CP”",
so we can set its determinant equal to one and multiply it with an extra complex
Nth root of unity if we wish. The projective group is therefore SL(n + 1, C)/Zy.

According to Klein’s conception projective geometry is completely characterized
by the projective group; its subgroups include the group of affine transformations
that preserves the CP"~! at infinity and this subgroup characterizes affine geometry.
A helpful fact about the projective group is that any set of n + 2 points can be brought
to the standard position (1,0, ...,0),...,(0,...,0,1),(1,1,..., 1) by means of
a projective transformation. For CP! this is the familiar statement that any triple
of points on the complex plane can be transformed to 0, 1, and co by a Mdbius
transformation.



4.3 Complex curves, quadrics and the Segre embedding 109

4.3 Complex curves, quadrics and the Segre embedding

The equation that defines a subspace of CP” does not have to be linear; any homo-
geneous equation in the homogeneous coordinates Z% gives rise to a well-defined
submanifold. Hence in addition to the linear subspaces we have quadrics, cubics,
quartics and so on, depending on the degree of the defining polynomial. The locus
of a number of homogeneous equations

wi(Z) =wy(Z) = =wu(2)=0 (4.11)

is also a subspace known as an algebraic (or projective) variety, and we move from
projective to algebraic geometry.! Chow’s theorem states that every non-singular
algebraic variety is a complex submanifold of CP", and conversely every compact
complex submanifold is the locus of a set of homogeneous equations. On the other
hand it is not true that every complex manifold can be embedded as a complex
submanifold in CP".

There are two kinds of submanifolds that are of immediate interest in quantum
mechanics. One of them is the complex curve; by definition this is a map of CP!
into CP”". In real terms it is a 2-surface in a 2n-dimensional space. This does not
sound much like a curve, but once it is accepted that CP! deserves the name of line
it will be admitted that the name curve is reasonable here. Let us first choose n = 2,
so that we are looking for a complex curve in the projective plane. Using (i, v) as
homogeneous coordinates on CP' we clearly get a map into CP? if we set

w,v) — (@ uv,v?). 4.12)

(In Section 6.4 we will adjust conventions a little.) This is a well-defined map
because the expression is homogeneous in the # and v. Evidently the resulting
complex curve in CP? obeys the equation

7%z = 7'7". (4.13)

Hence it is a quadric hypersurface as well, and indeed any quadric can be brought
to this form by projective transformations. In the projective plane a quadric is also
known as a conic section.

In higher dimensions we encounter complex curves that are increasingly difficult
to grasp since they are not quadrics. The next simplest case is the twisted cubic curve
in CP?, defined by

2

(u,v) — @, u?v, uv?, v¥). 4.14)

We leave it aside for the moment though.

1" A standard reference, stressing the setting of complex manifolds, is Griffiths and Harris (1978). For an alternative
view see the book by Harris alone (Harris, 1992).
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A class of submanifolds that is of particular interest in quantum mechanics arises
in the following way. Suppose that the complex vector space is given as a tensor
product

CrHl @ Ot = et Do+ (4.15)
Then there should be an embedded submanifold
CP" x CP" e Cprtbimth=1 (4.16)

Indeed this is true. In terms of homogeneous coordinates the submanifold can be
parametrized as

Z% =z = pror, 4.17)

in a fairly obvious notation — the P* and Q"' are homogeneous coordinates on
CP" and CP™, respectively. The construction is known as the Segre embedding.
The submanifold is a Cartesian product with (complex) dimension n 4 m, and it
follows from Chow’s theorem that it can be defined as the locus of nm homogeneous
equations in the large space. Indeed it is easy to see from the definition that the
submanifold will be the intersection of the quadrics

VA AL [ ALY | (4.18)

In quantum mechanics — and in Section 15.2 — the Segre submanifold reappears as
the set of separable states of a composite system.
Let us consider the simplest case

CP' x CP' € CP?, (4.19)
when only one equation is needed. Write
VANANV AV A BN VANV ALNV ANV ASE (4.20)
Then the submanifold CP! x CP! is obtained as the quadric surface
7%z - 7'72>=0. 4.21)

In general the non-degenerate quadrics in CP? are in one-to-one correspondence to
all possible embeddings of CP' x CP!. It is interesting to consider the projection
map from the product manifold to one of its factors. This means that we hold Q*
(say) fixed and vary P*. Then the fibre of the map — the set of points on the quadric
that are projected to the point on CP” that is characterized by that particular Q" —
will be given by the equations

ZOO' PO QO’ QO’ Pl QO’ ZlO’
ZoU — PoQr = ov = POV = i

(4.22)
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Figure 4.6. The real Segre embedding: a hyperboloid ruled by straight lines.

Since Q" is fixed this implies that there is a complex number A such that
Z°=2z" and Z*=1Z°. (4.23)

This pair of linear equations defines a projective line in CP3. Projecting down to
the other factor leads to a similar conclusion. In this way we see that the quadric is
ruled by lines, or in other words that through any point on the quadric there goes a
pair of straight lines lying entirely in the quadric.

For visualization, let us consider the real Segre embedding

RP' x RP' € RP*. (4.24)
This time we choose to diagonalize the quadric; define
Z2’=x+U, Z'=Xx-U, Z*=V+Y, Z’=V-Y. (425
‘We then obtain
223 7' =X>4+7v?-U?-V?=0. (4.26)

Now let us choose affine coordinates by dividing through with V. The quadric
becomes

24y —u? =1. 4.27)

This is a hyperboloid of one sheet sitting in a three-dimensional real space. The fact
that such a surface can be ruled by straight lines is a surprising fact of elementary
geometry (first noted by Sir Christopher Wren).
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Figure 4.7. Any state from CP? may be represented by three stars on the sphere.
Some special cases, where the stars coincide, are shown on the right.

4.4 Stars, spinors and complex curves

The stellar representation is a delightful way of visualizing CP” in real terms. It
works for any n and simplifies some problems in a remarkable way.? Here we will
develop it a little from a projective point of view, while Chapter 7 discusses the
same construction with the added benefit of a metric. The idea is that vectors in
C™*! are in one-to-one correspondence with the set of nth degree polynomials in
one complex variable z, such as

wz) =Z2%"+ 727"+ 2. (4.28)

(The important point is that we have a polynomial of the nth degree; in Chapter 7
we will have occasion to polish the conventions a little.) We can rescale the vector
Z% so that Z° = 1; therefore points in CP" will be in one-to-one correspondence
with unordered sets of n complex numbers, namely with the complex roots of the
equation

207+ 7' 4 2T =0=2%C - 2)z ) ... (2 —z,) . (429)

Multiple roots are allowed. If Z° = 0 then infinity counts as a root (of multiplicity
mif Z! = ... = Z"~! = 0). Finally, by means of a stereographic projection the
roots can be represented as unordered sets of n points on an ordinary 2-sphere —
the points are called ‘stars’ and thus we have arrived at the stellar representation, in
which points in CP” are represented by n unordered stars on a ‘celestial’ sphere. As a
mathematical aside it follows that CP! = 82, CP? = §? x §?/S, and in general that
CP" =8% x 8% x --- x §?/S,, where S, is the symmetric group of permutations
of n objects.

2 The first reference appears to be to Majorana (1932). The result has been rediscovered many times within
(Bacry, 1974) and without (Penrose, 1960) the context of quantum mechanics.
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There is a piece of notation that is conveniently introduced at this juncture. Let
us denote the homogeneous coordinates on CP! by

=, v). (4.30)

So we use a capital Latin letter for the index and we will refer to ¢# as a spinor.
The overall scale of the spinor is irrelevant to us, so we can introduce an affine
coordinate z by
v

r=— A ~(1,2). 4.31)
A spinor for which # = 0 then corresponds to the south pole on the Riemann sphere.
We will use the totally anti-symmetric tensor €45 (the symplectic structure on S,
in fact) to raise and lower indices according to

ta=¢lega & M=y (4.32)

Due to the fact that €45 is anti-symmetric there is a definite risk that sign errors
will occur when one uses its inverse €42 . Simply stick to the convention just made
and all will be well. Note that £4¢4 = 0. So far then a spinor simply denotes a
vector in C2. We do not think of this as a Hilbert space yet because there is no
inner product. On the contrary the formalism is manifestly invariant under the full
projective group SL(2, C)/Z>. A special linear transformation on C? gives rise to
a Mobius transformation on the sphere;

A ul| o Bllu , _az+p
§—>|:v,]—[y 8}[1}] = z—>z—yz+8, (4.33)

where o6 — By =1 is the condition (on four complex numbers) that guarantees
that the matrix belongs to SL(2, C) and that the transformation preserves € 5. The
group of Mobius transformations is exactly the group of projective transformations
of CP'.

We can go on to consider totally symmetric multispinors

\IIAB — lII(AB) , lIIABC — \IJ(ABC) (434)

and so on. (The brackets around the indices mean that we are taking the totally
symmetric part.) It is easy to see that when the index ranges from zero to one then
the number of independent components of a rank »n totally symmetric multispinor
is n + 1, just right so that the multispinor can serve as homogeneous coordinates
for CP". To see that this works, consider the equation

Wap.mteP . M =0. (4.35)

If we now choose the scale so that {4 = (1, z) then the above equation turns into an
nth degree polynomial in z, having n complex roots. We can use this fact together
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with Eq. (4.29) to translate between the W4Z--¥ and the Z*, should this be needed.
We can also use the fundamental theorem of algebra to rewrite the polynomial as
a product of n factors. In analogy with Eq. (4.29) we find that

Wap.mt e8Pt =0= (a0 +a1)(Bo+ Bi2) ... (o +mz) . (4.36)

The conclusion is that a rank n multispinor can be written — uniquely except for an
overall factor of no interest to us — as a symmetrized product of n spinors:

Wap. P M =aag*Bpt? o ume™ = Wapw=awBs .. u -
(4.37)
The factors are known as principal spinors, and they are of course the n unordered
points (note the symmetrization) on the sphere in slight disguise.

The stellar representation, or equivalently the spinor notation, deals with linear
subspaces in an elegant way. Consider a complex projective line (a CP') in CP?
for definiteness. A general point in CP? is described by a pair of unordered points
on the 2-sphere, or equivalently as a spinor

lIIAB — a(A,BB) = %(aAﬁB +aB/3A) . (438)

Evidently we get a complex projective line by holding one of the points fixed and
letting the other vary, that is by holding one of the principal spinors (say g4) fixed
and letting the other vary.

The spinor notation also deals elegantly with complex curves in general. Thus
we get a conic section in CP? as the set of points for which the principal spinors
coincide. That is to say that

PAB — pAyB (4.39)

for some spinor W4. Through any point on the quadric (for which ¥4 = o say)
there goes a complex projective line

WAS = AP (4.40)

(where ¢4 varies). This line is tangent to the quadric since it touches the quadric in
a unique point aa®. It is moreover rather easy to see that a pair of tangent lines
always intersect in a unique point. See Figure 4.8.

4.5 The Fubini-Study metric

Now we want a notion of distance, and indeed a Riemannian metric, in CP". How
do we do it? Pick an arbitrary pair of points. The distance between them will be
the length of the geodesic curve connecting them. On the other hand we know that
there is a unique projective line connecting them; topologically this is CP' = S?.
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Figure 4.8. A conic section in CP? and a pair of tangent lines.
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Suppose that we insist that this 2-sphere is a round 2-sphere, with the ordinary
round metric. Let us also insist that the metric on CP” is such that the projective
lines are totally geodesic. Technically a submanifold is said to be totally geodesic if
a geodesic with respect to the induced metric on the submanifold is also a geodesic
with respect to the metric on the embedding space, or equivalently if a geodesic that
starts out parallel to the submanifold stays in the submanifold. But a geodesic on a
complex projective line is simply a great circle on a 2-sphere, so we have found a
way to define geodesics between two arbitrary points in CP”. The resulting notion
of distance is called the Fubini—Study distance.

It only remains to make this definition of the metric on CP” explicit. Since the
geodesic lives on some complex projective line, we can write down its equation
using nothing but the results of Chapter 3. Let us recall Eq. (3.85) for a geodesic
on an odd-dimensional sphere:

Z%0) = Z*(0)coso + Z%(0)sino , (4.41)
where
Z(0)-ZO) = Z©0)- ZO) =1, Z(0)- Z0)+ Z(0)- Z(0) = 0. (4.42)

If Z*(0) = iZ*(0) this is a Hopf circle, and projects to a point on CP! CP! = §2.
In general we can write

Z%0)=m*, Z%0)=m%cosa+n*sina, m-i=0. (4.43)

Since the constant vectors m* and n® have been chosen orthogonal, they lie antipo-
dally on the particular complex projective line that they span. We can now appeal
to the fibre bundle perspective (Section 4.8) to see that this curve is horizontal,

3 1t was first studied by two leading geometers from a century ago; Fubini (1903) and Study (1905).
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and hence projects to a geodesic on CP', if and only if Z - Z = 0, that is to say if
and only if cosa = 0. Alternatively we can use a direct calculation to show that for
general a they project to latitude circles, and to great circles if and only if cosa = 0.
Either way, we conclude that our definition implies that a geodesic on CP” is given
by

Z%0o)=m%coso +n*sinc, m-m=n-n=1,m-n=0. (4.44)

More precisely, this is the horizontal lift of a geodesic on CP” to the odd-dimensional
sphere S?**!, in the fibre bundle CP" = §>"+1/S!.

We will now use this set-up to define the Fubini—Study distance Dgg between
any two points on CP”". Since everything takes place within a complex projective
line, which lifts to a 3-sphere, we can use the expression for the distance arrived at
in our discussion of the Hopf fibration of §*, namely Eq. (3.95). The Fubini—Study
distance Dgs must be given by

cos’ Dps = k , (4.45)
where the projective cross-ratio between two points P* and Q“ is given by

_P-QQ-P

= 7700
We give the same formula in standard quantum mechanical notation in Eq. (5.16).
There is one new feature: in Section 3.5 we assumed that P - P = Q - O = 1, but
this assumption has now been dropped. As in Section 4.1 there is a polarity — that
is to say a map from the space of points to the space of hyperplanes — hidden here:

the polarity maps the point P“ to that special hyperplane consisting of all points
Q0 with

(4.46)

0-P = Q“P, =0. (4.47)

Interestingly complex conjugation appears here for the first time. Another inter-
esting fact is that our definitions imply that CP" is a C, manifold: all geodesics
are closed, and have the same circumference. This is a quite exceptional property,
related to the fact that the isotropy group — the subgroup of isometries leaving a
given point invariant — is so large that it acts transitively on the space of direc-
tions there. Spheres have this property too. The circumference of a geodesic on
CP" equals 7 because CP' is a 2-sphere of radius 1/2; the geodesic on S"*! has
circumference 2w and doubly covers the geodesic on CP”. We also note that the
maximal distance between two points is equal to /2 (when the two vectors are
orthogonal), and that all geodesics meet again at a point of maximal distance from
their point of origin.
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To obtain the line element in a local form we assume that
Q% = P¥“+dpP” (4.48)

and expand to second order in the vector d P (and to second order in Dgg). The
result is the Fubini—Study metric

dP.dP P.P—dP.PP.dP
B P-PP-P ’
Before we are done we will become very familiar with this expression.
It is already clear that many formulae will be simplified if we normalize our
vectors so that P - P = 1. In quantum mechanics, where the vectors are the usual
Hilbert space state vectors, this is usually done. In this chapter we will use nor-
malized vectors now and then in calculations, but on festive occasions — say when
stating a definition — we do not.
An important definition follows immediately, namely that of the 2-form

ds? (4.49)

_P-PdP -AdP —dP-PAP-dP
- P.PP-P '
This is clearly a relative of the metric and the suggestion is that it is a (closed)
symplectic form and that CP" is a Kihler manifold for all n. And this is true. To
prove the Kihler property it is helpful to use the affine coordinates from Section
4.2. When expressed in terms of them the Fubini—Study metric becomes

1 ( v Zadz0dzZpz?
§T = 4 a T 1 3 i,
14 z|? 1+ ]z

Q

(4.50)

) =2g,5dz%dZ",  |z]> =2Z,. (451)

(We are using 8, to change 7% into Z,.) Now

1 ZaZB ) 2
28 =—— |6 — ——— ) = 3,05 In(1 + |2]7) . 4.52
8ub H'le(w i) = s 1e) 4.52)
Or more elegantly
1 -
8ab = 5303,; InZ- -7, (4.53)

where it is understood that the homogeneous coordinates should be expressed in
terms of the affine ones. As we know from Section 3.3 this proves that CP” is a
Kihler manifold. Every complex submanifold is Kihler too. Forn = 1 werecognize
the metric on S? written in stereographic coordinates.

We will use a different choice of coordinate system to explore the space in detail,
but the affine coordinates are useful for several purposes, for instance if one wants
to perform an explicit check that the curve (4.44) is indeed a geodesic, or when one
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wants to compute the Riemann curvature tensor. Thus:

P =201 4 1216 + 22%) (4.54)
1

r,g = —TW((SZZC—%S;’Z;)) (4.55)

Ra};u—i = _z(ga};gcz_l—i_gac_lgci_i) (456)

Ry = 2(n+ gy - (4.57)

All components not related to these through index symmetries or complex conjuga-
tion are zero. From the expression for the Ricci tensor R,,; we see that its traceless
part vanishes; the Fubini—Study metric solves the Euclidean Einstein equations with
a cosmological constant. The form of the full Riemann tensor R,;.; shows that the
space has constant holomorphic sectional curvature (but it does not show that the
curvature is constant, and in fact it is not — our result is weaker basically because
gaqp 18 just one ‘block’ of the metric tensor). There is an important theorem that
says that a simply connected complex manifold of constant holomorphic sectional
curvature is necessarily isometric with CP” or else it has the topology of an open
unit ball in C", depending on the sign of the curvature. (If it vanishes the space is
C".) The situation is clearly analogous to that of simply connected two-dimensional
manifolds of constant sectional curvature, which are either spheres, flat spaces, or
hyperbolic spaces with the topology of a ball.

We observe that both the Riemannian and the symplectic geometry relies on
the Hermitian form Z -Z = Z*Z, in CV. Therefore distances and areas are
invariant only under those projective transformations that preserve this form. These
are precisely the unitary transformations, with anti-unitary transformations added
if we allow the transformations to flip the sign of the symplectic form. In quantum
mechanics this theorem goes under the name of Wigner’s theorem (Wigner, 1959):

Theorem 4.1 (Wigner’s) All isometries of CP" arise from unitary or anti-unitary
transformations of CV.

Since only a part of the unitary group acts effectively the connected component of
the isometry group is in fact SU(N)/Zy. For N = 2 we are dealing with a sphere
and SU(2)/Z, = SO(3), that is the group of proper rotations. The full isometry
group O(3) includes reflections and arises when anti-unitary transformations are
allowed.

‘We obtain an infinitesimal isometry by choosing an Hermitian matrix — a gener-
ator of U(N) — and writing

iz* = HZP . (4.58)
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This equation — to reappear as the Schrodinger equation in Section 5.1 — determines
a Killing flow on CP". A part of it represents ‘gauge’, that is changes in the overall
phase of the homogeneous coordinates. Therefore we write the projective equation

izzP = 7" z7 (4.59)

where the brackets denote anti-symmetrization. This equation contains all the
information concerning the Killing flow on CP” itself, and is called the projec-
tive Schréodinger equation (Hughston, 1995, p. 59). The fixed points of the flow
occur when the right-hand side vanishes. Because of the anti-symmetrized indices
this happens when Z“ is an eigenvector of the Hamiltonian,

H®, 7P = Ez°. (4.60)

A picture will be given later.

There are other ways of introducing the Fubini-Study metric. We usually
understand CP!, that is the 2-sphere, as a subset embedded in R3. Through the
Hopf fibration we can also understand it as the base space of a fibre bundle whose
total space is either S* or C? with the origin excluded. Both of these pictures can
be generalized to CP" for arbitrary n. The fibre bundle picture will be discussed
in more detail later. The embedding picture relies on an embedding into R +1°~1,
The dimension is rather high but we will have to live with this. To see how it works,
use homogeneous coordinates to describe CP" and form the matrix

« _ Z%Z
pp = 7 (4.61)

This is a useful way to represent a point in CP” since the reduncancy of the homoge-

neous coordinates has disappeared. The resulting matrix is Hermitian and has trace
unity. Hence we have an embedding of CP” into the space of Hermitian N x N
matrices with trace unity, which has the dimension advertised, and can be made
into a flat space in a natural way. We simply set

D*(A,B) = %Tr(A — B)>. (4.62)

This expression defines a distance D between the matrices A and B (equal to the

Hilbert—Schmidt distance introduced in Chapter 8). It is analogous to the chordal

distance between two points on the sphere when embedded in a flat space in the

standard way.

To see that the embedding gives rise to the Fubini-Study metric we take two
matrices representing different points of CP”, such as
PC( P o

PPE= 5P péﬁngQ, (4.63)
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and compute
Dz(pp, po)=1—-Kk=1- cos? Dgs , (4.64)

where « is the projective cross-ratio (4.46) and Dgg is the Fubini—Study dis-
tance between P and Q along a curve lying within the embedded CP”. If the
points are very close we can expand the square of the cosine to second order and
obtain

D = Dgs + higher order terms . (4.65)

This proves our point. The Riemannian metric
1
ds? = 3 Tr dp dp, (4.66)

is precisely the Fubini—Study metric, provided that it is evaluated at a point where
the matrix p is an outer product of two vectors — and dp is the ‘infinitesimal’
difference between two such matrices, or more precisely a tangent vector to CP”.
This embedding will reappear in Chapter 8 as the embedding of pure states into the
space of density matrices.

4.6 CP" illustrated

At this point we still do not know what CP" ‘looks like’, even in the modest
sense that we feel that we know what an n-sphere ‘looks like’ for arbitrary n.
There is a choice of coordinate system that turns out to be surprisingly helpful in
this regard (Barros e Sd, 2001a; Bengtsson, Brinnlund and Zyczkowski, 2002).
Define

(2°, 7', ...,Z") = (ng, nie", ..., nye™), (4.67)

where 0 < v; < 27 and the real numbers ng, n; are non-negative, nop > 0, n; > 0,
and obey the constraint

ng+ni44ni=1. (4.68)

We call such coordinates octant coordinates, because ng, ny, ... clearly form the
positive hyperoctant of an n-sphere. The phases v; form an n-torus, so we already
see a picture of the topology of CP" emerging: we have a set of tori parametrized
by the points of a hyperoctant, with the proviso that the picture breaks down at the
edges of the hyperoctant, where the phases are undefined.*

4 There is an entire branch of mathematics called ‘toric geometry’ whose subject matter, roughly speaking, consists
of spaces that can be described in this way. See Ewald (1996) for more on this.
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To go all the way to a local coordinate system we can set

nog = cos ¥ sint, sinvz ... sind,
np = sind; sin¥, sindz ... sind,
. . b4
ny = cossinvs ... sinv, 0< ¥ <—. (4.69)
- . 2
n, = cos ¥,

This is just like Eq. (1.13), except that the range of the coordinates has changed.
We can also use n; as orthographic coordinates. Alternatively we can set

y = n? (4.70)

1

and use the n coordinates y;. This looks contrived at this stage but will suggest
itself later. If we also define yy = nj we clearly have

Yo+yi+--+y=1. 4.71)

A probability interpretation is not far behind ... .
To see how it all works, let us consider CP2. The point is that octant coordinates
are quite well adapted to the Fubini—Study metric, which becomes

ds? = dng + dn% + dn%
+ 031 —nd)dv? +n3(1 —n3)dvi —2n2n3 dvydv, . (4.72)

The first piece here, given Eq. (4.68), is recognizable as the ordinary round metric
on the sphere. The second part is the metric on a flat torus, whose shape depends
on where we are on the octant. Hence we are justified in thinking of CP? as a set
of flat 2-tori parametrized by a round octant of a 2-sphere. There is an evident
generalization to all n, and in fact we can draw accurate pictures of CP? if we want
to.

For n = 1 we obtain a one parameter family of circles that degenerate to points
at the end of the interval; a moment’s thought will convince the reader that this is
simply a way to describe a 2-sphere. Just to make sure, use the angular coordinates
and find that Eq. (4.72) becomes

1 1
ds? = do? + 3 sin® (29) dv? = 3 (d6? + sin® 0 d¢p?) , 4.73)

where we used 6 = 21 and ¢ = v, in the second step.

To make the case n = 2 quite clear we make a map of the octant, using a stereo-
graphic or a gnomonic projection (Section 3.1). The latter is quite useful here and
it does not matter that only half the sphere can be covered since we need to cover
only one octant anyway. It is convenient to centre the projection at the centre of the
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a) N=2 b) N=3
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Figure 4.9. CP? may be visualized as the positive octant of a 2-sphere. Each point
inside the octant represents a torus T2 spanned by the phases (v;, v;) (b). Each
point at the edges of the octant denotes a circle, so each of three edges representes a
2-sphere. For comparison we plot CP! in the same manner, in panel (a). A realistic
view of CP! is shown in panel (c); an analogous view of CP? would be more
difficult (d).

octant and adjust the coordinate plane so that the coordinate distance between a pair
of corners of the resulting triangle equals one. The result is shown in Figure 4.10.

This takes care of the octant. We obtain a picture of CP?> when we remember
that each interior point really represents a flat torus, conveniently regarded as a
parallelogram with opposite sides identified. The shape of the parallelogram —
discussed in Section 3.3 — is relevant. According to Eq. (4.72) the lengths of the
sides are

2
L1=/ ds =2nn/1—n? and Ly, =2mny/1—n}. (4.74)
0

The angle between them is given by

niny

1/l—nl,/l—n2

The point is that the shape depends on where we are on the octant. So does the total
area of the torus,

cosfjp = — 4.75)

A = LL,sin0;; = 47’nonns . (4.76)

The ‘biggest’ torus occurs at the centre of the octant. At the boundaries the area of
the tori is zero. This is because there the tori degenerate to circles. In effect an edge
of the octant is a one parameter family of circles, in other words it is a CP'.

It is crucial to realize that there is nothing special going on at the edges and
corners of the octant, whatever the impression left by the map may be. Like the
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Figure 4.10. In (a) we indicate how the torus lying over each interior point changes
with position in the octant. The position in the octant is given by an unnormalized
vector. At the edges the tori degenerate to circles so edges are complex projective
lines. The corners of the octant represent orthogonal points. It may be convenient
to perform some cutting and gluing of the parallelogram before thinking about the
shape of the torus it defines, as indicated with dashed lines for the torus lying over
the point (1, 4, 1). The size of the octant relative to that of the tori is exaggerated
in the picture. To bring this home we show, in (b), the largest torus — the one sitting
over (1, 1, 1) — decorated with three times three points (marked with crosses and
filled or unfilled dots). Each such triple corresponds to an orthogonal basis. The
coordinates (v;, v;) are given for one of the triples.

(01,0

sphere, CP” is a homogeneous space and looks the same from every point. To see
this, note that any choice of an orthogonal basis in a three-dimensional Hilbert space
gives rise to three points separated by the distance 7 /2 from each other in CP?, By
an appropriate choice of coordinates we can make any such triplet of points sit at
the corners of an octant in a picture identical to the one shown in Figure 4.11.

To get used to the picture we begin by looking at some one real dimensional
curves in it. We choose to look at the flow lines of an isometry — a Killing field.
Since the isometries are given by unitary transformations of CV, we obtain an
infinitesimal isometry by choosing an Hermitian matrix. Any such matrix can be
diagonalized, so we can choose a basis in which the given Hermitian 3 x 3 matrix
takes the form

H% =10 E 0 |. 4.77)
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Figure 4.11. Killing vector flows on CP?. Stereographic coordinates are used for
the octant.

We can therefore arrange our octant picture so that the fixed points of the flow —
determined by the eigenvectors — occur at the corners. If we exponentiate Eq. (4.58)
we find that the isometry becomes

nO e*iEoI 0 0 nO
nle” — 0 Bt 0 nle (4.78)
nZGivz 0 0 efiEzt n261vz

where ¢ is a parameter along the flow lines. Taking out an overall phase, we find
that this implies that

nl>anl, v v+ (Ey—EDt, vy— v+ (Ey— Ex)t. (4.79)
Hence the position on the octant is preserved by the Killing vector flow; the
movement occurs on the tori only. At the edges of the octant (which are spheres,
determined by the location of the fixed points) the picture is the expected one. At a
generic point the orbits wind around the tori and, unless the frequencies are rational
multiples of each other, they will eventually cover the tori densely. Closed orbits
are exceptional.

We go on to consider some submanifolds. Every pair of points in the complex
projective plane defines a unique complex projective line, that is a CP!, containing
the pair of points. Conversely a pair of complex projective lines always intersect
at a unique point. Through every point there passes a 2-sphere’s worth of complex
projective lines, conveniently parametrized by the way they intersect the line at
infinity, that is the set of points at maximal distance from the given point. This is
easily illustrated provided we arrange the picture so that the given point sits in a
corner, with the line at infinity represented by the opposite edge. An interesting fact
about CP? follows from this, namely that it contains incontractible 2-spheres — a
complex projective line can be deformed so that its radius grows, but it cannot be
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Figure 4.12. Using stereographic coordinates we show how the octant picture of
the real submanifold RP? is related to the standard description as a hemisphere
with antipodal points on the equator identified.

deformed so that its radius shrinks because it has to intersect the line at infinity in
a point. (The topological reasons for this can be seen in the picture.)

Another submanifold is the real projective plane RP?. It is defined in a way
analogous to the definition of CP? except that real rather than complex numbers are
used. The points of RP? are therefore in one-to-one correspondence with the set of
lines through the origin in a three-dimensional real vector space and also with the
points of S?/Z,, that is to say the sphere with antipodal points identified. In its turn
this is a hemisphere with antipodal points on the equator identified. RP? is clearly
a subset of CP2, It is illuminating to see how the octant picture is obtained, starting
from the stereographic projection of a hemisphere (a unit disc) and folding it twice.

Next choose a point. Adjust the picture so that it sits at a corner of the octant.
Surround the chosen point with a 3-sphere consisting of points at constant distance
from that point. In the picture this will appear as a curve in the octant, with an
entire torus sitting over each interior point on the curve. This makes sense: from the
Hopf fibration we know that S* can be thought of as a one parameter family of tori
with circles at the ends. The 3-sphere is round if the tori have a suitable rectangular
shape. But as we let our 3-sphere grow, its tori get more and more ‘squashed’ by the
curvature of CP?, and the roundness gradually disappears. When the radius reaches
its maximum value of 77 /2 the 3-sphere has collapsed to a 2-sphere, namely to the
projective line at infinity. In equations, set

0 0
n1=sinrcos§, nzzsinrsinz, T=vi+v, ¢=v—1vy, (480)

where 0 < r < 7/2,0 <6 < . When we express the Fubini—Study metric in these
coordinates we find that they are geodesic polar coordinates with the coordinate
measuring the distance from the origin — curves with affine parameter equal to r
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Figure 4.13. The set of points at constant distance from a corner form a squashed
3-sphere. In (a) we show how such a submanifold appears in the octant. All points
in the torus lying over a point on the curve are included. In (b) we show how the
size and shape of the torus change as we move along the curve in the octant; at
the ends of the interval the tori collapse to circles. For comparison, in (c) we show
the corresponding picture for a round 3-sphere.

are manifestly geodesics. Indeed
ds? = dr? +sin’ r (©% + ©3 + cos’ r ©3) , (4.81)

where the ®; are the invariant forms introduced in Section 3.7; our squashed spheres
at constant distance are Berger spheres, as defined in the same section.

Finally, a warning: the octant picture distorts distances in many ways. For
instance, the distance between two points in a given torus is shorter than it looks,
because the shortest path between them is not the same as a straight line within
the torus itself. Note also that we have chosen to exaggerate the size of the octant
relative to that of the tori in the pictures. To realize how much room there is in the
largest torus we note that one can find four sets of orthonormal bases in the Hilbert
space C? such that the absolute value of the scalar product between members of
different bases is 1/+/3 — a kind of sphere packing problem in CP?. If one basis
is represented by the corners of the octant, the remaining 3 x 3 basis vectors are
situated in the torus over the centre of the octant,’ as illustrated in Figure 4.10. The
message is that the biggest torus is really big.

3 Ttis not known to what extent this property generalizes to arbitrary Hilbert space dimension. Ivanovi¢ (1981) and
Wootters and Fields (1989) have shown that N + 1 orthonormal bases with the modulus of the scalar product
between members of different bases always equal to 1/+/N can be found if the dimension N = p*, where p is
a prime number.
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4.7 Symplectic geometry and the Fubini-Study measure

So far the symplectic form has not been illustrated, but the octant coordinates are
very useful for this purpose too. If weuse n, ns, . .., n, as orthographic coordinates
on the octant we find that the symplectic form (4.50) is

Q = 2(mydny Advy + -+ - +n,dn, Ady,) . (4.82)
Even better, we can use y; = ”12 as coordinates. Then 2 takes the canonical form
Q=dy, Adv;+---+dy, Ady, . (4.83)

In effect (y;, v;) are action-angle variables.

Given a symplectic form we can construct a phase space volume by wedging it
with itself enough times. This is actually simpler than to compute the determinant
of the metric tensor, and the two notions of volume — symplectic and metric — agree
because we are on a Kéhler manifold. Thus, in form language, the Fubini—Study
volume element on CP" is

- 1

1 1 1
a¢, = ! (EQ) A (EQ) Ao A (EQ) s (4.84)

n
where we take n wedge products. Equivalently we compute the square root of
the determinant of the metric. We have decorated the volume element with a tilde
because in Section 7.6 we will divide it with the total volume of CP” to obtain
the Fubini—Study measure dS2,, which is a probability distribution whose integral
over CP" equals unity. Any measure related to the Fubini-Study volume element
by a constant is distinguished by the fact that it gives the same volume to every ball
of given radius, as measured by the Fubini—Study metric, and by the fact that it is
unitarily invariant, in the sense that vol(A) = vol(U (A)) for any subset A of CP".

Itis a volume element worth studying in several coordinate systems. Using octant
coordinates we obtain

d€, = non;...n,dVeidv,...dv,, O<v <27 (4.85)

where d Vg« is the measure on the round n-sphere. If we use orthographic coordinates
on the round octant, remember that ,/g = 1/n¢ in these coordinates, and use the
coordinates y; = ni2, we obtain

1
de2, =n1...n,,dn1...dnndvl...dvn=§dy1...dyndV1...dvn. (4.86)

All factors in the measure have cancelled out! As far as calculations of volumes are
concerned CP” behaves like a Cartesian product of a flat simplex and a flat torus
of a fixed size.
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The angular coordinates ¥ can also be used on the octant. We just combine
Eqgs. (4.85) with Eq. (1.14) for the measure on the round octant. Computing the
total volume of CP" with respect to its Fubini—Study volume element then leads to
an easy integral:

vol(CP") = /

B n % 2 ) "
d$, = ]_[ / de; / dv; cos 9 sin 9 = — . (4.87)
cpr i=170 0 n:

We fixed the linear scale of the space by the requirement that a closed geodesic has
circumference . Then the volume goes to zero when n goes to infinity. Asymp-
totically the volume of CP” even goes to zero somewhat faster than that of S2*, but
the comparison is not fair unless we rescale the sphere until the great circles have
circumference 7. Having done so we find that the volume of CP” is always larger
than that of the sphere (except when n = 1, when they coincide).

It is curious to observe that

Vol(s2n+l)

vol(CP") = vol(A,) x vol(T") = W .

(4.88)
The first equality expresses the volume as the product of the volumes of a flat
simplex and a flat torus and is quite surprising, while the second is the volume
of §**1, given in Eq. (1.17), divided by the volume 27 of a Hopf circle as one
would perhaps expect from the Hopf fibration. The lesson is that the volume does
not feel any of the more subtle topological properties involved in the fibre bundle
construction of CP”.

4.8 Fibre bundle aspects

Although we did not stress it so far, it is clear that CP” is the base manifold of
a bundle whose total space is S?**! or even C¥ = C"*! with its origin deleted.
The latter bundle is known as the tautological bundle for fairly obvious reasons. A
lightning review of our discussion of fibre bundles in Chapter 3 consists, in effect,
of the observation that our expression for the Fubini—Study metric is invariant under

dP* — dP“+zP%, (4.89)

where z = x 4 iy is some complex number. But the vector x P* is orthogonal to
the sphere, while iy P* points along its Hopf fibres. Because it is unaffected by
changes in these directions the Fubini—Study metric really is a metric on the space
of Hopf fibres. In some ways it is convenient to normalize our vectorsto Z - Z = 1
here because then we are dealing with a principal bundle. The tautological bundle
is not a principal bundle; technically it is called a Hermitian line bundle.
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A fibre bundle can always be equipped with a connection that allows us to lift
curves in the base manifold to the bundle space in a unique manner. Here the
preferred choice is

iZ.dZ2—-dz-Z
2 Z-Z
In the last step we used normalized vectors. The equation w = 0 now expresses

the requirement that dZ* be orthogonal to Z%, so that the lifted curve will be
perpendicular to the fibres of the bundle. A minor calculation confirms that

w =

= —idZ-Z. (4.90)

do = Q, 4.91)

where 2 is the symplectic 2-form defined in Eq. (4.50).

Let us lift some curves on CP” to Hilbert space. We have already done so for a
geodesic on the base manifold — the result is given in Eq. (4.44). Since Z - Z = 0
along this curve, it follows that @ = 0 along it, so indeed it is a horizontal lift.
Another example that we have encountered already: in Eq. (4.58) we wrote the
Schrodinger equation, or equivalently the flow line of some isometry, as

idz* = H,ZPdr . (4.92)

Evidently
1 o e -
0= E(Z"‘Ha PZp — ZoH,ZP) dt = 0 (4.93)

along the resulting curve in the bundle, so that this is the horizontal lift of a curve
defined in the base manifold by the projective Schrodinger equation (4.59).

Now consider an arbitrary curve C(o) in CP", and an arbitrary lift of it to CV.
Let the curve run from o to o,. Define its geometric phase as

¢, = arg (Z(crz) - Z(o )) — f w . 4.94)

c
From now on we assume that the length of the curve is less than /2 so that the
argument that defines the fotal phase — the first term on the right-hand side — of
the curve is well defined. Suppose that we change the lift of the curve by means of
the transformation

Z¢ > e*7% = w—>w+dr, (4.95)

where A is some function of o. Although both the connection and the total phase
change under this transformation, the geometric phase does not. Indeed it is easy
to see that

a2

Be — e+ (02 — (o)) — / B = g, . 4.96)

o1
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The conclusion is that the geometric phase does not depend on the particular lift
that we use. Hence it is genuinely a function of the original curve in CP” itself. The
total phase on the other hand is not — although it equals the geometric phase for a
horizontal lift of the curve.

An interesting observation, with consequences, is that if we compute the total
phase along the horizontal lift (4.44) of a geodesic in CP" we find that it vanishes.
This means that the geometrical phase is zero for any lift of a geodesic. A geodesic
is therefore a null phase curve. The converse is not true — we will find further
examples of null phase curves in Chapter 6. To see what the consequences are,
consider a geodesic triangle in CP", that is three points P, Q and R connected with
geodesic arcs not longer than /2. In flat space the lengths of the sides determine
the triangle uniquely up to isometries, but in curved spaces this need not be so. As
it happens a geodesic triangle in CP” is determined up to isometries by its side
lengths and its symplectic area, that is the integral of the symplectic form €2 over
any area bounded by the three geodesic arcs (Brehm, 1990). To such a triangle we
can associate the Bargmann invariant ®

As3(P,Q,R) = % = cos Dpg cos Dggcos Drpe @ . (4.97)
Here Dpg is the Fubini—Study distance between the points whose homogeneous
coordinates are P and Q, and so on. But what is the phase ®? Since each
side of the triangle is a geodesic arc the geometric phase of each side is zero,
and by Eq. (4.94) the total phase of the side is equal to the integral along the
arc of w. Adding the contribution of all the sides (and normalizing the vectors)

we get

argP-QQ-RR-P:—argQ-P—argR-Q—argP-i_?:—?{ w. (4.98)
aA

It follows from Stokes’ theorem that the phase & is the symplectic area of the
triangle,

¢ = / Q. (4.99)
A

We can go on to define Bargmann invariants for four, five and more points in the
same cyclic manner and — by triangulation — we find that their phases are given by
the symplectic area of the geodesic polygon spanned by the points.

6 It is invariant under phase changes of the homogenous coordinates and attracted Bargmann’s attention
(Bargmann, 1964) because, unlike the Fubini-Study distance, it is a complex valued function defined on CP".
Blaschke and Terheggen (1939) considered this early on. That its argument is the area of a triangle was proved
by both physicists (Mukunda and Simon, 1993) and mathematicians (Hangan and Masala, 1994).
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Figure 4.14. A flag may consist of a one-dimensional subspace of a two-
dimensional subspace of a three-dimensional space — it is clear why it is called
that!

The geometric phase also goes under the name of the Berry phase; the case that
Berry studied was that of an eigenstate of a Hamiltonian H that is carried around
a loop by adiabatic cycling of H.”

4.9 Grassmannians and flag manifolds

Projective space is only the first of its kind. Starting from an N-dimensional vector
space V, real or complex, we can consider nested sequences of subspaces V; of
dimension d;, such that V| C V, C --- C V,. This is called a flag of subspaces (as
explained in Figure 4.14). The space of all flags of a given kind is known as a
flag manifold and denoted by Fglv) 4> brojective space is the easy case where a flag
consists of a single one-dimensional subspace only. The next simplest case is that
where the flags consist of a single M-dimensional subspace; such a flag manifold is
known as the Grassmannian F(A]j) = Gr%, ~- The notation also tells us which field
(R or C) we are using; if there is no label then the complex numbers are implied.

To see how this works let us consider the case of Gr; 4, which is the space of
2-planes in a four-dimensional vector space. We fix a 2-plane in C* by fixing two
linearly independent vectors spanning that plane, and collect them into a rank two
N x 2 matrix

Z(),O Z()’l 1 0
Zio Zi; 0 1

’ ’ ~ 4.100
Zro 2 220 22,1 ( )
Z30 Zs,; 730 23,1

The entries in the matrix on the left are homogeneous coordinates on the Grassman-
nian. Then we exercised our right to perform linear combinations and rescalings
of the columns to get the matrix in a standard form. The remaining four complex

7 The original paper by Berry (1984) is reprinted in a book edited by Shapere and Wilczek (1989). See Anandan
and Aharonov (1990) and Mukunda and Simon (1993) for the point of view that we take here, and Chrusciriski
and Jamiotkowski (2004) for much more.
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numbers serve as affine coordinates on the four complex dimensional Grassman-
nian. Note that if the upper two rows were linearly dependent this form could not
have been reached, but since the matrix as a whole has rank two we can introduce
a similar coordinate system by singling out another pair of rows. (Indeed it is not
hard to see that the Grassmannian is a complex manifold that can be completely
covered by six coordinate patches of this kind.) From a geometrical point of view it
is sometimes advantageous to think of the Grassmannian of 2-planes as the space of
projective lines in a projective space of dimension N — 1;itis aninteresting exercise
to convince oneself directly that the space of lines in 3-space is four-dimensional.
On the other hand the use of an N x M matrix as homogeneous coordinates for
Gr ), v has advantages too and leads to an immediate proof that it is a complex
manifold of M(N — M) complex dimensions.

When we get to more involved examples of flag manifolds any kind of explicit
description of the space will get involved, too. For this reason it is a good idea
to fall back on a description as coset spaces. Let us begin with F(14) = CP>. The
group G L(4, C) acts transitively on the underlying vector space. Pick any point,
say p =(1,0,0,0) and find its isotropy group — that subgroup of the transitive
group that leaves the given point invariant. Here the isotropy group consists of all
matrices & of the form

, (4.101)

SO o e

where e is any complex number. This defines a subgroup of G L(4, C), and we can
now define CP3 as a coset space following the recipe in Section 3.8. We can use
SL(4, C) as our starting point instead; the resulting coset will be the same once the
form of # is restricted so that it has unit determinant. Call the resulting isotropy
group Pl(4). Indeed we can restrict ourselves to U (N) since the unitary subgroup of
G L(4, C) also acts transitively; when /4 is restricted to belong to U (N) it becomes a
block diagonal matrix representing U (1) x U(3). The argument clearly generalizes
to any dimension, so that we have proved that

SL(N,C) U(N)

FV =cpV!' = = :
1 p™ U(l) x UN —1)

(4.102)

For real projective space we just have to replace SL(C) with SL(IR) and the unitary
groups by orthogonal groups.

8 The affine coordinates are particularly useful if one wants to discuss the natural (Fubini-Study like) metric
properties of the Grassmannians. See Wong (1967) for this.
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The same argument repeated for the Grassmannian Gr; 4 reveals that the isotropy
group can be written as the set P2(4) of special linear matrices of the form

(4.103)

S O e e
S O e e
e o o o
e o o o

or as block diagonal unitary matrices belonging to U(2) x U(2) if only unitary
transformations are considered. For the flag manifold F(INZ)2 the isotropy group is
a Borel subgroup B of SL(4,C); by definition the standard Borel subgroup is
the group of upper triangular matrices and a general Borel subgroup is given by
conjugation of the standard one. If the group is U(N) the Borel subgroup is the
subgroup U(1) x U(1) x U(1) x U(1), given by diagonal matrices in the standard
case. The isotropy groups considered above are examples of parabolic subgroups
P of the group G, represented by ‘block upper triangular’ matrices such that B C
P C G. Thus we can write, in complete generality,

(N) :SL(N,(C): U(N) 4.104)
e = p) T UG x Uka) . Ulkrs )]
where k; = dj and k; | = d; 11 — d; (and d, .1 = N). Given that the real dimension
of U(N) is N? the real dimension of an arbitrary flag manifold is
r+1
dim(Fy) ) =N>—> k7. (4.105)
i=1

Equivalently it is simply twice the number of zeroes in the complex matrices repre-
senting the parabolic subgroup ng .a,- For real flag manifolds, replace the unitary
groups with orthogonal groups.

The two descriptions of flag manifolds given in Eq. (4.104) are useful in different
ways. To see why we quote two facts: the quotient of two complex groups is a
complex manifold, and the quotient of two compact groups is a compact manifold.
Then the conclusion is that all flag manifolds are compact complex manifolds.
Indeed they are also Kéhler manifolds. This has to do with another way of arriving
at them, based on adjoint orbits in a Lie algebra. This aspect of flag manifolds will
be discussed at length in Chapter 8 but let us reveal the point already here. The Lie
algebra of the unitary group is the set of Hermitian matrices, and such matrices can
always be diagonalized by unitary transformations. The set of Hermitian matrices
with a given spectrum (Aj, A2, ..., Ay) can therefore be written as

Hi iy = UHgingU ™" . (4.106)
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This is an adjoint orbit and a little bit of thinking reveals that it is also a flag
manifold F™; which particular one depends on whether there are degeneracies
in the spectrum. For the special case when A; = 1 and all the others are zero we
came across this fact when we embedded CP” in the flat vector space of Hermitian
matrices; see Eq. (4.61). The theme will be further pursued in section 8.5.°

A variation on the theme deserves mention too. A Stiefel manifold is by definition
the space of sets of M orthonormal vectors in an N-dimensional vector space. It is
not hard to see that these are the complex (real) homogeneous spaces

© _  UW) ® _  O(NN)

" UN - M) MNT"O(N — M)’
This is not quite the same as a Grassmannian since the definition of the latter is
insensitive to the choice of basis in the M-dimensional subspaces that are the points
of the Grassmannian. As special cases we get Sty = $?V~" and St{y = S¥1;
see Section 3.8. '

and St (4.107)

Problems

Problem 4.1 Considern + 2 ordered points on the plane, not all of which coincide.
Consider two such sets equivalent if they can be transformed into each other by
translations, rotations and scalings. Show that the topology of the resulting set is
that of CP". What does CP" have to do with archaeology?

Problem 4.2 If you manage to glue together a Mobius strip and a hemisphere you
get RP2. What will you obtain if you glue two Mébius strips together?

Problem 4.3 Carry through the argument needed to prove that a complex projective
line cannot be shrunk to a point within CP", using formulae, and using the octant
picture.

9 For further information on flag manifolds, in a form accessible to physicists, consult Picken (1990). The adjoint
orbits should really be coadjoint, but the distinction is irrelevant here.
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Outline of quantum mechanics

Quantum mechanics is like a pot: it is almost indestructible and extremely
rigid, but also very flexible because you can use any ingredients for your
soup.

Goran Lindblad

5.1 Quantum mechanics

Although our first four chapters have been very mathematical, quantum mechanics
has never been very far away. Let us recall how the mathematical structure of
quantum mechanics is usually summarized at the end of a first course in the subject.
First of all the pure states are given by vectors in a Hilbert space. If that Hilbert space
is finite dimensional it is simply the vector space CV equipped with a scalar product
of the particular kind that we called a Hermitian form in Eq. (3.82). Actually a pure
state corresponds to an entire equivalence class of vectors; this is usually treated
in such a way that the vectors are normalized to have length one and afterwards
vectors differing by an overall phase el® are regarded as physically equivalent. In
effect then the space of pure states is the complex projective space CP”; as always
in this book n = N — 1. The notation used in quantum mechanics differs from
what we have used so far. We have denoted vectors in C¥ by Z%, while in quantum
mechanics they are usually denoted by a ket vector |1). We can think of the index
a as just a label telling us that Z“ is a vector, and then these two notations are in
fact exactly equivalent. It is more common to regard the index as taking N different
values, and then Z“ stands for the N components of the vector with respect to some
chosen basis, that is

W) =Y Z%lea) . (5.1)
a=0

135
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To each vector Z* there corresponds in a canonical way a dual vector Z,; in Dirac’s
notation this is a bra vector (1 |. Given two vectors there are then two kinds of objects
that can be formed: a complex number (¢|v), and an operator |)(¢| that can be
represented by a square matrix of size N.

The full set of states includes both pure and mixed states. To form mixtures we
first write all pure states as operators, that is we define

o=yl & p%=2Z, (5.2)

where the state vector is assumed to be normalized to length one and our two
equivalent notations have been used. This is a Hermitian matrix of trace one and
rank one, in other words it is a projection operator onto the linear subspace spanned
by the original state vector; note that the unphysical phase of the state vector has
dropped out of this formula so that we have a one-to-one correspondence between
pure states and projection operators onto rays. Next we take convex combinations
of K pure states, and obtain expressions of the form

K
p =Y pilvdil. (5.3)
i=1

This is a density matrix, written as a convex mixture of pure states.! The set M
of all states, pure or mixed, coincides with the set of Hermitian matrices with non-
negative eigenvalues and unit trace, and the pure states as defined above form the
extreme elements of this set (in the sense of Section 1.1).

The time evolution of pure states is given by the Schrodinger equation. It is
unitary in the sense that the scalar product of two vectors is preserved by it. In the
two equivalent notations it is given by

in|y) = Hly) & ihZ%=H%ZP, (5.4)

where H is an Hermitian matrix that has been chosen as the Hamiltonian of the
system and Planck’s constant & has been explicitly included. We will follow the
usual custom of defining our units so that 7 = 1. In the geometrical language of
Section 4.6 the Hamiltonian is a generator of a Killing field on CP”". By linearity,
the unitary time evolution of a density matrix is given by

ip=[H,pl=Hp—pH. (5.5)

A system that interacts with the external world can change its state in other and
non-unitary ways as well; how this happens is discussed in Chapter 10.

! The density matrix was introduced by von Neumann (1927). He refers to it as the statistical operator (von
Neumann, 1955). The word density matrix was first used by Dirac, in a slightly different sense. According to
Coleman (1963) quantum chemists and statistical physicists came to an agreement on nomenclature in the early
1960s.
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It remains to extract physical statements out of this formalism. One way to do
this is to associate the projection operators (5.2) to elementary ‘yes/no’ questions.
In this view, the transition probability |(y|¢)|* is the probability that a system
in the state |¢) answers ‘yes’ to the question represented by |y/) — or the other
way around, the expression is symmetric in |¢) and |v). Hermitian operators can
be thought of as weighted sums of projection operators — namely those projection
operators that project onto the eigenvectors of the operator. They can also be thought
of as random variables. What one ends up with is an association between physical
observables, or measurements, on the one hand, and Hermitian operators on the
other hand, such that the possible outcomes of a measurement are in one-to-one
correspondence with the eigenvalues of the operator, and such that the expectation
value of the measurement is

(A)y = TrpA. (5.6)
When the state is pure, as in Eq. (5.2), this reduces to

(A) = (VIAlY) . (5.7

There is more to be said about measurements — and we will say a little bit more
about this tangled question, in Section 10.1.

The role of the state is to assign probabilities to measurements. Note that, even
if the state is pure, probabilities not equal to one or zero are present as soon as
[p, A] # 0. There is a sample space for every non-degenerate Hermitian matrix,
and the quantum state p has to assign a probability distribution for each and every
one of these. A pure quantum state p is classically pure only with respect to the
very special observables that commute with p. This is the reason (or at least the
beginning of a reason) for why quantum mechanics is so much more subtle than
classical statistics, where the set of pure states itself has the trivial structure of a
discrete set of points.

Two disclaimers must be made. First, if infinite-dimensional Hilbert spaces are
allowed then one must be more careful with the mathematical formulation. Second,
the interpretation of quantum mechanics is a difficult subject. For the moment
we ignore both points, but we do observe that using optical devices it is possible
to design an experimental realization of arbitrary N x N unitary matrices (Reck,
Zeilinger, Bernstein and Bertani, 1994). Therefore the formalism must be taken
seriously in its entirety.

5.2 Qubits and Bloch spheres

It is not enough to say that CP” is the space of pure states. We have to know what
physical states are being referred to. Like the sphere, CP” is a homogeneous space
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in which a priori all points are equivalent. Therefore it cannot serve as a space of
states without further embellishments, just as a sphere is a poor model of the surface
of the Earth until we have decided which particular points are to represent Krakéw,
Stockholm, and so on. The claim is that every physical system can be modelled by
CP" for some (possibly infinite) value of n, provided that a definite correspondence
between the system and the points of CP” is set up.

But how do we set up such a correspondence, or in other words how do we tie
the physics of some particular system to the mathematical framework? The answer
depends very much on the system. One case which we understand very well is that
of a particle of spin 1/2 that we can perform Stern—Gerlach experiments on. The
idea is that to every pure state of this particle there corresponds a unique direction
in space such that the spin is ‘up’ in that direction. Therefore its space of pure states
is isomorphic to the set of all directions in space — ordinary physical Space — and
hence to S2 = CP'. In this connection the sphere is known as the Bloch sphere;
from the way it is defined it is evident that antipodal points on the Bloch sphere
correspond to states that have spin up in opposite directions, that is to orthogonal
states as usually defined. The Bloch ball, whose boundary is the Bloch sphere, is
also of interest and in fact it corresponds to the space of density matrices in this
case. Indeed an arbitrary Hermitian matrix of unit trace can be parametrized as

1 .

5t+z x—1y

e : (5.8)
x+1y 35—z

It is customary to regard this as an expansion in terms of the Pauli matrices o =

(oy, 0y, 07), so that

1 N
p:§ﬂ+t-o. (5.9

The vector T is known as the Bloch vector, and its components are coordinates in
the space of matrices with unit trace. The matrix p is a density matrix if and only
if its eigenvalues are non-negative, and this is so if and only if

1
24y 42 < R (5.10)

This is indeed a ball, with the Bloch sphere as its surface. We will study density
matrices in depth in Chapter 8; meanwhile let us observe that if the physics singles
out some particular spatial direction as being of special importance — say because
the particle is in a magnetic field — then the homogeneous Bloch sphere begins to
acquire an interesting geography.

Note that we are clearly oversimplifying things here. A real spin 1/2 particle has
degrees of freedom such as position and momentum that we ignore. Our description
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of the spin 1/2 particle is therefore in a way a caricature, but like all good caricatures
it does tell us something essential about its subject.

Another well-understood case is that of a photon of fixed momentum. Here we
can measure the polarization of the photon, and it is found that the states of the
photon are in one-to-one correspondence to the set of all oriented ellipses (including
the degenerate cases corresponding to circular and linear polarization). This set at
first sight does not seem to be a sphere. What we can do is regard every ellipse as the
projection down to a plane of an oriented great circle on the sphere, and associate
a point on the sphere to a vector through the origin that is orthogonal to the given
great circle. Unfortunately to every oriented ellipse — except the two special ones
representing circular polarization — there now correspond two points on the sphere,
so this cannot be quite right. The solution is simple. Start with the Riemann sphere
and represent its points with a complex number

= x 41 _M_t €i¢ (5.11)

7=x 1y_]+cose_an2e . .

Here x and y are the stereographic coordinates defined in Section 3.1, while ¢
and 0 are the latitude and longitude (counted from the north pole). Let 0 and oo —
the north and south poles of the sphere — correspond to circular polarization. Now
take the square root w = /7 and introduce another Riemann sphere whose points
are labelled with w. For every point except 0 and oo there are two distinct points w
for every z. Finally associate an oriented ellipse with the second sphere as originally
indicated. The pair of points w that correspond to the same z now give rise to the
same ellipse. In this way we obtain a one-to-one correspondence between oriented
ellipses, that is to the states of the photon, and the points z on the first of the
Riemann spheres. Hence the state space is again CP!, in this connection known
as the Poincaré sphere. Note that antipodal points on the equator of the Poincaré
sphere correspond to states that are linearly polarized in perpendicular directions.
For an arbitrary state the ratio of the minor to the major axis of the polarization
ellipse is (with the angle « defined in Figure 5.1)

1 —tan’ & l—tan% 1—|z|
cosa = = =

1 +tan’a l—i—tan% I

(5.12)

The reader may now recognize the Stokes’ parameters from textbooks on optics
(Born and Wolf, 1987).

The spin 1/2 particle and the photon are examples of two-level systems, whose
defining property is that a (special kind of) measurement that we can perform on
the system yields one of two possible results. In this respect a two-level system
behaves like the ‘bit’ of computer science. However, quantum mechanics dictates
that the full space of states of such a system is a CP', a much richer state space
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; Direction
Z=tan%e where spin
is up

Figure 5.1. The Bloch ball, with a reminder about the coordinates that we are
using. Also the auxiliary sphere used to establish the correspondence to photon
polarization.

than that of a classical bit. It is a qubit. Two-level systems often appear when a
sufficiently drastic approximation of a physical system is made; typically we have
a potential with two degenerate minima and a high barrier between them. There
are then four points on the sphere that have a clear interpretation: the north and
south poles correspond to states where the system sits in one of the minima of the
potential, and the east and west poles correspond to eigenstates of the Hamiltonian.
We may not have sufficient control over the system to interpret the remaining states
of the qubit, but quantum mechanics dictates them to be there.

When the dimension of the Hilbert space goes up we encounter first three-level
systems or qutrits and then N-level systems or quNits.”> The quantum mechanical
formalism treats all quNits in the same way, but its meaning depends on how the
formalism is tied to the physics of the problem; it may be a spin system, it may
be an atom with N relevant energy levels, or the number N may appear simply
because we have binned our experimental data into N separate bins.

5.3 The statistical and the Fubini-Study distances

We now turn to the physical interpretation of the Fubini—Study metric. There is
a very good reason to consider this particular geometry, namely that it gives the
statistical distance between states, in the sense of Section 2.5. But the definition
of statistical distance in quantum mechanics requires some thought. Suppose that
we wish to distinguish between two quantum states by means of a finite set of
experiments. It will then be necessary to choose some specific measurement to

2 The name ‘qubit’ was born in conversations between Wootters and Schumacher, and first used in print by the
latter (Schumacher, 1995). The name ‘bit’ is due to John Tukey, consulting for Bell Labs in the 1940s. Whether
anyone deserves credit for the name ‘quNit’ is unclear. Authors who work with Hilbert spaces of dimension d
talk of ‘qudits’, which is perhaps marginally better as a name.
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perform, or in mathematical terms to choose some Hermitian operator to describe
it. We can use the result of this measurement to define the statistical distance between
the given states, but it is clear that this distance will depend on the operator as well as
on the states. By varying the operator we should be able to define the least possible
statistical distance between the states in a unique manner, and by definition this
will be the distance between the states. What we see here reflects the fact that each
non-degenerate observable defines its own sample space. The situation is simple
only if the states are orthogonal. Then the optimal measurement is one having the
two states as eigenvectors. In general no such operator will exist, and the pure states
therefore have a much more interesting geometry than the pure states in classical
statistics, which are just an equidistant set of corners of a simplex.

Suppose that the two states are |{) and |¢). Choose an operator A, and observe
that it has n 4 1 orthogonal eigenstates |i) in terms of which we can expand

W)=Y cli) and |¢) =) dili). (5.13)
i=0 i=0

For convenience we normalize all state vectors to unity. The probability to obtain
a given outcome of the measurement is given by the standard interpretation of
quantum mechanics — for the ith outcome to occur when the state is [¢) it is
|ci|?. According to Section 2.5 the statistical Bhattacharyya distance between the
given states, given the operator, can be computed from the square roots of the
probabilities:

cosda =Y lailldi = > (1) 14910} (5.14)
i=0 i=0

According to the definition of distance between quantum mechanical states we
should now choose the operator A in such a way that d4 becomes as small as
possible, that is to say that the right-hand side should be as close to one as it can
get. As noted in Problem 5.1 there are several operators that give the same answer;
one solution is to let A have either i) or |¢) as one of its eigenstates, in which
case the expression collapses to

cos Des = [{{/|9)] . (5.15)

But this is precisely the geodesic distance between the two states as computed by
means of the Fubini—Study metric. It was given in projectively invariant form in
Egs. (4.45)—(4.46); in the present notation

2
cos? Dpg = k = M . (5.16)

(W1v) (9l9)
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We have therefore established that the Fubini—Study metric measures the distin-
guishability of pure quantum states in the sense of statistical distance.? The pro-
jective cross-ratio « is more often referred to as the transition probability or, in
quantum communication theory, as the fidelity function (Jozsa, 1994).

More precisely the Fubini-Study distance measures the experimental distin-
guishability of two quantum states under the assumption that there are no limitations
on the kind of experiments we can do. In practice a laboratory may be equipped
with measurement apparatus corresponding to a small subset of Hermitian opera-
tors only, and this apparatus may have various imperfections. An atomic physicist
confronted with three orthogonal states of the hydrogen atom, say the ground state
n = 1, and two states with n = 100 and n = 101, respectively, may justifiably feel
that the latter two are in some sense closer even though all three are equidistant
according to the Fubini—Study metric. (They are closer indeed with respect to the
Monge metric discussed in Section 7.7.) The Fubini—-Study geometry remains in-
teresting because it concerns what we can know in general, without any knowledge
of the specific physical system.

An instructive sidelight on the role of the Fubini—Study metric as a distinguisha-
bility measure is thrown by its appearance in the Aharonov—Anandan time—energy
uncertainty relation (Anandan and Aharonov, 1990). In geometrical language this is
a statement about the velocity of the Killing flow. Using homogeneous coordinates
to express the metric as (4.49) together with the projective Schrodinger equation
(4.59) we can write

— (H)?, (5.17)

ds\* ZzldzP 7,47
il IR i | ) 2
dr 7777

where brackets denote anti-symmetrization, a minor calculation precedes the last
step and

H) = —_ b 5.18
< > Z * Z ( ’ )
and so on. The final result is pleasing:
T (H?) — (H)? (5.19)
= H H)? . 5.19

This is indeed a precise version of the time—energy uncertainty relation: the system
is moving quickly through regions where the uncertainty in energy is large.

3 This very precise interpretation of the Fubini—Study metric was first given by Wootters (1981), although similar
but less precise interpretations were given earlier.
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5.4 A real look at quantum dynamics

Why is the Hilbert space complex? This is a grand question that we will not answer.
But an interesting point of view can be found if we ‘take away’ the imaginary
number i and think of the complex vector space CV as the real vector space R?Y
with some extra structure on it.* The notation that is used for complex vector spaces,
whether bras or kets or our index notation, actually hides some features that become
transparent when we use real notation and keep careful track of whether the indices
are upstairs or downstairs. The thing to watch is how the observables manage to
play two different roles. They form an algebra, and in this respect they can cause
transformations of the states, but they also provide a map from the states to the real
numbers. Let us call the vectors X'. A linear observable capable of transforming
this vector to another vector must then be written as A’; so that X! — A’,X’. On
the other hand the matrix should be able to transform the vector to a real number,
too. This can be done if we regard the observable as a quadratic form, in which
case it must have both its indices downstairs: X/ — X7 A;; X”. We therefore need
a way of raising and lowering indices on the observable. A metric tensor g;; seems
to be called for, but there is a problem with this. The metric tensor must be a very
special object, and therefore it seems natural to insist that it is not changed by
transformations caused by the observables. In effect then the observables should
belong to the Lie algebra of the orthogonal group SO (2N). But using the metric to
lower indices does not work because then we have

0=10g1y = glKAKJ +gKJAK1 < Ay =—Ayr. (5.20)

The problem is that in its other role as a quadratic form A;; needs to be symmetric
rather than anti-symmetric in its indices. The metric will play a key role, but it
cannot play this particular one!

But let us begin at the beginning. We split the complex numbers Z¢ into real and
imaginary parts and collect them into a 2N -dimensional real vector X”:

o
7% =x% iyt X' = [’;a] . (5.21)
The imaginary number i then turns into a matrix J/,:
0 —1
J’:[ﬂ 0] = Ji=-1. (5.22)

The existence of a matrix J that squares to minus one provides the 2N-dimensional
vector space with a complex structure. (This definition is equivalent to, and more
straightforward than, the definition given in Section 3.3.)

4 This has been urged by, among others, Dyson (1962), Gibbons and Pohle (1993) and Hughston (1995).
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If we write everything out in real terms further structure emerges. The complex
valued scalar product of two vectors becomes

(X|Yy = X"g Y +ix'Q,, v’ , (5.23)

where we had to introduce two new tensors

1 1
8112[0 (ﬂ)i| 9112[_0&ﬂ 0i|. (5.24)

The first is a metric tensor, the second is a symplectic form (in the sense of Section
3.4). Using the inverse of the symplectic form,

QEQy; =481, (5.25)
we observe the key equation
Jy=0%ex, o gu=xJb. (5.26)

Thus, the complex, metric, and symplectic structures depend on each other. In fact
we are redoing (for the case of a flat vector space) the definition of Kéhler manifolds
that we gave in Section 3.3.

We can use the symplectic structure to define Poisson brackets according to
Eq. (3.73). But we will be interested in Poisson brackets of a rather special set of
functions on our phase space. Let O;; = Oj; be a symmetric tensor and define

(0)y = x'0,,x" . (5.27)

Such tensors can then play one of the two key roles for observables, namely to
provide a map from the state vectors to the real numbers. But observables play
another role too. They transform states into new states. According to the rules
for how tensor indices may be contracted this means that they must have one
index upstairs. We therefore need a way of raising and lowering indices on the
observables-to-be. We have seen that the metric is not useful for this purpose, so
we try the symplectic form:

OIJ = QIKOKJ . (528)

The observables now form an algebra because they can be multiplied together,
0,0,=0!,0% ;- Note that, according to Eq. (5.26), the complex structure is the
transformation matrix corresponding to the metric tensor: J = g.

We can work out some Poisson brackets. Using Eq. (3.73) we find that

(X', (0)} =20",x" =Q'73,(0) (5.29)
{{01), (02)} =2([0,, 0,]) where [0y, 0,]1=0,0,— 0,0,. (530)
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The Poisson bracket algebra is isomorphic to the commutator algebra of the matrices
O — even though there is no classical limit involved.

The observables as defined so far are too general. We know that we should confine
ourselves to Hermitian operators, but why? What is missing is a requirement that is
built into the complex formalism, namely that operators commute with the number

i. In real terms this means that our observables should obey

~ m —a
[/,01=0 <& O = [ ] , (5.31)
a m
where m is a symmetric and a an anti-symmetric matrix. From now on only such
observables are admitted. We call them Hermitian. There is a ‘classical’ way of
looking at this condition. We impose the constraint that the states be normalized,

(g)—1=X'guXx'—1=0. (5.32)

According to the rules of constrained Hamiltonian dynamics we must then restrict
our observables to be those that Poisson commute with this constraint, that is to say
that Eq. (5.30) forces us to impose Eq. (5.31). Technically, this is a moment map.

Finally we select a specific observable, call it H, and write down Hamilton’s
equations:

X' ={x",(H)}=20"X" =Q"3,(H) . (5.33)
Using Eqgs. (5.21) and (5.31) reveals that, in complex notation, this is precisely
Z% =% +iy* = 2i(m +ia)y(x" +iyP) = —iHGZP . (5.34)

This is Schrodinger’s equation, with a complex matrix H that is Hermitian in
the ordinary sense. In this way we learn that Schrodinger’s equation is simply
Hamilton’s equation in disguise.’ Note also that the constraint (5.32) generates a
Hamiltonian flow

X'={x' (g -1} =20X" & 7*=2iz". (5.35)

According to the theory of constrained Hamiltonian systems this is an unobservable
gauge motion, as indeed it is. It just changes the unphysical phase of the complex
state vector.

In a sense then quantum mechanics is classical mechanics on CP", formulated
as a constrained Hamiltonian system on CV. But there is a key difference that
we have so far glossed over. In classical mechanics arbitrary functions on phase
space are used as observables, and each such function defines a Hamiltonian flow

5 It appears that this interesting point was first made by Kibble (1979). Further studies were made by, among
others, Gibbons (1992), Ashtekar and Schilling (1998) and Brody and Hughston (2001).
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via Hamilton’s equations. In our discussion we restricted ourselves at the outset
to quadratic functions of the state vectors, leading to linear equations of motion.
The reason for this restriction is that we require the Hamiltonian flow to leave
not only the symplectic form but also the metric invariant. From Section 4.5 we
know that the Killing vector fields of CP” are generated by Hermitian matrices, and
this is precisely the set of Hamiltonian flows that we ended up with. The unitary
group U(N), or the isometry group that acts on Hilbert space, is a subgroup of the
orthogonal group SO(2N); instead of the unfortunate Eq. (5.20) we now have

gk OF +gxk,08=0 o [J,01=0. (5.36)

Hence the transformations effected by our observables preserve the metric. From
this point of view then quantum mechanics appears as a special case of classical
mechanics, where the phase space is special (CP") and the set of observables is
restricted to be those that give rise to Hamiltonian vector fields that are also Killing
vector fields. Unlike classical mechanics, quantum mechanics has a metric worth
preserving.

The restriction that leads to quantum mechanics — that the Hamiltonian flow
preserves the metric — can be imposed on any Kéhler manifold, not just on CP".
It has often been asked whether this could lead to a viable generalization of quan-
tum mechanics. In fact several problems arise almost immediately. If the resulting
formalism is to be of any interest one needs a reasonable large number of Hamil-
tonian Killing vector fields to work with. Some Kéhler manifolds do not have any.
If the dimension is fixed the maximal number of linearly independent Killing vec-
tor fields occurs if the Kihler space has constant holomorphic sectional curvature.
But as noted in Section 4.5 if the space is also compact and simply connected this
condition singles out CP" uniquely.

There are other reasons why CP” appears to be preferred over general Kahler
spaces, notably the existence of the Segre embedding (Section 4.3). The fact that
this embedding is always available makes it possible to treat composite systems
in just the way that is peculiar to quantum mechanics, where the dimension of the
state space of the composite system is surprisingly large. These dimensions are
being used to keep track of entanglement — correlations between the subsystems
that have no classical counterpart — and it is entanglement that gives quantum
mechanics much of its special flavour (see Chapter 15). In some sense it is also
the large dimension of the quantum mechanical state space that enables general
symplectic manifolds to arise in the classical limit; although we have argued that
quantum mechanics is (in a way) a special case of classical mechanics we must
remember that quantum mechanics uses a much larger phase space than the classical
theory — when the Hilbert space is finite dimensional the set of pure states of
the corresponding classical theory is a finite set of points, while theories with
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finite-dimensional classical phase spaces require an infinite-dimensional quantum
‘phase space’.

5.5 Time reversals

The operation of time reversal is represented by an anti-unitary rather than a unitary
operator, that is to say by an isometry that is a reflection rather than a rotation.® A
complex conjugation is then involved, and it is again helpful to think of the state
space as a 2N-dimensional real manifold. In some situations we can see that the
choice of a complex structure on the real vector space is connected to the direction
of time. The point is that any matrix J that squares to —1 can be choosen as a
complex structure on a real 2/N-dimensional vector space. Regarded as an SO(2N)
transformation such a matrix can be thought of as producing quarter turns in N
suitably chosen orthogonal two-dimensional planes. But the Hamiltonian is an
SO(2N) matrix as well, and it is chosen to commute with J, so that it generates
rotations in the same N planes. If the Hamiltonian is also positive definite it defines
a sense of direction for all these rotations, and it is natural to require that the
quarter turns effected by J takes place in the same directions. This then singles
out a unique J. It follows that if we reverse the direction of time then the complex
structure changes sign — which is why time reversal will be represented in quantum
mechanics by an anti-unitary transformation.’

Wigner’s theorem states that every isometry of CP" can be effected by a trans-
formation of CV that is either unitary or anti-unitary. The latter possibility arises
only when discrete isometries are concerned (since the square of an anti-unitary
transformation is unitary), but as we have seen it includes the interesting case of
time reversal. Let us see what this looks like in real terms. Since all we require is
that the Fubini—Study metric is preserved it is enough to ensure that the projective
cross-ratio as derived from the Hermitian form is preserved. This will be so if the
transformation is effected by a matrix which obeys either

UgU" =g, uUQUT=Q (5.37)
(the unitary case) or
g0 =g, 007 =-Q (5.38)

(the anti-unitary case). Hence anti-unitary transformations are anti-canonical. Note
by the way that the equation that defines an anti-unitary transformation, namely

(OX|0Y) = (Y|X), (5.39)
indeed follows from the definition (5.23) of the Hermitian form.
6 The standard reference on time reversal is Wigner (1959). The usefulness of the real point of view was emphasized

by Dyson (1962).
7 See Ashtekar and Magnon (1975) and Gibbons and Pohle (1993) for elaborations of this point.
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Two options are still open for ©:
0?2 = +1. (5.40)

The choice of sign depends on the system. For spin systems the choice of sign is
made in an interesting way. The physical interpretation requires that the angular
momentum operators J are odd under time reversals, so that

0J+Jo=0. (5.41)
An anti-unitary operator can always be written in the form
® = UK, (5.42)

where K denotes the operation of complex conjugation and U is a unitary operator.
In the standard representation of the angular momentum operators — Egs. (B.4)—
(B.5), where J, is imaginary and the others real — the unitary operator U must
obey

UlL,+JU=UJ.+J.U=UJ,—J,U=0. (5.43)

These equations determine U uniquely up to an irrelevant phase factor; the answer
is
0 0 0 0 =DV

U=[0 0 1 - 0 (5.44)
0 -1 0 -~ 0
1 0 o0 0
It then follows, with no ambiguity, that
Nodd, neven; = ©*=1 Neven, nodd = ©%>=—1. (545)

Time reversals therefore work quite differently depending on whether the spin is
integer (even n) or half-integer (odd n). For even n there will be a subspace of states
that are left invariant by time reversal. In fact they form the real projective space
RP".

Odd n is a different matter. There can be no ® invariant states. This means that
| P) and ®| P) must be distinct points in CP?'+! and therefore they define a unique
projective line L p; in fact they are placed on opposite poles of this projective line,
regarded as a 2-sphere. Moreover it is not hard to show that the resulting projective
line transforms onto itself under ®. Now consider a point |Q) not lying on Lp.
Together with ®|Q) it determines another projective line Ly. But Lp and Ly
cannot have a point in common (because if they had then their intersection would
also contain the time-reversed point, and therefore they would coincide, contrary to
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assumption). It follows that CP?"+! can be foliated by complex projective lines that
never touch each other. It is a little hard to see this directly, but a similar statement
is true for real projective spaces of odd dimension. Then the real projective lines
that never touch each other are precisely the Clifford parallels in the Hopf fibration
of S+ restricted to RP?"*!; see Section 3.5.

Keeping n odd, suppose that we restrict ourselves throughout to time-reversal
invariant operators. This means that we decide to probe the system by means of
time-reversal invariant observables only. Such observables obey

[0,0] = 0. (5.46)

The theory when subject to a restriction of this kind is said to be obey a superselec-
tion rule. The first observation is that all such observables are degenerate, since all
points on a time-reversal invariant 2-sphere have the same eigenvalues of O. (This
is known as Kramer’s degeneracy.) The second observation is that this restriction
of the observables effectively restricts the state space to be the base manifold of
the fibre bundle whose bundle space is CP?"*! and whose fibres are CP!. This
is analogous to how CP”" arises as the state space when we restrict ourselves to
observables that commute with the complex structure.

What is this new state space? To see this, let us go back to the real vector space
of states that we analysed in Section 5.4. We know that

©J+JO=0, (5.47)

where J is the complex structure. We define

i=J j=0 k=J6. (5.48)
It follows that
P=pP=k*=-1, ij=k jk=i ki=j. (5.49)

This is the algebra of quaternions.® Quaternions are best regarded as a natural
generalization of complex numbers. A general quaternion can be written in terms
of four real numbers as

q=ay+ai+aj+ak. (5.50)
For every quaternion there is a conjugate quaternion

q=ay—ai —arj — ask (5.51)

8 Denoted H after Hamilton who invented them. It was Dyson (1962) who first noted that quaternions arise
naturally in standard quantum mechanics when time reversals are considered. For further elaborations see
Avron, Sadun, Segert and Simon (1989) and Uhlmann (1996). For a review of just about every other aspect of
quaternions, see Giirsey and Tze (1980).
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and the quantity |q|> = §q = qq is a real number called the absolute value squared
of the quaternion. The absolute value of a product is the product of the absolute
values of the factors. In general two quaternions do not commute. Like the real
numbers R and the complex numbers C the quaternions form a normed associative
division algebra, that is to say that they share the algebraic structure of the real
number field except that multiplication is not commutative. Moreover these three
are the only division algebras over the real numbers that exist — a statement known
as Frobenius’ theorem. (Multiplication of octonions is not associative.) For the mo-
ment the main point is that we can form quaternionic vector spaces and quaternionic
projective spaces too, provided we agree that multiplication with scalars — that are
now quaternions — always takes place from the left (say); we must be careful to
observe this rule since the scalars no longer commute with each other.

Since we are dealing with CP*'+2 we are working in a real vector space of
dimension 4n + 4. We can regard this as a quaternionic vector space of quaternionic
dimension n 4 1. For n = 1 this means that an arbitrary vector is written as a two
component object

¢ =Z°+2%,2*+ 2" , (5.52)

where the Z¢ are complex numbers and we must remember that the imaginary unit
i anticommutes with j. It is straightforward to check that time reversal as defined
above is effected by a left multiplication of the vector by j. Since we have imposed
the superselection rule that multiplication of the vector with an overall quaternion
leaves the state unchanged we can now form the quaternionic projective space HP'.
Topologically this is R* + oo = S*.

Everything works out in such close analogy to the real and complex projective
spaces that we need not give the details. Let us just quote the salient points: starting
from areal vector space of dimension 4n + 4 we first normalize the vectors to unity,
and then we impose the superselection rules

[0,i]=0 = CP" [0,jl=0 = HP". (5.53)

This is known as the Hopf fibration of the 4n + 3 sphere. In two steps S¥'*3 —
CP?*+! with fibre S' and CP?>"+! — HP" with fibre S?, orin one step S*'+3 — HP"
with fibre S3. The base spaces inherit natural metrics from this construction. In the
case of HIP! this happens to be the round metric of the 4-sphere. When equipped
with their natural metrics the projective spaces RP”, CP" and HP" share some
crucial features, notably that all their geodesics are closed.

Occasionally it is suggested that quaternionic quantum mechanics can offer an
alternative to the standard formalism, but we see that the quaternionic projective
space has a role to play as a state space also within the latter.
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Table 5.1. Classical and quantum states: a comparison

Framework States Positivity Normalization
i) probability vectors peRY pi >0 Yuri=1
ii) probability measures n e QX) w¥)=0 fx du(x) =1
iii) density operators pe MM p=>0 Trpo=1
iv) states on C* algebra won A w(x*x) >0 w(l) =1

5.6 Classical and quantum states: a unified approach

Some remarks on how quantum mechanics can be axiomatized may not be out
of place — even if they will be very incomplete. There is a choice whether ob-
servables or states should be regarded as primary. The same choice occurs when
classical mechanics is defined, for the same reason: observables and states coop-
erate in producing the real numbers that constitute the predictions of the theory.
These real numbers are the result of real-valued linear maps applied to a vector
space, and the space of such maps is itself a vector space. The end result is a
duality between observables and states, so that either can be taken as primary.
Just as one can take either the hen or the egg as primary. Let us try to summa-
rize similarities and differences between states in classical and quantum mechan-
ics, or perhaps more accurately in classical and quantum probability theory. A
classical state is described by a probability vector or by an element from the set
of all probability measures on the classical phase space. The space of quantum
states consists of density matrices. What features are common for these different
frameworks?

Let us start by considering a convex cone V™ in a vector space V. Elements x
belonging to V* will be called positive. Let e : V — R be a linear functional on
V. The space of all states is then defined as a cross section of the positive cone,
consisting of elements that obey the normalization condition e(x) = 1. As shown
in Table 5.1 both classical and quantum states fit well into this scheme. Let us be a
little bit more explicit: in the classical case the vector space has arbitrary dimension
and V' consists of positive vectors. The functional e is given by the /;-norm of
the vector p, or by the integral over phase space in the continuous case; in the
table Y denotes an arbitrary subset of the classical phase space X. This is the case
discussed at length in Chapter 2. In the quantum case the vector space is the space of
Hermitian matrices, V' is the space of positive operators, and the functional e is
the trace. Classical probability theory can be obtained from quantum mechanics
through a restriction to diagonal matrices.
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The similarities between the classical and quantum cases are made very trans-
parent in Segal’s axiomatic formulation.® Then the axioms are about a set A of
objects called observables. The axioms determine what an observable is — reflec-
tion on what one observes in experiments comes in at a later stage. The set A has
a distinguished subset M whose elements p are called states. We assume

I) The observables form a real linear space.
II) The observables form a commutative algebra.
III) There exists a bilinear map from M x A to the real numbers.
IV) The observables form a Lie algebra.

We see that a state can be thought of as a special kind of linear map from the
observables to the real numbers — and this is characteristic of Segal’s approach,
even if at first sight it appears to be taking things in the wrong order!

These axioms do not characterize quantum mechanics completely. Indeed they
are obeyed by both classical and quantum mechanics. (As far as we are aware no
one knows if there is a third kind of mechanics also obeying Segal’s axioms.) In
classical mechanics states are probability distributions on phase space, observables
are general functions on phase space, and their algebras are given by pointwise
multiplication (axiom II) and by Poisson brackets (axiom IV). This means that the
extreme points of the convex set form a symplectic manifold; unless rather peculiar
measures are taken (Wootters, 1987) this is a continuous manifold and the set of
all states becomes infinite dimensional.

In quantum mechanics states are density matrices acting on some Hilbert space.
The observables A are Hermitian matrices — since we assume that the Hilbert
space is finite dimensional we need no further precision. The algebra in axiom II
is given by a commutative but non-associative Jordan algebra, to be discussed in
Section 8.6. The Lie bracket of axiom IV is given by the imaginary unit i times
the commutator of the observables. The bilinear map required by axiom III is
the trace of the product of p and A; this is the quantum mechanical expectation
value (A) = TrpA. When we think of states as real-valued maps from the ob-
servables, we write p(A) = TrpA. Note that Trp = 1 then becomes the statement
that p(1) = 1. In both classical and quantum mechanics the states are defined
so that they form a convex set, and it becomes important to identify the pure
states. In quantum mechanics they are projection operators onto rays in a com-
plex Hilbert space, and can therefore also be thought of as equivalence classes of
vectors.

9 For further study we recommend the original paper by Segal (1947). For a simplified account, see Currie, Jordan
and Sudarshan (1963).
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Segal’s axioms are rather even handed in their choice between observables and
states. In the C*-algebra approach the algebra of observables occupy the centre
of the stage. The states are defined as positive and normalized linear functionals
o on a suitable algebra A. Both classical and quantum mechanics fit into this
mould, since the states may also be viewed as functionals. In case (i), the state p
maps the vector y € RY to p -y € R. In case (ii), the state 1 acts on an arbitrary
integrable function, u : f(X) — f « J(x)du(x), while in case (iii), the state p acts
on an Hermitian operator, p : A — TrAp. The most essential difference between
the classical cases (i) or (ii) and the quantum case (iii) concerns commutativity:
classical observables commute, but this is not so in quantum mechanics.!?

Although we do not intend to pursue the algebraic approach, we observe that
once states are defined as linear functionals on a suitable algebra, the set of all states
will be a convex set. We are then inevitably drawn to the converse question: what
properties must a convex set have, if it is to arise as the state space of an operator
algebra? The answer to this question is known, but it is not a short answer and this
is not the place to give it."!

To demonstrate further similarities between the classical and the quantum cases
let us replace the sum in Eq. (5.3) by an integral over the space of pure states,

p = /c P W) W) (Y| dQ(y) - (5.54)
pN-1

Here d2(y) stands for the Fubini—Study measure (see Section 4.7), while p*(v) is a
normalized probability distribution, and we decorated the density matrix itself with
ahat —anotation that we use occasionally to distinguish operators. Thus a state may
be considered as a probability measure on the space of pure states (Mielnik, 1969).
If p°(¢) is a 6-function then Eq. (5.54) represents a pure state. The unitary time
evolution of the density matrix,

dp
— =1i[p, H], 5.55
o = P H] (5.55)
is equivalent to the Liouville equation for the distribution function p*,
dp*
— = {(H), p"}. 5.56
” {(H), p} (5.56)

So far classical and quantum mechanics look similar.

But there are differences too. One key difference concerns the pure states. The
classical set of pure states can be discrete. The set of pure quantum states is always
continuous, and indeed it is always a symplectic manifold. In particular there always

10 For an account of the algebraic approach to quantum mechanics consult Emch (1972). See Section 8.6 for a
glimpse.
1 We refer to Alfsen and Shultz (2001) and Alfsen and Shultz (2003). Their answer takes 843 pages!



154 Outline of quantum mechanics

exists a continuous reversible transformation joining any two pure quantum states.
A related fact is that the representation (5.54) is not unique. There are many p* for
each p; quantum theory identifies two probability distributions if their barycentres
are equal. The result is a kind of projection of the infinite-dimensional space of
probability distributions p* into the compact (N? — 1)-dimensional space M) of
density matrices. This is completely foreign to the classical theory, and it happens
because of the severe restriction on allowed observables that is imposed in quan-
tum mechanics. It is similar to the situation encountered in the theory of colours:
the detector system of the eye causes a projection of the infinite-dimensional
space of all possible spectral distributions down to the three-dimensional cone of
colours.

Note that we just studied a hidden variable theory. By definition, this is a classical
model from which quantum mechanics arises through some projection reminiscent
of the projection in colour theory. Indeed we studied this model in detail when
we developed quantum mechanics as a form of classical mechanics in Section 5.4.
Quantum mechanics arose once we declared that most classical variables were
hidden. But for various reasons this model is not the model that people dream
about.!3

To end our slightly unsystematic tour of fundamentals, we point out that the
amount of choice that one has in choosing how probability distributions emerge
from the formalism is severely limited. There is a theorem that comes into play once
it has been decided that we are in the Hilbert space framework, and try to assign
a probability distribution over its subspaces. More precisely the probabilities are
functions on the (real or complex) projective space, that is of the rays in Hilbert
space. The assumptions that we have to make are the following:

¢ Normalization. The elements |e;) of every orthonormal basis are assigned probabilities
pi such that

N
> pileieil = 1. (5.57)
i=1
* Non-contextuality. Every vector is an element of many orthonormal bases. The proba-
bility of its ray is independent of how the remaining vectors of the basis are chosen.

That is all (although it may be remarked that the non-contextuality assumption is
not really a self-evident one). Nevertheless we now have the following:

12° An axiomatic approach to quantum mechanics developed by Hardy (n.d.) takes this observation as its starting
point.
13 For an interesting discussion of hidden variables from this point of view, see Holevo (2001).
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Theorem 5.1 (Gleason’s) Under the conditions stated, and provided the dimen-
sion N of the Hilbert space obeys N > 2, there exists a density matrix p such that

pi = Trple;){eil.

So the density matrix and the trace rule (5.6) have been forced upon us — probability
can enter the picture only in precisely the way that it does enter in conventional
quantum mechanics. The remarkable thing is that no further assumptions are needed
to prove the theorem — it is proved, not assumed, that the probability distribution is

a continuous function on the projective space.'*

Problem

Problem 5.1 Two pure states sit on the Bloch sphere separated by an angle 6.
Choose an operator A whose eigenstates sit on the same great circle as the two
pure states; the diameter defined by A makes an angle 64 with the nearest of the
pure states. Compute the Bhattacharyya distance between the two states for the
measurement associated with A.

14 The theorem is due to Gleason (1957). Its proof is famous for being difficult; a version that is comparatively
easy to follow was given by Pitowsky (1998).
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Coherent states and group actions

Coherent states are the natural language of quantum theory.
John R. Klauder

In this chapter we study how groups act on the space of pure states, and especially
the coherent states that can be associated to the group.

6.1 Canonical coherent states

The term ‘coherent state’ means different things to different people, but all agree
that the canonical coherent states' form the canonical example, and with this we
begin — even though it is somewhat against our rules in this book because now the
Hilbert space is infinite dimensional. A key feature is that there is a group known as
the Heisenberg—Weyl group that acts irreducibly on our Hilbert space.? The coherent
states form a subset of states that can be reached from a special reference state by
means of transformations belonging to the group. The group theoretical way of
looking at things has the advantage that generalized coherent states can be defined
in an analogous way as soon as one has a group acting irreducibly on a Hilbert
space.

But let us begin at the beginning. The Heisenberg algebra of the operators ¢ and
P together with the unit operator 1 is defined by

G, pl = ikd. 6.1)

! Also known as Glauber states. They were first described by Schrodinger (1926a), and then, after an interval,
by Glauber (1963). For their use in quantum optics see Klauder and Sudarshan (1968) and Mandel and Wolf
(1995).

2 This is the point of view of Perelomov and Gilmore, the inventors of generalized coherent states. Useful reviews
include Perelomov (1977), Zhang, Feng and Gilmore (1990) and Ali, Antoine and Gazeau (2000); a valuable
reprint collection is Klauder and Skagerstam (1985).

156



6.1 Canonical coherent states 157

It acts on the infinite-dimensional Hilbert space H, of square integrable functions
on the real line. In this chapter we will have hats on all the operators (because we will
see much of the c-numbers ¢ and p as well). Planck’s constant £ is written explicitly
because in this chapter we will be interested in the limit in which & cannot be distin-
guished from zero. It is a dimensionless number because it is assumed that we have
fixed units of length and momentum and use these to rescale the operators ¢ and p so
that they are dimensionless as well. If the units are chosen so that the measurement
precision relative to this scale is of order unity, and if / is very small, then % can be
safely set to zero. In ST units & = 1.054 - 10~3* joule seconds. Here our policy is
to set i = 1, which means that classical behaviour may set in when measurements
can distinguish only points with a very large separation in phase space.

Equation (6.1) is the Lie algebra of a group. First we recall the Baker—Hausdorff
formula

etelf = el BleA+E — oA BlgBod (6.2)

A

which is valid whenever [A, B] commutes with A and B. Thus equipped we form
the unitary group elements

Ulg, p) = &#I74P. (6.3)

To find out what group they belong to we use the Baker—Hausdorff formula to find
that

U(qi, p0U(qa, p2) = e P71 ((gy, p) Ulqy, p1) - (6.4)

This equation effectively defines a faithful representation of the Heisenberg group.>
This group acts irreducibly on the Hilbert space H, (and this happens to be the only
unitary and irreducible representation that exists, although this fact is incidental to
our purposes). Since the phase factor is irrelevant in the underlying projective space
of states it is also a projective representation of the Abelian group of translations
in two dimensions.

Now we can form creation and annihilation operators in the standard way,

1
—(G —1ip),
V2
we can define the vacuum state |0) as the state that is annihilated by 4, and finally
we can consider the two-dimensional manifold of states of the form

lg, p) = U(g, p)IO) . (6.6)

d=%(aj+iﬁ), at = la,all=1, (6.5)

3 This is really a three-dimensional group, including a phase factor. The name Weyl group is more appropriate, but
too many things are named after Weyl already. The Heisenberg algebra was discovered by Born and is engraved
on his tombstone.
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These are the canonical coherent states with the vacuum state serving as the refer-
ence state, and g and p serve as coordinates on the space of coherent states. Our
question is: why are coherent states interesting? To answer it we must get to know
them better.

Two important facts follow immediately from the irreducibility of the represen-
tation. First, the coherent states are complete in the sense that any state can be
obtained by superposing coherent states. Indeed they form an overcomplete set be-
cause they are much more numerous than the elements of an orthonormal set would
be — hence they are not orthogonal and do overlap. Second, we have the resolution
of the identity

1
Z—/dqdplq,m(q,pl =1. (6.7)
I

The overall numerical factor must be calculated, but otherwise this equation fol-
lows immediately from the easily ascertained fact that the operator on the left-hand
side commutes with U (g, p); because the representation of the group is irreducible
Schur’s lemma implies that the operator must be proportional to the identity. Res-
olutions of identity will take on added importance in Section 10.1, where they will
be referred to as ‘POVMs’.

The coherent states form a Kdhler manifold (see Section 3.3). To see this we first
bring in a connection to complex analyticity that is very helpful in calculations. We
trade ¢ and p for the creation and annihilation operators and define the complex
coordinate

= %(q +ip). (6.8)

With some help from the Baker—Hausdorff formula, the submanifold of coherent
states becomes

o0 n
it —oa 1.2 Z
4.7) = 1e) = <0 =Y T (69)
n=0 .

We assume that the reader is familiar with the orthonormal basis spanned by the
number or Fock states |n) (see, for example, Leonhardt, 1997).

We have reached a convenient platform from which to prove a number of ele-
mentary facts about coherent states. We can check that the states |z) are eigenstates
of the annihilation operator:

dlz) = zlz) . (6.10)

Their usefulness in quantum optics has to do with this fact since light is usu-
ally measured by absorption of photons. In fact a high quality laser produces
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coherent states. A low quality laser produces a statistical mixture of coherent
states — producing anything else is rather more difficult.
In x-space a coherent state wave function labelled by g and p is

Y(x;q, p) = (xlq, p) = x~WVAeTira/Hip=t=a)/2 6.11)

The shape is a Gaussian centred at x = ¢g. The overlap between two coherent states
is

(g2, p2lq1, p1) = e*i(thﬂz*plqz)ﬂe*[(qz*m)2+(pz*p1)2]/4 . 6.12)

It shrinks rapidly as the coordinate distance between the two points increases.

Let us now think about the space of coherent states itself. The choice of labels (g
and p) is not accidental because we intend to regard the space of coherent states as
being in some sense an embedding of the phase space of the classical system — whose
quantum version we are studying — into the space of quantum states. Certainly the
coherent states form a two-dimensional space embedded in the infinite-dimensional
space of quantum states and it will therefore inherit both a metric and a symplectic
form from the latter. We know that the absolute value of the overlap is the cosine
of the Fubini—Study distance Drg between the two states (see Section 5.3), and for
infinitesimally nearby coherent states we can read off the intrinsic metric ds* on
the embedded submanifold. From Eq. (6.12) we see that the metric on the space of
coherent states is

ds? = dedz = ~(dg? + dp?
=dz 2—2(q +dp?). (6.13)

It is a flat space — indeed a flat vector space since the vacuum state forms a natural
point of origin. From the phase of the overlap we can read off the symplectic
form induced by the embedding on the submanifold of coherent states. It is non-
degenerate:

Q=idzAdz=dg Adp. (6.14)

It is the non-degenerate symplectic form that enables us to write down Poisson
brackets and think of the space of coherent states as a phase space, isomorphic
to the ordinary classical phase space spanned by ¢ and p. The metric and the
symplectic form are related to each other in precisely the way that is required for a
Kihler manifold — although in a classical phase space the metric plays no particular
role in the formalism. It is clearly tempting to try to argue that in some sense the
space of coherent states is the classical phase space, embedded in the state space of
its quantum version. A point in the classical phase space corresponds to a coherent
state. The metric on phase space has arole to play here because Eq. (6.12) allows us
to say that if the distance between the two points is large as measured by the metric,
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Figure 6.1. The overlap of two coherent states is determined by geometry: its
modulus by the Euclidean distance d between the states and its phase by the
(oriented) Euclidean area A of the triangle formed by the two states together with
the reference state.

then the overlap between the two coherent states is small so that they interfere very
little. Classical behaviour is clearly setting in; we will elaborate this point later on.
Meanwhile we observe that the overlap can be written

<q2’ p2|q1 . D1 ) — e—iZ(area of triangle) e—%(dislauce)2 , (6 1 5)

where the triangle is defined by the two states together with the reference state.
This is clearly reminiscent of the properties of geodesic triangles in CP” that we
studied in Section 4.8, but the present triangle lies within the space of coherent
states itself. The reason why the phase equals an area is the same in both cases,
namely that geodesics in CP" as well as geodesics within the embedded subspace
of canonical coherent states share the property of being null phase curves (in the
sense of Section 4.8) (Rabei, Arvind, Simon and Mukunda, 1990).

There is a large class of observables — self adjoint operators on Hilbert space —
that can be associated with functions on phase space in a natural way. In general
we define the covariant symbol* of the operator A as

A(q, p) = (q. plAlg, p) . (6.16)

This is a function on the space of coherent states, that is on the would-be classical
phase space. It is easy to compute the symbol of any operator that can be expressed
as a polynomial in the creation and annihilation operators. In particular

. R 1
(q.p\dlg.p) =g (q.pld’lq. p) =qz+§ (6.17)
(and similarly for p). This implies that the variance, when the state is coherent, is
R R 1
(M)’ = (¢") = (4)* = 3 (6.18)

and similarly for (Ap)?, so it follows that AgAp = 1/2; in words, the coherent
states are states of minimal uncertainty in the sense that they saturate Heisenberg’s

4 The contravariant symbol will appear presently.
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inequality. This confirms our suspicion that there is ‘something classical’ about the
coherent states. Actually the coherent states are not the only states that saturate the
uncertainty relation; the coherent states are singled out by the extra requirement
that Ag = Ap.

We have not yet given a complete answer to the question why coherent states
are interesting — to get such an answer it is necessary to see how they can be used
in some interesting application — but we do have enough hints. Let us try to gather
together some key features:

* The coherent states form a complete set and there is a resolution of unity.

* There is a one-to-one mapping of a classical phase space onto the space of coherent states.

* There is an interesting set of observables whose expectation values in a coherent state
match the values of the corresponding classical observables.

* The coherent states saturate an uncertainty relation and are in this sense as classical as
they can be.

These are properties that we want any set of states to have if they are to be called
coherent states. The generalized coherent states defined by Perelomov (1977) and
Zhang et al. (1990) do share these properties. The basic idea is to identify a group
G that acts irreducibly on the Hilbert space and define the coherent states as a
particular orbit of the group. If the orbit is chosen suitably the resulting space
of coherent states is a Kihler manifold. We will see how later; meanwhile let us
observe that there are many alternative ways to define generalized coherent states.
Sometimes any Kihler submanifold of CP” is referred to as coherent, regardless
of whether there is a group in the game or not. Other times the group is there but
the coherent states are not required to form a Kéhler space. Here we require both
simply because it is interesting to do so. Certainly a coherence group formed by all
the observables of interest for some particular problem arises in many applications,
and the irreducible representation is just the minimal Hilbert space that allows us
to describe the action of that group. Note that the coherence group is basically of
kinematical origin; it is not supposed to be a symmetry group.

6.2 Quasi-probability distributions on the plane

The covariant symbol of an operator, as defined in Eq. (6.16), gives us the means to
associate a function on phase space to any ‘observable’ in quantum mechanics. In
classical physics an observable is precisely a function on phase space, and moreover
the classical state of the system is represented by a particular such function — namely
by a probability distribution on phase space. Curiously similar schemes can work in
quantum mechanics too. It is interesting to think of music in this connection. Music,
as produced by orchestras and sold by record companies, is a certain function of
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Figure 6.2. Music scores resemble Wigner functions.

time. But this is not how it is described by composers, who think of music® as a

function of both time and frequency. Like the classical physicist, the composer can
afford to ignore the limitations imposed by the uncertainty relation that holds in
Fourier theory. The various quasi-probability distributions that we will discuss in
this section are musical scores for quantum mechanics, and, remarkably, nothing
is lost in this transcription. For the classical phase space we use the coordinates ¢
and p. They may denote the position and momentum of a particle, but they may
also define an electromagnetic field through its ‘quadratures’.5

Quantum mechanics does provide a function on phase space that gives the prob-
ability distribution for obtaining the value g in a measurement associated to the
special operator 4. This is just the familiar probability density for a pure state, or
(q1p)q) for a general mixed state. We ask for a function W(q, p) such that this
probability distribution can be recovered as a marginal distribution, in the sense
that

1 o0
(qlplg) = sz dp W(q, p) . (6.19)
T J—c0

This can be rewritten as an equation for the probability to find that the value ¢ lies
in an infinite strip bounded by the parallel lines ¢ = ¢, and ¢ = ¢», namely

Plgr=q=q) = L dgdp W(q. p) - (6.20)
27 strip

In classical physics (as sketched in Section 5.6) we would go on to demand that the
probability to find that the values of ¢ and p are confined to an arbitrary phase space
region 2 is given by the integral of W(g, p) over €2, and we would end up with a
function W(qg, p) that serves as a joint probability distribution for both variables.
This cannot be done in quantum mechanics. But it turns out that a requirement
somewhat in-between Eq. (6.20) and the classical requirement can be met, and
indeed uniquely determines the function W(q, p), although the function will not
qualify as a joint probability distribution because it may fail to be positive.

3 The sample shown is by J6zef Zyczkowski, 1895-1967.
6 A good general reference for this section is the survey of phase space methods given in the beautifully illustrated
book by Leonhardt (1997). Note that factors of 27 are distributed differently throughout the literature.
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Figure 6.3. Left: in classical mechanics there is a phase space density such that
we obtain the probability that p and ¢ is confined to any region in phase space by
integrating the density over that region. Right: in quantum mechanics we obtain the
probability that p and ¢ is confined to any infinite strip by integrating the Wigner
function over that strip.

For this purpose consider the operators
4o =qgcosf + psind  pyg=—gsinh + pcos6 . (6.21)

Note that gy may be set equal to either § or p through a choice of the phase 6, and
also that the commutator is independent of 6. The eigenvalues of gy are denoted
by gs. These operators gain in interest when one learns that the phase can actually
be controlled in quantum optics experiments. We now have the following theorem
(Bertrand and Bertrand, 1987):

Theorem 6.1 (Bertrand and Bertrand’s) The function W(q, p) is uniquely de-
termined by the requirement that

1 o0
(g010lge) = E/ dpe We(qs, po) (6.22)

for all values of 6. Here Wy(qg, pg) = W(q(qa, Po)s P(qo, 179))-

That is to say, as explained in Figure 6.3, we now require that all infinite strips are
treated on the same footing. We will not prove uniqueness here, but we will see that
the Wigner function W(q, p) has the stated property.

A convenient definition of the Wigner function is

(q.p) = R B N W(u, v)eatior (6.23)
W 2

where the characteristic function is a ‘quantum Fourier transformation’ of the
density matrix,

W(u,v) = Trpe “d—ivp (6.24)
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To express this in the g-representation we use the Baker—Hausdorff formula and
insert a resolution of unity to deduce that
—iug—ivp Luv —iug —ivp oo —iu v v
e ATV = Ve MdeTIVP = dge™|g+ =Yg — =|. (6.25)
0 2 2
We can just as well work with the operators in Eq. (6.21) and express everything
in the gg-representation. We assume that this has been done — effectively it just
means that we add a subscript 6 to the eigenvalues. We then arrive, in a few steps,
at Wigner’s formula’

oo

Wo(go, po) :/

—00

X X .
dx {(go — 5|/5|619 + 5) e, (6.26)

Integration over py immediately yields Eq. (6.22).
It is interesting to play with the definition a little. Let us look for a phase point
operator Aq p such that

o0 o0
W(g, p) = TrpA, =/ dq’f dq’ (q'161q") (4'1Agplq’) . (6.27)

That s to say that we will define the phase point operator through its matrix elements
in the g-representation. The solution is

!/ /
@1Agplay = 5(q - #)e“‘f’—‘f’”’ : (6.28)
This permits us to write the density matrix in terms of the Wigner function as

1 o
p= 5 f dg dp W(q. p) A, (6.29)

(as one can check by looking at the matrix elements). Hence the fact that the density
matrix and the Wigner function determine each other has been made manifest.
This is interesting because, given an ensemble of identically prepared systems, the
various marginal probability distributions tied to the rotated position (or quadrature)
operators in Eq. (6.21) can be measured — or at least a sufficient number of them
can, for selected values of the phase 6 — and then the Wigner function can be
reconstructed using an appropriate (inverse) Radon transformation. This is known
as quantum state tomography and is actually being performed in laboratories.?
The Wigner function has some remarkable properties. First of all it is clear that
we can associate a function W 4 to an arbitrary operator A if we replace the operator

7 Wigner (1932) originally introduced this formula, with @ = 0, as ‘the simplest expression’ that he (and Szilard)
could think of.

8 The Wigner function was first measured experimentally by Smithey, Beck, Raymer and Faridani (1993) in 1993,
and negative values of W were reported soon after. See Nogues, Rauschenbeutel, Osnaghi, Bertet, Brune,
Raimond, Haroche, Lutterbach and Davidovich (2000) and references therein.
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0 by the operator A in Eq. (6.24). This is known as the Weyl symbol of the operator
and is very important in mathematics. If no subscript is used it is understood that
the operator 0 is meant, thatis W = W,. Now it is straightforward to show that the
expectation value for measurements associated to the operator A is

N A 1
(A)p = TrpA = Equ dp Walg, p)W(q. p) . (6.30)

This is the overlap formula. Thus the formula for computing expectation values is
the same as in classical physics: integrate the function corresponding to the observ-
able against the state distribution function over the classical phase space. Classical
and quantum mechanics are nevertheless very different. To see this, choose two
pure states |1 ) (| and |y») (¥»| and form the corresponding Wigner functions. It
follows (as a special case of the preceding formula, in fact) that

1
(Y lya)|* = E/dqdp Wi(g, p)Wa(q, p) . (6.31)

If the two states are orthogonal the integral has to vanish. From this we conclude
that the Wigner function cannot be a positive function in general. Therefore, even
though it is normalized, it is not a probability distribution. But somehow it is ‘used’
by the theory as if it were.

On the other hand the Wigner function is subject to restrictions in ways that
classical probability distributions are not — this must be so since we are using
a function of two variables to express the content of the wave function, which
depends on only one variable. For instance, using the Cauchy—Schwarz inequality
one can show that

[W(g,p) < 2. (6.32)

It appears that the only economical way to state all the restrictions is to say that
the Wigner function arises from a Hermitian operator with trace unity and positive
eigenvalues via Eq. (6.24). We can formulate quantum mechanics in terms of the
Wigner function, but it is difficult to make this formulation stand on its own legs.

To clarify how Wigner’s formulation associates operators with functions we look
at the moments of the characteristic function. Specifically, we observe that

d\* s d\*~
Trp(ug + vp)k =it [ — ) Trpe 0@itD| =ik [ —) W(ou, ov)|y—0 -
do do
(6.33)
But if we undo the Fourier transformation we can conclude that

1
Trp(ug + vp)* = > f dg dp (ug + vp)* W(q, p). (6.34)
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By comparing the coefficients we see that the moments of the Wigner function give
the expectation values of symmetrized products of operators, that is to say that

Trp(@" p*)sym = % / dgdp W(q, p)q"p" . (6.35)
where (§p)sym = (§p + p4§)/2 and so on. Symmetric ordering is also known as
Weyl ordering, and the precise statement is that Weyl ordered polynomials in § and
p are associated to polynomials in ¢ and p.

Finally, let us take a look at some examples. For the special case of a coherent
state |qo, po), with the wavefunction given in Eq. (6.11), the Wigner function is a

Gaussian,
—(— 2__ n— 2
W\qo,po)(qsp) — 2 @40 =(p—po)” (6.36)

That the Wigner function of a coherent state is positive again confirms that there is
‘something classical” about coherent states. Actually the coherent states are not the
only states for which the Wigner function is positive — this property is characteristic
of a class of states known as squeezed states.” If we superpose two coherent states
the Wigner function will show two roughly Gaussian peaks with a ‘wavy’ structure
in between, where both positive and negative values occur; in the quantum optics
literature such states are known (perhaps somewhat optimistically) as Schrodinger
cat states. For the number (or Fock) states |n), the Wigner function is

Wi (g, p) =2(=1)" e 7" L,2¢> +2p?) (6.37)

where the L, are Laguerre polynomials. They have n zeroes, so we obtain n + 1
circular bands of alternating signs surrounding the origin, concentrated within a
radius of about g% + p? = 2n + 1. Note that both examples saturate the bound
(6.32) somewhere.

To see how the Wigner function relates to other quasi-probability distributions
that are in use we again look at its characteristic function, and introduce a one-
parameter family of characteristic functions by changing the high frequency be-
haviour (Cahill and Glauber, 1969):

WU, v) = W(u, v)e@ /4 (6.38)

This leads to a family of phase space distributions

‘ 1 - -
Wq, p) = o / dudv WO (u, v)e"atior (6.39)

9 This was shown in 1974 by Hudson (1974). As the name suggests squeezed states are Gaussian, but ‘squeezed’.
A precise definition is |, z) = exp[n(@")? — n*@%]|z), with 5 € C (see Leonhardt, 1997).
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For s = 0 we recover the Wigner function, W = W©. We are also interested in the
two ‘dual’ cases s = —1, leading to the Husimi or Q-function (Husimi, 1940), and
s = 1, leading to the Glauber—Sudarshan or P-function (Glauber, 1963; Sudar-
shan, 1963). Note that, when s > 0, the Fourier transformation of the characteristic
function may not converge to a function, so the P-function will have a distribu-
tional meaning. Using the Baker—-Hausdorff formula, and the definition (6.24) of
W(u, v), it is easily seen that the characteristic functions of the Q- and P-functions
are, respectively,

O, v) = WD (u, v) = Trpe M dg—ind! (6.40)

P(u, v) = WO, v) = Trpend'e=in'd, (6.41)

where 7 = (u + iv)/+/2. Equation (6.35) is now to be replaced by
Trpa"a™ = — / dgdp 0(z,2)7"7" (6.42)
Trpama" = — / dgdp P(z,2)7"7" (6.43)

where z = (q +ip)/~/2 as usual. Thus the Wigner, Q- and P-functions corre-
spond to different ordering prescriptions (symmetric, anti-normal and normal,
respectively).

The Q-function is a smoothed Wigner function,

1 , ,
Q(q,p) — E/dq/dp/ W(q/,p’)Ze_(q_q Y—(p—p') 7 (644)

as was to be expected because its high frequency behaviour was suppressed. It is
also a familiar object. Using Eq. (6.36) for the Wigner function of a coherent state
we see that

1 / / ! / / /
Q(q.p) = E/dq dp" Wu(q", P) Wig.p) (g P) (6.45)
Using the overlap formula (6.30) this is

Q(q. p) = Trplq. p){q. pl = (q. plblq. p) - (6.46)

This is the symbol of the density operator as defined in Eq. (6.16). The Q-function
has some desirable properties that the Wigner function does not have, in particular
it is everywhere positive. Actually, as should be clear from the overlap formula
together with the fact that density matrices are positive operators, we can use the
Wigner function of an arbitrary state to smooth a given Wigner function and we will
always obtain a positive distribution. We concentrate on the Q-function because
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in that case the smoothing has been done with a particularly interesting reference
state.

Since the integral of Q over phase space equals one the Husimi function is a
genuine probability distribution. But it is a probability distribution of a somewhat
peculiar kind, since it is not a probability density for mutually exclusive events.
Instead Q(q, p) is the probability that the system, if measured, would be found
in a coherent state whose probability density has its mean at (¢, p). Such ‘events’
are not mutually exclusive because the coherent states overlap. This has in its train
that the overlap formula is not as simple as (6.30). If Q4 is the Q-function corre-
sponding to an operator A, and P the P-function corresponding to an operator B,
then

. 1
TrAB = Equdp 04(q, p) Ps(q, p) - (6.47)

This explains why the Q-function is known as a covariant symbol — it is dual to the
P-function which is then the contravariant symbol of the operator. The relation of
the P-function to the density matrix is now not hard to see (although unfortunately
not in a constructive way). It must be true that

1
p = Z/dqdp lg, pYP(q, p){q, pl - (6.48)

This does not mean that the density matrix is a convex mixture of coherent states
since the P-function may fail to be positive. Indeed in general it is not a function,
and may fail to exist even as a tempered distribution. Apart from this difficulty we
can think of the P-function as analogous to the barycentric coordinates introduced
in Section 1.1.

Compared to the Wigner function the Q-function has the disadvantage that one
does not recover the right marginals, say | (¢)|* by integrating over p. Moreover
the definition of the Q-function (and the P-function) depends on the definition
of the coherent states, and hence on some special reference state in the Hilbert
space. This is clearly seen in Eq. (6.45), where the Wigner function of the reference
state appears as a filter that is smoothing the Wigner function. But this peculiarity
can be turned to an advantage. The Q-function may be the relevant probability
distribution to use in a situation where the measurement device introduces a ‘noise’
that can be modelled by the reference state used to define the Q-function.'” And
the Q-function does have the advantage that it is a probability distribution. Unlike
classical probability distribitutions, which obey no further constraints, it is also
bounded from above by 1/27. This is an interesting property that can be exploited

10 There is a discussion of this, with many references, in Leonhardt (1997) (and a very brief glimpse in our
Section 10.1).



6.3 Bloch coherent states 169

to define an entropy associated to any given density matrix, namely

1
Sw = — E/dq dp O(q. p)In Q(q, p) . (6.49)

This is the Wehrl entropy (Wehrl, 1978). It is a concave function of the density
matrix p as it should be, and it has a number of other desirable properties as well.
Unlike the classical Boltzmann entropy, which may assume the value —oo, the
Wehrl entropy obeys Sy > 1, and attains its lower bound if and only if the density
matrix is a coherent pure state.!! If we take the view that coherent states are classical
states then this means that the Wehrl entropy somehow quantifies the departure from
classicality of a given state. It will be compared to the quantum mechanical von
Neumann entropy in Section 12.4.

6.3 Bloch coherent states

We will now study the Bloch coherent states.'” In fact we have already done
so —they are the complex curves, with topology S?, that were mentioned in Section
4.3. But this time we will develop them along the same lines as the canonical co-
herent states were developed. Our coherence group will be SU(2), and our Hilbert
space will be any finite-dimensional Hilbert space in which SU(2) acts irreducibly.
The physical system may be a spin system of total spin j, but it can also be a col-
lection of n two-level atoms. The mathematics is the same, provided that n = 2j;
a good example of the flexibility of quantum mechanics. In the latter application
the angular momentum eigenstates |j, m) are referred to as Dicke states, and the
quantum number m is interpreted as half the difference between the number of
excited and unexcited atoms. The dimension of Hilbert space is N, and throughout
N=n+1=2j+1.

We need a little group theory to get started. We will choose our reference state
to be |j, j), that is it has spin up along the z-axis. Then the coherent states are all
states of the form D| j, j), where D is a Wigner rotation matrix. Using our standard
representation of the angular momentum operators (in Appendix 2) the reference
state is described by the vector (1, 0, .. ., 0), so the coherent states are described by
the first column of D. The rotation matrix can still be coordinatized in various ways.
The Euler angle parametrization is a common choice, but we will use a different

1 This was conjectured by Wehrl (1978) and proved by Lieb (1978). The original proof is quite difficult and
depends on some hard theorems in Fourier analysis. The simplest proof so far is due to Luo (2000), who relied
on properties of the Heisenberg group. For some explicit expressions for selected states, see Orfowski (1993).

12 Also known as spin, atomic, or SU(2) coherent states. They were first studied by Klauder (1960) and Radcliffe
(1971). Bloch had, as far as we know, nothing to do with them but we call them ‘Bloch’ so as to not prejudge
which physical application we have in mind.



170 Coherent states and group actions
one that brings out the complex analyticity that is waiting for us. We set
D = eil-g= U+ =2l giths (6.50)

Because our group is defined using 2 x 2 matrices, we can prove this statement
using 2 x 2 matrices; it will be true for all representations. Using the Pauli matrices
from Appendix 2 we can see that

ezLe—ln(lﬂz\z)he*Z‘h — ; |:1 _Z] (651)

VIi+z2 Ll 1

and we just need to multiply this from the right with e'™” to see that we have a
general SU (2) matrix. Of course the complex number z is going to be a stereographic
coordinate on the 2-sphere.

The final factor in Eq. (6.50) is actually irrelevant: we observe that when e!*%* is
acting on the reference state |j, j) it just contributes an overall constant phase to
the coherent states. In CP” the reference state is a fixed point of the U (1) subgroup
represented by e**. In the terminology of Section 3.8 the isotropy group of the
reference state is U(1), and the SU (2) orbit that we obtain by acting on it is the coset
space SU(2)/U(1) = S?. This coset space will be coordinatized by the complex
stereographic coordinate z. We choose the overall phase of the reference state to be
zero. Since the reference state is annihilated by J.. the complex conjugate z does
not enter, and the coherent states are

o) = e e MIHE e ) = ATy +1|Z|2) 5 e 1)) - (6.52)
Using z = tan %ei“’ we are always ready to express the coherent states as functions
of the polar angles; |z) = |0, ¢).
Since J_ is a lower triangular matrix, that obeys (J_)%>*! = (J_)"*! =0,
it is straightforward to express the unnormalized state in components. Using
Egs. (A2.4)-(A2.6) from Appendix 2 we get

=Y (2j>|' ) (6.53
e \j, j)= z itm j,m) . .53)

m=—j

That is, the homogeneous coordinates — that do not involve the normalization
factor — for coherent states are

z¢=(1, 2jz. ..., (

We can use this expression to prove that the coherent states form a sphere of radius
/772, embedded in CP?/. There is an intelligent way to do so, using the Kihler

2j

j+m>zf+'", 7. (6.54)
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property of the metrics (see Section 3.3). First we compare with Eq. (4.6), and read
off the affine coordinates z(z) of the coherent states regarded as a complex curve
embedded in CP%/ . For the coherent states we obtain

Z(2)- Z(2) = (1 +|zH¥ (6.55)

(so that, with the normalization factor included, (z|z) = 1). The Kéhler potential for
the metric is the logarithm of this expression, and the Kihler potential determines
the metric as explained in Section 4.5. With no effort therefore, we see that on the
coherent states the Fubini—Study metric induces the metric

ds? = 9,3, In (Z(z) - Z(2)) dz*dz® = 8 In (1 + |2]*)¥ dzdz = %sz . (6.56)

where we used the chain rule to see that dz%9, = dzd,, and d$2? is the metric on the
unit 2-sphere written in stereographic coordinates. This proves that the embedding
into CP% turns the space of coherent states into a sphere of radius /j/2, as
was to be shown. It is indeed a complex curve as defined in Section 4.3. The
symplectic form on the space of coherent states is obtained from the same Kéhler
potential.

This is an important observation. At the end of Section 6.1 we listed four require-
ments that we want a set of coherent states to meet. One of them is that we should
be able to think of the coherent states as forming a classical phase space embedded
in the space of quantum mechanical pure states. In the case of canonical coherent
states that phase space is the phase space spanned by ¢ and p. The 2-sphere can also
serve as a classical phase space because, as a Kédhler manifold, it has a symplectic
form that can be used to define Poisson brackets between any pair of functions on
S? (see Section 3.4). So all is well on this score. We also note that as j increases
the sphere grows, and will in some sense approximate the flat plane with better and
better accuracy.

Anotherrequirement, listed in Section 6.1, is that there should exist a resolution of
unity, so that an arbitrary state can be expressed as a linear combination of coherent
states. This also works here. Using Eq. (6.53), this time with the normalization
factor from Eq. (6.52) included, we can prove that

2j+1 2j+l/°° /2” 4r
dQ = d dp ——— =1 6.57
i / |2)(z] w )y ¢ (1+r2)2|z>(z| . (6.57)

where d€2 is the round measure on the unit 2-sphere, that we wrote out using the
fact that z is a stereographic coordinate and the definition z = . Tt follows that
the coherent states form a complete, and indeed an overcomplete, set. Next we
require a correspondence between selected quantum mechanical observables on
the one hand and classical observables on the other. Here we can use the symbol
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of an operator, defined in analogy with the definition for canonical coherent states.
In particular the symbols of the generators of the coherence group are the classical
phase space functions

Ji0,9) = (zlJilz) = jni6.9), (6.58)

where n;(0, ¢) is a unit vector pointing in the direction labelled by the angles 6 and
¢. This is the symbol of the operator J;.

Our final requirement is that coherent states saturate an uncertainty relation.
But there are several uncertainty relations in use for spin systems, a popular choice
being

732

(AJOHAL)? = — i (e 1) = ”;) : (6.59)
(Here (AJ,)? = (J2) — (J)? as usual.) States that saturate this relation are known
(Aragone, Gueri, Salam¢6 and Tani, 1974) as intelligent states — but since the right-
hand side involves an operator this does not mean that the left-hand side is min-
imized. The relation itself may be interesting if, say, a magnetic field singles out
the z-direction for attention. We observe that a coherent state that has spin up in
the z-direction satisfies this relation, but for a general coherent state the uncertainty
relation itself has to be rotated before it is satisfied. Another measure of uncertainty
is

A? = (AT + (ALY + (AL = (JB) — (I)dy) . (6.60)

This has the advantage that A? is invariant under SU(2), and takes the same value
on all states in a given SU(2) orbit in Hilbert space. This follows because (f i)
transforms like an S O(3) vector when the state is subject to an SU(2) transforma-
tion.

One can now prove'® that

j <A< jG+D. (6.61)

A

It is quite simple. We know that (J2) = j(j + 1). Moreover, in any given orbit we

N

can use SU(2) rotations to bring the vector (J;) to the form
(Ji) = (J) 83 (6.62)

Expanding the state we see that

J J
W)=Y culm) = (J)= ) mlenl® = 0=(J)<j (6.63)

m=—j m=—j

13 As was done by Delbourgo (1977) and further considered by Barros e Sd (2001b).
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and the result follows in easy steps. It also follows that the lower bound in Eq. (6.61)
is saturated if and only if the state is a Bloch coherent state, for which (iz) =j.
The upper bound will be saturated by states in the RP? orbit when it exists, and
also by some other states. It can be shown that A2 when averaged over CP”, using
the Fubini—Study measure from Section 4.7, is j(j + %). Hence for large values of
J the average state is close to the upper bound in uncertainty.

In conclusion, Bloch coherent states obey all four requirements that we want
coherent states to obey. There are further analogies to canonical coherent states to
be drawn. Remembering the normalization we obtain the overlap of two coherent
states as

n n ="k —_ 2j
@l = 2 W& _ s 66
W1+ 1PVT+1ZPr \VI+zRV1+ (2]

The factorization is interesting. On the one hand we can write
(z]z) = e " cos Drs , (6.65)

where Dgs is the Fubini—Study distance between the two states and A is a phase
factor that, for the moment, is not determined. On the other hand the quantity within
brackets has a natural interpretation for j = 1/2, that is, on CP'. Indeed

5
(Z12) = ((12) ;=) - (6.66)

But for the phase factor inside the brackets it is true that
arg(Z/|Z>|j:% = arg(Z/|Z)|j:%(Z|+)\j:%(+|2,)|j:% =-24A,, (6.67)

where |+) is the reference state for spin 1/2, Eq. (4.97) was used, and A is the
area of a triangle on CP! with vertices at the three points indicated. Comparing
the two expressions we see that A = 2jA; and it follows that A is the area of a
triangle on a sphere of radius /27 /2 = /j/2, that is the area of a triangle on the
space of coherent states itself. The analogy with Eq. (6.15) for canonical coherent
states is evident. This is a non-trivial result and has to do with our quite special choice
of reference state; technically it happens because geodesics within the embedded
2-sphere of coherent states are null phase curves in the sense of Section 4.8, as a
pleasant calculation confirms.'#

Quasi-probability distributions on the sphere can be defined in analogy to those
on the plane. In particular, the Wigner function can be defined and it is found to
have similar properties to that on the plane. For instance, a Bloch coherent state
|0, ¢) has a positive Wigner function centred around the point (6, ¢). We refer to

14 This statement remains true for the SU(3) coherent states discussed in Section 6.4; Berceanu (2001) has
investigated things in more generality.
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Table 6.1. Comparison of the canonical coherent states on the plane and the
Bloch coherent states on the sphere, defined by the Wigner rotation
matrix Dg ()b The overlap between two canonical (Bloch) coherent states is a
Sfunction of the distance between two points on the plane (sphere), while the
phase is determined by the area A of a flat (spherical) triangle.

Hilbert space H Infinite Finite, N = 2j + 1
phase space plane R? sphere §2
commutation PPN Tl =ie
relations g p1=1 7 [J.“ Jj]t_t Léije Ji
basis Fock {|0), |1). ...} : cigens ?fs 7. m]>)
reference state vacuum |0) north pole k) = | Js J)
coherent states lg, p) = expli(pd — g p)]|0) 0, ¢) = D;J¢ [j, J)
POVM % Jealgo P)@. pldgdp =1 22 [510.4)(6, ¢l dS2 = 1
overlap e 24 exp[——(DE) ] e 24 [cos(iDR)]
Husimi 0,(q. ) = (. plolq. p) 0,0.4) = (0. 9016, 9)
representation p\d- P) =19, PIP1q. P 0(0.0)=(0,9l010, ¢
Wehrl entropy Sy —2 [2dgdp Q,1n[Q,] —2Erdeo, 1n[Qp
Wehrl-Lieb

conjecture Sw(¥) (] = 1 Sw(y) (YD) > 2,“

the literature for details (Agarwal, 1981; Dowling, Agarwal and Schleich, 1994).
The Husimi Q-function on the sphere will be given a detailed treatment in the next
chapter. The Glauber—Sudarshan P-function exists for the Bloch coherent states
whatever the dimension of the Hilbert space (Mukunda, Arvind, Chaturvedi and
Simon, 2003); again a non-trivial statement because it requires the complex curve
to ‘wiggle around” enough inside CP?/ so that, once the latter is embedded in the
flat vector space of Hermitian matrices, it fills out all the dimensions of the latter.
It is like the circle that one can see embedded in the surface of a tennis ball. The
P-function will be positive for all mixed states in the convex cover of the Bloch
coherent states.

To wind up the story so far we compare the canonical and the SU(2) Bloch
coherent states in Table 6.1.

6.4 From complex curves to SU(K) coherent states

In the previous section we played down the viewpoint that regards the Bloch co-
herent states as a complex curve, but now we come back to it. Physically, what we
have to do (for a spin system) is to assign a state to each direction in space. These
states then serve as ‘spin up’ states for given directions. Mathematically this is a
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map from S? = CP! into CP*, with n = 2j = N — 1, that is a complex curve in
the sense of Section 4.3. To describe the sphere of directions in space we use the
homogeneous coordinates

6 0 . 0 .
(u, v) ~ (cos > sin Eew) ~ (1, tan Eel‘l’) . (6.68)

As we know already, the solution to our problem is

w.v) — @S, (Z)u"_kvk,...,v"). (6.69)

As we also know, the Fubini—Study metric on CP" induces the metric
ds? = %(al@2 + sin20 dp?) (6.70)

on this curve, so it is a round sphere with a radius of curvature equal to \/n/2. The
fact that already for modest values of n the radius of curvature becomes larger than
the longest geodesic distance between two points in CP” is not a problem since this
sphere cannot be deformed to a point, and therefore it has no centre.

We have now specified the m = j eigenstate for each possible spatial direction by
means of a specific complex curve. It is remarkable that the location of all the other
eigenstates is determined by the projective geometry of the curve. The location of
the m = —j state is evidently the antipodal point on the curve, as defined by the
metric just defined. The other states lie off the curve and their location requires
more work to describe. In the simple case of n = 2 (that is j = 1) the complex
curve is a conic section, and the m = 0 state lies at the intersection of the unique
pair of lines that are tangent to the curve at m = =1, as described in Section 4.3.
Note that the space of singlet states is an RP?, since any two antipodal points on the
m = 1 complex curve defines the same m = 0 state. The physical interpretation of
the points of CP? is now fixed. Unfortunately it becomes increasingly difficult to
work out the details for higher n. 1

So far we have stuck to the simplest compact Lie algebra SU(2). But, since
the full isometry group of CP" is SU(n + 1)/Z"*!, it is clear that all the special
unitary groups are of interest to us. For any K, a physical application of SU(K)
coherent states may be a collection of K -level atoms.!® For a single K-level atom
we would use a K -dimensional Hilbert space, and for the collection the dimension
can be much larger. But how do we find the orbits under, say, SU(3) in some CP”,
and more especially what is the SU(3) analogue of the Bloch coherent states?
The simplest answer (Gitman and Shelepin, 1993) is obtained by a straightforward

15 See Brody and Hughston (2001) for the n = 3 case.
16 Here we refer to SU(K) rather than SU(N) because the letter N = n + 1 is otherwise engaged.
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generalization of the approach just taken for SU(2): since SU(3) acts naturally on
CP? this means that we should ask for an embedding of CP? into CP". Let the
homogeneous coordinates of a point in CP?be PY = (u, v, w). We embed this into
CP" through the equation

/ ]
(u,v,w) — W™, ..., %uklvkzwkﬂ...); ki+ky+ks=m. (6.71)
1 ko lks!

Actually this puts a restriction on the allowed values of n, namely
1
N:n+1:§(m+1)(m+2). (6.72)

For these values of n we can choose the components of a symmetric tensor of rank
m as homogeneous coordinates for CP". The map from P* € CP? to a point in
CP? is then defined by

P* — T = peph . (6.73)

In effect we are dealing with the symmetric tensor representation of SU(3). (The
brackets mean that we are taking the totally symmetric part; compare this to the
symmetric multispinors used in Section 4.4.)

Anyway we now have an orbit of SU(3) in CP”" for special values of n. To
compute the intrinsic metric on this orbit (as defined by the Fubini—Study metric
in the embedding space) we again take the short cut via the Kihler potential. We
first observe that

_ m! -
Z-Z= E ———— [ o) w P =(u? + v 4 lw)" =(P - P)".
. k!
1+hka+hks=m

(6.74)

Since the logarithm of this expression is the Kéhler potential expressed in affine
coordinates, we find that the induced metric on the orbits becomes

ds? = 3,9 In (P(2) - P(2))" dz“dz” = m d§® (6.75)

where ds? is the Fubini—Study metric on CP? written in affine coordinates. Hence,
just as for the Bloch coherent states, we find that the intrinsic metric on the orbit is
just arescaled Fubini—Study metric. Since the space of coherent states is Kéhler the
symplectic form can be obtained from the same Kéhler potential, using the recipe
in Section 3.3.

The generalization to SU(K') with an arbitrary K should be obvious. The Hilbert
spaces in which we can represent SU(K) using symmetric tensors of rank m have
dimension

, K+m—1\ (K+m—1)!
NK,m = dlm(HK,m) = ( m ) = m . (676)
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which is the number of ways of distributing m identical objects in K boxes. For
K = 3 it reduces to Eq. (6.72). The coherent states manifold itself is now CPX~!,
and the construction embeds it into CPVx»—1,

But the story of coherent states for SU(K) is much richer than this for every
K > 2.

6.5 SU(3) coherent states

Let us recall some group theory. In this book we deal mostly with the classical
groups SU(K), SO(K) and Sp(K) and in fact mostly with the special unitary
groups SU(K). There are several reasons for this. For one thing the isometry group
of CPX~!is SU(K)/ZX, for RPX~! it is the special orthogonal group SO(K) and
for the quaternionic projective space HPX ~! it is the symplectic group Sp(K)/Z?,
so these groups are always there. Also they are all, in the technical sense, simple and
compact groups and have in many respects analogous properties. In particular, most
of their properties can be read off from their Lie algebras, and their complexified
Lie algebras can be brought to the standard form

[Hi, H]1=0, [H;, Ey=E,, (6.77)
[Eo, Egl = NegEorp, [Eq, E_gl=a'H;. (6.78)

where «; is a member of the set of root vectors and Nyg = 0 if o; + B; is not a
root vector. The H; form a maximal commuting set of operators and span what is
known as the Cartan subalgebra. Of course o; and N,p depend on the group;
readers not familiar with group theory will at least be able to see that SU(2)
fits into this scheme (if necessary, consult Appendix 2, or a book on group the-
ory (Gilmore, 1974)). A catalogue of the irreducible unitary representations can
now be made by specifying a highest weight vector |) in the Hilbert space,
with the property that it is annihilated by the ‘raising operators’ E, (for all pos-
itive roots), and it is labelled by the eigenvalues of the commuting operators H;.
Thus

1
Eyqlp) =0, a>0; Hilp) = Smilu) (6.79)

where m; are the components of a weight vector. For SU (2) we expect every reader
to be familiar with this result. For SU(3) we obtain representations labelled by two
integers m; and m,, with the dimension of the representation being

1
dimH, my = E(ml + D(my 4+ D(my +my +2) . (6.80)
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We will concentrate on SU(3) because the main conceptual novelty — compared to
SU(2) — can be seen already in this case.

In accordance with our general scheme we obtain SU(3) coherent states by
acting with SU(3) on some reference state. It turns out that the resulting orbit is a
Kihler manifold if and only if the reference state is a highest weight vector of the
representation (Perelomov, 1977; Zhang et al., 1990) — indeed the reason why the
S? orbit of SU(2) is distinguished can now be explained as a consequence of its
reference state being a highest weight vector. What is new compared to SU(2) is
that there are several qualitatively different choices of highest weight vectors. There
is more news on a practical level: whereas the calculations in the SU(2) case are
straightforward, they become quite lengthy already for SU(3). For this reason we
confine ourselves to a sketch.!” We begin in the defining representation of SU(3)
by introducing the 3 x 3 matrices

Sij = 10 {jl- (6.81)

If i < j we have a ‘raising operator’ E, with positive root, if i > j we have
a ‘lowering operator’ E_, with negative root. We exponentiate the latter and
define

b_(z) = e®¥ g% g% (6.82)

where the y; are complex numbers and no particular representation is assumed. In
the defining representation this is the lower triangular 3 x 3 matrix,

1 0 O
b-(z)=|zz 1 O0f. (6.83)
3 22 |

Upper triangular matrices b are defined analogously (or by Hermitian conjugation)
and will annihilate the reference state that we are about to choose. Then we use
that the fact that almost all (in the sense of the Haar measure) SU (3) matrices can
be written in the Gauss form

A=b_Db, , (6.84)

where D is a diagonal matrix (obtained by exponentiating the elements of the Cartan
subalgebra). Finally we define the coherent states by

lz) = N (@) b (2) | ipm, ma1) 5 (6.85)

17 For full details consult Gnutzmann and Kus (1998), from whom everything that we say here has been taken.
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g

SU3) &, L . — e
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K S /N

Figure 6.4. A reminder about representation theory: we show the root vectors of
SU (3) and four representations — the idea is that one can get to every point (state) by
subtracting one of the simple root vectors o or «; from the highest weight vector.
For the degenerate representations (0, m) there is no way to go when subtracting
a; this is the reason why Eq. (6.90) holds. The corresponding picture for SU(2)
is shown inserted.

where the reference state is a highest weight vector for the irreducible repre-
sentation that we have chosen. This formula is clearly analogous to Eq. (6.52).
The calculation of the normalizing factor N is again straightforward but is
somewhat cumbersome compared to the calculation in the K =2 case. Let us
define

vi=14z*+ |z (6.86)
vo=14 2P+l -2, (6.87)

N@ =\ "™ (6.88)

With a view to employing affine coordinates in CP" we may prefer to write the
state vector in the form Z% = (1, ...) instead. Then we find

Then the result is

Z2@)-Z@) = y"n" . (6.89)

Equipped with this Kihler potential we can easily write down the metric and the
symplectic form that is induced on the submanifold of coherent states.

There is, however, a subtlety. For degenerate representations, namely when either
my or my equals zero, the reference state is annihilated not only by S;; for i < j
but also by an additional operator. Thus

2=0 = Sulu)=0 and m =0 = Splu)=0. (6.90)
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Readers who are familiar with the representation theory of SU(3) see this imme-
diately from Figure 6.4. This means that the isotropy subgroup is larger for the
degenerate representations than in the generic case. Generically the state vector
is left invariant up to a phase by group elements belonging to the Cartan sub-
group U(1) x U(1), but in the degenerate case the isotropy subgroup grows to
SU2) x U(1).

The conclusion is that for a general representation the space of coherent states is
the six-dimensional space SU(3)/U(1) x U(1), with metric and symplectic form
derived from the Kéhler potential given in Eq. (6.89). However, if m, = 0 the space
of coherent states is the four-dimensional space SU(3)/SU(2) x U(1) = CP?, with
metric and symplectic form again given by Eq. (6.89). This agrees with what we
found in the previous section, where the Kéhler potential was given by Eq. (6.74).
Form = 0the space of coherent states is again CP?; the Kiihler potential is obtained
from Eq. (6.89) by setting z; = 0. Interestingly, the ‘classicality’ of coherent states
now gives rise to classical dynamics on manifolds of either four or six dimensions
(Gnutzmann, Haake and Kus, 2000).

The partition of unity — or, the POVM — becomes

_(my + D(ma + Dmy +ma +2)
= -

1

1
Pz P d’zs —— Iz (691
172

in the generic case and

1 2 1

g A DO ED [ 2oy Ll forma=0.  (692)
bid Yi
1 2 !

ﬂ:% dordz; — l2)zl formy =0,  (6.93)

2

where the last integral is evaluated at z; = 0.

In conclusion the SU(3) coherent states differ from the SU(2) coherent states
primarily in that there is more variety in the choice of representation, and hence
more variety in the possible coherent state spaces that occur. As it is easy to guess,
the same situation occurs in the general case of SU(K') coherent states. Let us also
emphasize, that it may be useful to define generalized coherent states for some
more complicated groups. For instance, in Chapter 15 we analyse pure product
states of a composite N x M system, which may be regarded as coherent with
respect to the group SU(N) x SU(M). The key point to observe is that if we use a
maximal weight vector as the reference state from which we build coherent states
of a compact Lie group then the space of coherent states is Kéhler, so it can serve as
a classical phase space, and many properties of the Bloch coherent states recur, for
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example there is an invariant measure of uncertainty using the quadratic Casimir
operator, and coherent states saturate the lower bound of that uncertainty relation
(Delbourgo and Fox, 1977).

Problems

Problem 6.1 Compute the Q- and P-distributions for the one-photon Fock state.

Problem 6.2 Compute the Wehrl entropy for the Fock states |n).
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The stellar representation

We are all in the gutter, but some of us are looking at the stars.
Oscar Wilde

We have already, in Section 4.4, touched on the possibility of regarding points
in complex projective space CPV~! as unordered sets of n = N — 1 stars on a
‘celestial sphere’. There is an equivalent description in terms of the n zeros of the
Husimi function. Formulated either way, the stellar representation illuminates the
orbits of SU(2), the properties of the Husimi function, and the nature of ‘typical’
and ‘random’ quantum states.

7.1 The stellar representation in quantum mechanics

Our previous discussion of the stellar represenation was based on projective ge-
ometry only. When such points are thought of as quantum states we will wish
to take the Fubini—Study metric into account as well. This means that we will
want to restrict the transformations acting on the celestial sphere, from the Mobius
group SL(2, C)/Z, to the distance preserving subgroup SO3) = SU(2)/Z,. So
the transformations that we consider are

ro_ oz — :B

T >3 = -——,
,3*Z+a*

(7.1)
where it is understood that z = tan %ei‘f’ is a stereographic coordinate on the
2-sphere. Recall that the idea in Section 4.4 was to associate a polynomial to each
vector in CV, and the roots of that polynomial to the corresponding point in CPY !,
The roots are the stars. We continue to use this idea, but this time we want to make
sure that an SU (2) transformation really corresponds to an ordinary rotation of the
sphere on which we have placed our stars. For this purpose we need to polish our
conventions a little: we want a state of spin ‘up’ in the direction given by the unit
vector n to be represented by n = 2 points sitting at the point where n meets the

182
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sphere, and more generally a state that is an eigenstate of n - L. with eigenvalue m
to be represented by j + m points at this point and j — m points at the antipode.
Now consider a spin j = 1 particle and place two points at the east pole of the
sphere. In stereographic coordinates the east pole is at z = tan 7 = 1, so the east
pole polynomial is

wi@)=@E—-12=22-2z+1. (7.2)

The eigenvector of L, with eigenvalue +1 is Z¢ = (1, V2, 1), so if we are to read
off this vector from Eq. (7.2) we must set

w(z) = 2°2%2 —V27'z+ 7. (7.3)

After a little experimentation like this it becomes clear that to any point in CP”",
given by the homogeneous coordinates Z%, we want to associate the n unordered
roots of the polynomial

wx) = Y (~1)°z° | (Z)z_ . (7.4)
a=0

The convention for when co counts as a root is as described in Section 4.4. The
factors and signs have been chosen precisely so that the eigenstate of the operatorn -
L with eigenvalue m, where n = (sin 6 cos ¢, sin 6 sin ¢, cos 6), is represented by
Jj + mpointsat z = tan %eid’ and j — m points at the antipodal point (see Figure 4.7).
Itis interesting to notice that the location of the stars has an operational significance.
A spin system, say, cannot be observed to have spin up along a direction that points
away from a star on our celestial sphere.

With these conventions the stellar representation behaves nicely under rotations,
in the sense that if we apply a rotation operator to CP” the effect in the picture
is simply to rotate the sphere containing the n unordered points.! The action of a
general unitary transformation, not belonging to the SU(2) subgroup that we have
singled out for attention, is of course not transparent in the stellar representation. On
the other hand the anti-unitary operation of time reversal, as defined in Section 5.5,
is nicely described. For n = 1 we find that

0 71
@[;]:[ZZO] = @=L (1.5)

(since z = Z'/ZY). This is just an inversion of the sphere through the origin. But
this works for all . From the transformation properties of Z* together with Eq. (7.4)
it follows that a state that is pictured as n points located at the n positions z; will go

! The resemblance to Schwinger’s harmonic oscillator representation of SU(2) (Schwinger, 1965) is not accidental.
He was led to his representation by Majorana’s description of the stellar representation (Majorana, 1932).
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A

Figure 7.1. In the stellar representation a time reversal moves the stars to their
antipodal positions; time-reversal invariant states can therefore occur only when
the number of stars is even (as it is in the rightmost case, representing a point
in RP*).

over to the state that is pictured by n points located at the inverted positions —1/7;.
Since no configuration of an odd number of points can be invariant under such a
transformation it immediately follows that there are no states invariant under time
reversal when n is odd.

For even n there will be a subspace of states left invariant under time reversal.
For n = 2 it is evident that this subspace is the real projective space RP?, because
the stellar representation of a time reversal invariant state is a pair of points in
antipodal position on S. This is not the RP? that we would obtain by choosing all
coordinates real, rather it is the RP? of all possible m = 0 states. For higher n the
story is less transparent, but it is still true that the invariant subspace is RP", and
we obtain a stellar representation of real projective space into the bargain — a point
in the latter corresponds to a configuration of stars on the sphere that is symmetric
under inversion through the origin.

7.2 Orbits and coherent states

The stellar representation shows its strength when we decide to classify all possible
orbits of SU(2)/Z? = SO(3) in CP".2 The general problem is that of a group G
acting on a manifold M; the set of points that can be reached from a given point
is called a G-orbit. In itself the orbit is the coset space G/H, where H is the sub-
group of transformations leaving the given point invariant. H is called the isotropy
group. We want to know what kinds of orbits there are and how M is partitioned
into G-orbits. The properties of the orbits will depend on the isotropy group H.
A part of the manifold M where all orbits are similar is called a stratum, and in
general M becomes a stratified manifold foliated by orbits of different kinds. We
can also define the orbit space as the space whose points are the orbits of G in M;
a function of M is called G-invariant if it takes the same value at all points of a

2 This was done by Bacry (1974). By the way his paper contains no references whatsoever to prior work.
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given orbit, which means that it is automatically a well-defined function of the orbit
space.

In Section 6.3 we had M = CP”, and, by choosing a particular reference state,
we selected a particular orbit as the space of Bloch coherent states. This orbit
had the intrinsic structure of SO(3)/S0(2) = S2. It was a successful choice, but
it is interesting to investigate if other choices would have worked as well. For
CP! the problem is trivial: we have one star and can rotate it to any position,
so there is only one orbit, namely CP! itself. For CP? it gets more interesting.
We now have two stars on the sphere. Suppose first that they coincide. The little
group — the subgroup of rotations that leaves the configuration of stars invariant —
consists of rotations around the axis where the pair is situated. Therefore the orbit
becomes SO(3)/S0O(2) = 0(3)/0(2) = S%. Every state represented by a pair of
coinciding points lies on this orbit. Referring back to Section 6.4, we note that the
states on this orbit can be regarded as states that have spin up in some direction,
and we already know that these form a sphere inside CP2. But now we know
it in a new way. The next case to consider is when the pair of stars are placed
antipodally on the sphere. This configuration is invariant under rotations around
the axis defined by the stars, but also under an extra turn that interchanges the
two points. Hence the little group is SO(2) x Z? = O(2) and the orbit is 8?/Z? =
0(3)/[0(2) x O(1)] = RP?. For any other pair of stars the little group has a single
element, namely a discrete rotation that interchanges the two. Hence the generic
orbit is SO(3)/Z* = 0(3)/[0(1) x O(1)]. Since SO(3) = RP? = S3/Z? we can
also think of this as a space of the form S*/ T, where T" is a discrete subgroup of
the isometry group of the 3-sphere. Spaces of this particular kind are called lens
spaces by mathematicians.

To solve the classification problem for arbitrary n we first recall that the com-
plete list of subgroups of SO(3) consists of e (the trivial subgroup consisting of
just the identity); the discrete groups C,, (the cyclic groups, with p some integer),
D, (the dihedral groups), T (the symmetry group of the tetrahedron), O (the sym-
metry group of the octahedron and the cube) and Y (the symmetry group of the
icosahedron and the dodecahedron); also the continuous groups SO(2) and O(2).
This is well known to crystallographers and to mathematicians who have studied
the regular polyhedra. Recall, moreover, that the tetrahedron has four vertices, six
edges and four faces so that we may denote it by {4, 6, 4}. Similarly the octahedron
is {6, 12, 8}, the cube {8, 12, 6}, the dodecahedron {12, 30, 20} and the icosahedron
is {20, 30, 12}. The question is: given the number 7, does there exist a configuration
of n stars on the sphere invariant under the subgroup I'? The most interesting case
is for I' = SO(2) which occurs for all n, for instance when all the stars coincide.
For O(2) the stars must divide themselves equally between two antipodal positions,
which can happen for all even n. The cyclic group C,, occurs for all n > p, the
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Figure 7.2. An orbit of SU(2) acting on CP?. We use orthographic coordinates
to show the octant, in which the orbit fills out a two-dimensional rectangle. Our
reference state is at its upper left-hand corner. In the tori there is a circle and we
show how it winds around its torus; its precise position varies. When ¢ — 0 the
orbit collapses to S? and when ¢ — 7 /4 it collapses to RP?.

groups D and D for all even n > 4, and the remaining dihedral groups D, when
n = p + pa + 2b with a and b non-negative integers. For the tetrahedral group
T, we must have n = 4a 4 6b with a non-negative (this may be a configuration
of a stars at each corner of the tetrahedron and b stars sitting ‘above’ each edge
midpoint — if the latter stars only are present the symmetry group becomes O). Sim-
ilarly the octahedral group O occurs when n = 6a 4 8b and the icosahedral group
Y when n = 12a 4 20b + 30c, a, b and c being integers. Finally configurations
with no symmetry at all appear for all n > 3. The possible orbits are of the form
SO(3)/T; if T is one of the discrete groups this is a three-dimensional manifold.
Indeed among the orbits only the exceptional SO(3)/S0(2) = S? orbit is a Kihler
manifold, and it is the only orbit that can serve as a classical phase space. Hence
this is the orbit that we will use to form coherent states.

Since the orbits have rather small dimensions the story of how CP" can be
partitioned into SU(2) orbits is rather involved when # is large, but for n = 2 it can
be told quite elegantly. There will be a one parameter family of three-dimensional
orbits, and correspondingly a one parameter choice of reference vectors. A possible
choice is

) cos o -
Zy(o) = 0 , 0<o< 1 (7.6)
sin o

The corresponding polynomial is w(z) = z2 + tano and its roots will go from
coinciding to antipodally placed as o grows. If we act on this vector with a general



7.3 The Husimi function 187

3 x 3 three-rotation matrix D — parametrized say by Euler angles as in Eq. (3.143),
but this time for the three-dimensional representation — we will obtain the state
vector

Z%(0,1,0,¢) = D“ﬂ(t, 0, ¢)Z§(0) , (7.7)

where o labels the orbit and the Euler angles serve as coordinates within the orbit.
The range of t turns out to be [0, w[. Together these four parameters serve as a
coordinate system for CP2.

By means of lengthy calculations we can express the Fubini—Study metric in
these coordinates; in the notation of Section 3.7

ds? = do? +2(1 + sin20)0% + 2(1 — sin20)@O3 + 4sin* 20 O3 . (7.8)

On a given orbit o is constant and the metric becomes the metric of a 3-sphere
that has been squashed in a particular way. It is in fact a lens space rather than a
3-sphere because of the restricted range of the periodic coordinate T. When o = 0
the orbit degenerates to a (round) 2-sphere, and when o = 7 /4 to real projective
2-space. The parameter o measures the distance to the S? orbit.

Another way to look at this is to see what the orbits look like in the octant picture
(Section 4.6). The answer turns out to be quite striking (Barros e S4, 2001a) and is
given in Figure 7.2.

7.3 The Husimi function

Scanning our list of orbits we see that the only orbit that is a symplectic space, and
can serve as a classical phase space, is the exceptional SO(3)/S0(2) = S? orbit.
These are the Bloch coherent states that we will use, and we will now proceed to
the Husimi or Q-function for such coherent states. In Section 6.2 it was explained
that the Husimi function is a genuine probability distribution on the classical phase
space and that, at least in theory, it allows us to reconstruct the quantum state. Our
notation will differ somewhat from that of Section 6.3, so before we introduce it
we recapitulate what we know so far. The dimension of the Hilbert space Hy is
N =n+1=2j 4+ 1. Using the basis states |e,) = |j, m), a general pure state can
be written in the form

) = Y Z%ed) (1.9)
a=0

and a (normalized) Bloch coherent state in the form

1 n n N
lz) = m Z <a>z leq) . (7.10)

a=0
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(The notation here is inconsistent — Z¢ is a component of a vector, while z% is
the complex number z raised to a power — but quite convenient.) At this point we
introduce the Bargmann function. Up to a factor it is again an nth order polynomial
uniquely associated to any given state. By definition

1 ol n
_ R 7. o 7.11
V= W1 = [T O \/QZ T

It is convenient to regard our Hilbert space as the space of functions of this form,

with the scalar product

n+1 4d’z
47 (I + |z|

So d€2 is the usual measure on the unit 2-sphere. That this is equivalent to the usual

scalar product follows from our formula (6.57) for the resolution of unity.?
Being a polynomial the Bargmann function can be factorized. Then we obtain

n+1 - _
<w|¢>=?fdsz Vo= Ve 1)

Y(z) = Z—o)z—w)...(z—wy). (7.13)

Zy
(1+1z[»)2
The state vector is uniquely characterized by the zeros of the Bargmann function, so
again we have stars on the celestial sphere to describe our states. But the association
is not quite the same that we have used so far. For instance, we used to describe a
coherent state by the polynomial

w(z) = (2—z0)". (7.14)

(And we know how to read off the components Z* from this expression.) But the
Bargmann function of the same coherent state |zo) is

% L.
V2 (2) = (20l2) = 7 2+ )" (7.15)
’ (T4 12121 + [z0?)? 20
Hence wy = —1/Zp. In general the zeros of the Bargmann function are antipodally

placed with respect to our stars. As long as there is no confusion, no harm is done.
With the Husimi function for the canonical coherent states in mind, we rely on

the Bloch coherent states to define the Husimi function as*
2
2 12" 2 2 2
y(2) = ' =———lz—willz— | ... |2 — ] . 7.16
Qv =W RIF = s o= el = erf ol ol (7.16)

It is by now obvious that the state |1) is uniquely defined by the zeros of its Husimi
function. It is also obvious that Q is positive and, from Egs. (7.12) and (6.57), that

3 This Hilbert space was presented by V. Bargmann (1961) in an influential paper.
4 Some authors prefer the definition Qy()=(n+ DI(yr|z)|%.
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3

w

Figure 7.3. We know that o (z, ) = sin® %; here we see that sin % equals one half
of the chordal distance d., between the two points.

it is normalized to one:
n+1
4

Hence it provides a genuine probability distribution on the 2-sphere. It is bounded
from above. Its maximum value has an interesting interpretation: the Fubini—Study
distance between |¢) and |z) is given by Dgs = arccos+/k, where k = [(¥lz))? =
Q. (2), so the maximum of Q. (z) determines the minimum distance between |y)
and the orbit of coherent states.

A convenient way to rewrite the Husimi function is

/dQ 0y = 1. (7.17)

Q@) =k, 0(z,w1)0(z,2)...0(z, ), (7.18)
where
lz — wf? l—cosd . ,d d3
s = = = — = s 719
7= T+ e 2 2T 719

d is the geodesic and d,, is the chordal distance between the two points z and
w. (To show this, set z = tan %ei"’ and w = 0. Simple geometry now tells us that
0(z, w) is one quarter of the square of the chordal distance d., between the two
points, assuming the sphere to be of unit radius. See Figure 7.3.) The factor k, in
Eq. (7.18) is a z-independent normalizing factor. Unfortunately it is a somewhat
involved business to actually calculate k, when n is large. For low values of n one
finds, using the notation oy; = o (wy, wy), that

1

K'=1- 5012 (7.20)
1

kit=1- 5(0124-023-1-031) (721
1

ki'=1- 1(012 + 023 + 031 + 014 + 024 + 034)

1
+ E(012034 + 013024 + 014023) . (7.22)
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Figure 7.4. Composing states by adding stars.

For general n the answer can be given as a sum of a set of symmetric functions of
the squared chordal distances oy; (Lee, 1988).

To get some preliminary feeling for Q we compute it for the Dicke states |y),
that is for states that have the single component Z* = 1 and all others zero. We find

|z] % O N2k , O \2%
Oy (@) = (Z) (lfw = <Z> (cos(§)> (sm(?) , (7.23)

where we switched to polar coordinates on the sphere in the last step. The zeros
sit at z = 0 and at z = oo, that is at the north and south poles of the sphere — as
we knew they would. When £ = 0 we have an m = j state, all the zeros coincide,
and the function is concentrated around the north pole. This is a coherent state. If
n is even and k = n/2 we have an m = 0 state, and the function is concentrated
in a band along the equator. The indication, then, is that the Husimi function tends
to be more spread out the more the state differs from being a coherent one. As a
first step towards confirming this conjecture we will compute the moments of the
Husimi function. But before doing so, let us discuss how it can be used to compose
two states.
The tensor product of an N = (n + 1)-dimensional Hilbert space with itself is

HN ® HN e H2N71 b H2N73 S---D H] . (7.24)

Given two states |y/1) and |y,) in Hy we can define a state |} © |¥,) in the tensor
product space by the equation

Qynolys) % Qi Qv - (7.25)

We simply add the stars of the original states to obtain a state described by 2(N — 1)
stars. This state clearly sits in the subspace H,y—; of the tensor product space. This
operation becomes particularly interesting when we compose a coherent state with
itself. The result is again a state with all stars coinciding, and moreover all states
with2N — 1 coinciding stars arise in this way. Reasoning along this line one quickly
sees that

2n +1
4

/dQ |2)12)(zl{z] = Tan—1, (7.26)
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where 1,x_; is the projector, in Hy ® Hy, onto Hyy—1. Similarly
3n+1
4

And so on. These are useful facts.
Thus equipped we turn to the second moment of the Husimi function:

n—+1 5 n—+1 2n +1 n+1
dQ = dQ <
e / 0 1 i / |22} (zl{zl¥ ) |Y) < 1

(7.28)

/dQ l2)12)1z)(zl{zl(z] = Tan—2 - (7.27)

(U]

with equality if and only if |)|¥) € Han—1, that is by the preceding argument if
and only if |y) is a coherent state. For the higher moments one shows in the same
way that

1 1 1
nt /dQQP§"+ e, Pt /dQQPgl. (7.29)
4 pn+1 4

We will use these results later.” For the moment we simply observe that if we define
the Wehrl participation number as

-1
R= <”+ ! /dQ Qz) , (7.30)
4

and if we take this as a first measure of delocalization, then the coherent states have
the least delocalized Husimi functions (Schupp, 1999; Gnutzmann and Zyczkowski,
2001).

The Husimi function can be defined for mixed states as well, by

0,(2) = (zlplz) . (7.31)

The density matrix p can be written as a convex sum of projectors [v;){v;|, so the
Husimi function of a mixed state is a sum of polynomials up to a common factor.
It has no zeros, unless there is a zero that is shared by all the polynomials in the
sum. Let us order the eigenvalues of p in descending order, A; >X,>--->Ay. The
largest (smallest) eigenvalue gives a bound for the largest (smallest) projection onto
a pure state. Therefore it will be true that

max Q,(z) <Ay and min Q,(z) > Ay . (7.32)
7€8? 7€8?

These inequalites are saturated if the eigenstate of p corresponding to the largest
(smallest) eigenvalue happens to be a coherent state. The main conclusion is that
the Husimi function of a mixed state tends to be flatter than that of a pure state, and
generically it is nowhere zero.

3 Note that a somewhat stronger result is available; see Bodmann (2004).
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7.4 Wehrl entropy and the Lieb conjecture

We can go on to define the Wehrl entropy (Wehrl, 1978; Wehrl, 1979) of the state
|¥) by
n+1

Sw(ly Xyl = e stz 04(2)In 0y (2) . (7.33)

One of the key properties of the Q-function on the plane was that (as proved by Lieb)
the Wehrl entropy attains its minimum for the coherent states. Clearly we would
like to know whether the same is true for the Q-function on the sphere. Consider
the coherent state |zo) = |, j) with all stars at the south pole. Its Husimi function
is given in Eq. (7.23), with k = 0. The integration (7.33) is easily performed (try
the substitution x = cosz(%) !) and one finds that the Wehrl entropy of a coherent
state is n/(n + 1). The Lieb conjecture (Lieb, 1978) states that
2j

Sw¥) (YD) = +1 =2+ (7.34)

with equality if and only if [1/) is a coherent state. It is also easy to see that the
Wehrl entropy of the maximally mixed state p, = nljﬂ is Sw(ps) =In(n + 1);
given that that the Wehrl entropy is concave in p this provides us with a rough
upper bound.

The integral that defines Sy can be calculated because the logarithm factorizes
the integral.® In effect

+ 1 n
Sy = _”471 /ngz 0(2) <1nkn + Zln(o(z, w,-))) ) (7.35)

i=1
The answer is again given in terms of various symmetric functions of the squares
of the chordal distances. We make the definitions:

D =) oy (7.36)
i<j

7 Zkao}k (7.37)
=1l i<j

D Z Z 0i1010%] - (7.38)
=l i<j<k

The notation is intended to make it easier to remember the structure of the various
functions (Schupp, 1999). As n grows we will need more of them. For n = 4:

O = 012034 + 013024 + 014023 (7.39)

6 This feat was performed by Lee (1988). Unfortunately the answer looks so complicated that we do not quote it
in full here. We will however sketch his proof that Sy assumes a local minimum at the coherent states.
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For arbitrary n, sum over all quadratic terms such that all indices are different; but it
is becoming evident that it will be labourious even to write down all the symmetric
functions that occur for high values of n (Lee, 1988). Anyway, with this notation

2 1 2 1
n=2: SW:k2<§+6012>—lnk2:k2<§+g(]))—lnk2, (7.40)
=3 Sy=k(2+ =D @) -Ink (7.41)
n=3: Sw=k|g 12@ 6 nk;, .

4 1 13 | |
—4: Sy=kifod oD oD —— @ ——)—Inks. (742
" W 4(5 300 “130® 2@ 24®> nky. (742

For n = 2 itis easy to see that Sy assumes its minimum when o, = 0, that is when
the zeros coincide and the state is coherent (Scutaru, n.d.). In fact one can also
show that Lieb’s conjecture is true for n = 3 (Schupp, 1999). The first non-trivial
case is n = 4: we are facing a very difficult optimization problem because the oy,
are constrained by the requirement that they can be given in terms of the chordal
distances between n points on a sphere.

From a different direction Bodmann (2004) has shown that

1
The conjecture therefore holds in the limit of large n, not surprisingly since in some
sense it then goes over to the known result for canonical coherent states. But in
general the Lieb conjecture remains open.

A complementary problem is to ask for states that maximize the Wehrl entropy.
Forn = 1 all pure states are coherent, so the question does not arise; Syin = Smax =
1/2. For n = 2 the maximal Wehrl entropy Syax = 5/3 — In2 is achieved for states
whose stars are placed antipodally on the sphere. For n = 3 it is states whose stars
are located on an equilateral triangle inscribed in a great circle and Spx = 21/8 —
2In2. Problem 7.2 provides some further information, but the general problem
of finding such maximally delocalized states for arbitrary # is still open. In this
direction let us also observe that three stars placed on an equilateral triangle on a
great circle of the sphere correspond to states that saturate the upper limit of the
uncertainty relation (6.61). This is also true for four stars placed at the corner of a
regular tetrahedron, but the story becomes more complicated when n > 5 (Davis,
Delbourgo and Jarvis, 2000).

It may be remarked that considerable effort has been spent on a problem with a
somewhat similar flavour, namely that of optimizing the potential energy

E, =) o} (7.44)

k<l
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for n points on the sphere. The case s = —% corresponds to electrostatic interac-
tion and is of interest both to physicists concerned with Thomson’s ‘plum pud-
ding’ model of the atom (assuming anyone is left) and to chemists concerned
with buckminster fullerenes (molecules like Csp).” Although this problem appears
to be much simpler than the Lieb conjecture it has many open ends. The min-
ima do tend to be regular configurations, but as a matter of fact neither the cube
(for n = 8) nor the dodecahedron (for n = 12) are minima. It is also known that
when the number of point charges is large there tends to be many local minima
of nearly degenerate energy. If the experience gained from this problem, and oth-
ers like it, is to be trusted then we expect states that maximize the Wehrl en-
tropy to form interesting and rather regular patterns when looked at in the stellar
representation.

With this background information in mind we can sketch Lee’s proof that the
coherent states provide local minima of the Wehrl entropy. For this it is enough to
expand Sy to second order in the o;; and this can be done for all n. The answer
is

n -2
n+1 2n2 220 @ -

1
Sw = ® —7_1)@ +o0(07) . (7.45)

—1)? n(n

Next we expand the position (6;, ¢,-) of the n zeros around their average position
(6o, ¢0), using polar angles as coordinates. Thus

AO;=6,—6, = Z AG; = ZQi —nbp =0, (7.46)

and similarly for A¢;. To lowest non-trivial order a short calculation gives

dy; 1
oy = sin’ -5 —(A@ AG)? + 2 sin? Oy(Ag; — Ay . (7.47)

Finally a long calculation gives (Lee, 1988)
Sy~ (Fi— P4 — 1 p2 (7.48)

YU T Re - Y TR '
where
Fi=) (A6, Fy=sinf) ) (A6)(A¢), Fy=sin’6) ) (Ag)

(7.49)

Evidently Eq. (7.48) implies that the coherent states form a (quite shallow) local
minimum of Sy .

7 For a review of this problem, with entries to the literature, see Saff and Kuijlaars (1997).
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7.5 Generalized Wehrl entropies

One can also formulate the Lieb conjecture for the generalized entropies discussed
in Section 2.7, which provide alternative measures of localization of a quantum state
in the phase space. All generalized entropies depend on the shape of the Husimi
function only, and not on where it may be localized.

For instance, one may consider the Rényi—Wehrl entropies, defined according to
(2.79),

SEV(y) = im[”“/ﬂdg (Qw(z))q], (7.50)

and conjecture that their minima are attained for coherent states. A proof for all g
would imply the proof of the original Lieb conjecture (in the limitg — 1) and would
be difficult, but it is encouraging that this modified Lieb conjecture has been proved
forqg =2, 3,... , and moreover in two different ways (Schupp, 1999; Gnutzmann
and Zyczkowski, 2001).

The easy way is to rely on Eq. (7.29). For g positive the Rényi—Wehrl entropy is
smallest when the gth moment of the Q-function is maximal, and forg = 2, 3, ...
we already know that this happens if and only if the state is coherent. In this way
we get

1 n+1
S = —— (L
a 1—qg \gn+1
with equality if and only if the state is coherent.
Before we go on, let us define the digamma function

), g=2.3,..., (7.51)

W(x) = ?((j:)) . (1.52)
For any integer m > n it enjoys the property that
m—1 1
W(m) — W(n) = kz:: - (7.53)

When x is large it is true that W(x + 1) ~ Inx 4 1/2x (Spanier and Oldham, 1987).

To get some feeling for how the Wehrl entropies behave, let us look at the eigen-
states |j, m) of the angular momentum operator J,. We computed their Husimi
functions in eq. (7.23). They do not depend on the azimuthal angle ¢, which sim-
plifies things. Direct integration (Gnutzmann and Zyczkowski, 2001) gives

2j
2j +1

Sw(lj, m)) = —In (j z_jm> +2j¥2j+1 (7.54)

—U+m¥G+m+1) =G -—m¥(G-—m+1),
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b) j=20

[

0 5 10 0 5 10
q a

Figure 7.5. Rényi—Wehrl entropy S, of the J eigenstates |j, m) for a) j = 3 and
b) j = 20. For m = j the states are coherent, and the crosses show integer values
of g, for which the generalized Lieb conjecture is proven.

and

. 1
SEV(1j,m)) =—— In[

2j+1 ( 2j )q l“[CI(J'er)Jrl]l“[q(j—m)Jrl]]
1—g¢q ’

2qj +1\j—m 'Cqj+1)

(7.55)

For m = 0 the state is localized on the equator of the Bloch sphere. A Stirling-
like expansion (Spanier and Oldham, 1987),In(k!) ~ (k + 1/2)Ink — k + In V27,
allows us to find the asymptotes, Sj,=o) ~ % InN + %(1 + Inr /2). Interestingly, the
mean Wehrl entropy of the eigenstates of J, behaves similarly;

S sutimy=i— = S (7 Y Lan e - )
,m)) =j— —— n ~ —In nQ2mw) — =.
Swil Y j—m) 2 2

1
2j +1

m=-=j m=—j

(7.56)

A plot of some Rényi—Wehrl entropies obtained for the angular momentum eigen-
states is shown in Figure 7.5. Any Rényi entropy is a continuous, non-increasing
function of the Rényi parameter ¢. The fact that it attains minimal values for coher-
ent states, may suggest that for these very states the absolute value of the derivative
dS/dg|y=o is maximal.

So far we had SU (2) coherent states in mind, but the treatment is easily general-
ized to the (rather special) SU(K) coherent states |z€)) from Section 6.4. Then our
‘skies’ are CPX~!, and they contain m stars if the dimension of the representation
is Nk m, as defined in Eq. (6.76). The Husimi function is normalized by

Nicw / Q1@ WP =1, (757)
Qg1

where dQ2g_; is the FS measure on CPX~!, normalized so that fQ d, = 1.
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The moments of the Husimi function can be bounded from above, using the same
method that was used for SU(2). In particular

Mo(¥) = N / Q1) ) (7.58)
Qg1
N n N n
=K Nmn/ dQx 1Dz @ zIY @ Y¥)I> = =L || Py Yy @ W17,
NK,Zn Qx_1 NK,Qn

where P,, projects the space Nk , ® Nk , into Nk 2,. The norm of the projection
[| Pay |t ® v)||? is smaller than ||y ® v)||> = 1 unless |) is coherent, in which
case | @ V) = | O ¥) € Hn,,,. Therefore M>(|/)) < Nk n/Nk 2. The same
trick (Schupp, 1999; Sugita, 2003; Sugita, 2002) works for any integer ¢ > 2, and
we obtain

NK,n B (K+n—1)

- (K+:’;n—l) ’
qn

with equality if and only if the state |/) is coherent. By analytical continuation one
finds that the Rényi—Wehrl entropy of an SU(K) coherent state is

I [T(K +m(gn+1)
RW (K)\\ __
S () =5 qm[nK+qmnn+D]' (7.60)

In the limit ¢ — 1 one obtains the Wehrl entropy of a coherent state (Stomczyniski
and Zyczkowski, 1998; Jones, 1990),

Sw(lz2F)) =n[¥(+K)—W@n+1D]. (7.61)

M, () = Ni f ARk (2P < (7.59)

Qx_1 - NKJI"

Using Eq. (7.53) for the digamma function, the right-hand side equals n/(n + 1)
for K = 2, as we knew already. It is natural to conjecture that this is an upper bound
for the Wehrl entropy also for K > 2.

7.6 Random pure states

Up until now we were concerned with properties of individual pure states. But one
may also define an ensemble of pure states and ask about the properties of a typ-
ical (random) state. In effect we are asking for the analogue of Jeffrey’s prior
(Section 2.6) for pure quantum states. There is such an analogue, determined
uniquely by unitary invariance, namely the Fubini—Study measure that we studied
in Section 4.7, this time normalized so that its integral over CP" equals one. Inter-
estingly the measure splits into two factors, one describing a flat simplex spanned
by the moduli squared y; = |{e;|¥)|* of the state vector, and another describing a
flat torus of a fixed size, parametrized by the phases. In fact

n!

aQ, =
(27-[ )n

dy;...dy,dv; ...dv,, (7.62)
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or using our octant coordinates (4.69),
1 n
9, = — [ cos ¥ (sin 9™~ oy duy . (7.63)
T i

Integrating out all but one variable we obtain the probability distribution P(y) =
n(l — y)"~!, whichis a special, 8 = 2 case of the general formula

I((n+1B/2)
T(B/2)T(nB/2)
For B =1 this gives the distribution of components of real random vectors dis-
tributed according to the round measure on RP”, while for § = 4 and n + 1 even
it describes the quaternionic case (Kus, Mostowski and Haake, 1988). For large
N =n + 1 these distributions approach the x? distributions with 8 degrees of
freedom,

Py(y) = VPRI =yt (7.64)

NNB2 1
Ps(y) ~ Nxz(Ny) = (%) T2

When we use octant coordinates the distribution of independent random variables
reads

P! 6Xp(—'37Ny) . (765)

P(%) = k sin29;)(sin 9)* 72, P(w) = % . (7.66)

One may convince oneself that y = cos? %, the last component of Eq. (4.69), is
distributed according to P(y) =n(sin? 9,y ' = (N = )1 — y)V=2, in agreement
with Eq. (7.64) for 8 = 2. To generate a random quantum state it is convenient to
use auxiliary independent random variables & distributed uniformly in [0, 1] and
to set ¥ = arcsin(g,/*).

Random pure states may be generated by:

e selecting 2n random variables according to Eq. (7.66) and using them as octant
coordinates;

* taking the first row (column) of a random unitary matrix U distributed according to the
Haar measure on U(N);

* taking an eigenvector of a random Hermitian (unitary) matrix pertaining to GUE® or
CUE’ and multiplying it with a random phase;

¢ picking a set of N independent complex random numbers z;, drawn according to the
normal distribution, and rescaling them as ¢; = z;/ (X1, \z,-lz)l/ * (Zyczkowski and
Sommers, 2001);

8 Gaussian unitary ensemble of Hermitian matrices consisting of independent Gaussian entries; such a probability

measure is invariant with respect to unitary rotations. As an introduction to random matrices we recommend the
book by Mehta (1991) or a more recent opus by Forrester (2005).
9 Circular unitary ensemble of unitary matrices distributed according to Haar measure on U(N).
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4 ¢ 6

Figure 7.6. Husimi functions on the sphere (in Mercator’s projection) for a typ-
ical eigenstate of a unitary operator describing (a) regular dynamics, (b) chaotic
dynamics, and (c) a random pure state for N = 60. The Wehrl entropies read 2.05,
3.67, and 3.68, respectively. The maximal entropy is In N ~ 4.094.

¢ taking a row (column) of a random Hermitian matrix pertaining to GUE, normalizing it
as above, and multiplying by a random phase.

To obtain real random vectors, distributed according to the Fubini—Study measure
on RP”, we use orthogonal matrices, or eigenvectors of random symmetric matrices,
or we take a vector of N independent real Gaussian variables and normalize it.

Random pure states may be analysed in the Husimi representation. If the Fubini—
Study measure on CP” is used, the states should not distinguish any part of the
sphere; therefore the averaged density of zeros of the Husimi function for a ran-
dom state will be uniform on the sphere (Lebceuf, 1991; Bogomolny, Bohigas and
Lebceuf, 1992; Bogomolny, Bohigas and Lebceuf, 1996). However, this does not
imply that each zero may be obtained as an independent random variable distributed
uniformly on the sphere. On the contrary, the zeros of a random state are correlated
as shown by Hannay (1996). In particular, the probability to find two zeros at small
distance s behaves as P(s) ~ s2 (Lebeeuf and Shukla, 1996), while for independent
random variables the probability grows linearly, P(s) ~ s.

The statistical properties of the Husimi zeros for random states are shared by
the zeros representing eigenstates of unitary operators that give the one-step time
evolution of quantized versions of classically chaotic maps (Lebceuf, 1991). Such
states are delocalized, and their statistical properties (Haake, 2001) coincide with
the properties of random pure states. Eigenstates of unitary operators giving the
one-step time evolution of a regular dynamical system behave very differently, and
their Husimi functions tend to be concentrated along curves in phase space (Leboeuf
and Voros, 1990; Zyczkowskj, 2001). Figure 7.6 shows a selected eigenstate of the
unitary operator U = exp(ipJ,) exp(ikJ2/2j), representing a periodically kicked
top (Kus et al., 1988; Haake, 2001; Zyczkowski, 2001) for j = 29,5, p = 1.7 and
the kicking strength k = 0.7 (a) and k = 10.0 (b). When k = 0 we have an angular
momentum eigenstate, in which case the Husimi function assumes its maximum
on a latitude circle; as the kicking strength grows the curve where the maximum
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occurs begins to wiggle and the zeros start to diffuse away from the poles — and
eventually the picture becomes similar to that for a random state.'”

If the system in question enjoys a time-reversal symmetry, the evolution operator
pertains to the circular orthogonal ensemble (COE), and the distribution of Husimi
zeros of the eigenstates is no more uniform. The time-reversal symmetry induces
a symmetry in the coefficients of the Bargmann polynomial (7.13), causing some
zeros to cluster along a symmetry line on the sphere (Bogomolny et al., 1992;
Prosen, 1996a; Braun, Kus and Zyczkowski, 1997).!!

The time evolution of a pure state may be translated into a set of equations of
motion for each star (Leboeuf, 1991). Parametric statistics of stars was initiated
by Prosen (1996b), who found the distribution of velocities of stars of random
pure states, while Hannay (1998) has shown how the Berry phase (discussed in
Section 4.8) can be related to the loops formed by the stars during a cyclic variation
of the state. Let us emphasize that the number of the stars of any quantum state in
a finite-dimensional Hilbert space is constant during the time evolution (although
they may coalesce), while for the canonical harmonic oscillator coherent states
some zeros of the Husimi function may ‘jump to infinity’, so that the number of
zeros may vary in time (see e.g. Korsch, Miiller and Wiescher, 1997).

Let us now compute the generalized Wehrl entropy of a typical random pure state
|Y) € Hy. In other words we are going to average the entropy of a pure state with
respect to the Fubini—Study measure on CP". The normalization constant N, | is
defined in (6.76) and the Husimi function is computed with respect to the standard
SU(2) coherent states, so the average Wehrl moments are

= N [ 420,00 = Ny [ d2u @M [ de@ieme],
C C CP!

PH Pll
(7.67)

It is now sufficient to change the order of integrations

%=M4kwﬁmmfﬁmwmwﬂ=mm%x (7.68)
Cp! cpr

and to notice that the integrals factorize: the latter gives the value of the Rényi
moment (7.59) of a SU (K ) coherent state with K = n + 1, while the former is equal
to unity due to the normalization condition. This result has a simple explanation: any
state in an N = (n + 1)-dimensional Hilbert space can be obtained by the action
of SU(N) on the maximal weight state. Indeed all states of size N are SU(N)

10" Similar observations were reported for quantization of dynamical systems on the torus (Lebceuf and Voros,
1990; Nonnenmacher, 1989).

I Mark Kac (1943) has considered a closely related problem: what is the expected number of real roots of a
random polynomial with real coefficients? For a more recent discussion of this issue consult the very readable
paper by Edelman and Kostlan (1995).
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pure
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Figure 7.7. Range of the Wehrl entropy Sy for different dimensions N =n + 1
of the Hilbert space; y is Euler’s constant ~ 0.58.

coherent. Yet another clarification: the state |} is specified by n = N — 1 points
on the sphere, or by a single point on CP". Equation (7.68) holds for any integer
Rényi parameter g and due to concavity of the logarithmical function we obtain an
upper bound for the average entropies of random pure states in CP”

(N + DI'(g + 1)
I'(N + q)

_ 1
Sq = (Sg(19)))eprt < Sz = s ln|: } (7.69)

where the explicit formula (7.60) was used. Thus the Wehrl participation number
of a typical random state is 1/M, = (N + 1)/2. In the limitg — 1 we can actually
perform the averaging analytically by differentiating the averaged moment with
respect to the Rényi parameter ¢,

I
Kk
(7.70)

] . d 3
Sw = (= lim 22 M (§)) = 5l (M, (0)) = W (N + D) = ¥ ) = ;

This result gives the mean Wehrl entropy of a random pure state (Stomczyriski and
Zyczkowski, 1998). In the asymptotic limit N — oo the mean entropy Sy behaves
asInN + y — 1, where y =~ 0.5772... is the Euler constant. Hence the average
Wehrl entropy comes close to its maximal value In N, attained for the maximally
mixed state.

The Wehrl entropy Sy allows us to quantify the global properties of a state in
the classical phase space, say of an eigenstate |¢) of an evolution operator U. To
get information concerning local properties one may expand a given coherent state
|z) in the eigenbasis of U. The Shannon entropy S(3.) of the vector y; = |{z|¢)|?
provides some information on the character of the dynamics in the vicinity of the
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classical point z (Zyczkowski, 1990; Wootters, 1990; Haake, 2001). As shown by
Jones (1990) the mean entropy, (S)cpvr-1, averaged over the FS measure on the
set of complex random vectors given by Eq. (7.63) is just equal to Eq. (7.70),
which happens to be the continuous, Boltzmann entropy (2.40) of the distribution
(7.64) with B = 2. Since the variance ((AS)*)cpy-1 behaves like (72/3 — 3)/N
(Wootters, 1990; Mirbach and Korsch, 1998), the relative fluctuations of the entropy
decrease with the size N of the Hilbert space. Based on these results one may
conjecture that if the corresponding classical dynamics in vicinity of the point z
is chaotic, then the Shannon entropy of the expansion coefficients of the coherent
state |z) is of order of {S)cp~-1. In the opposite case, a value of S(y,) much smaller
than the mean value minus AS ~ 1/+/N may be considered as a signature of a
classically regular dynamics in the fragment of the phase space distinguished by
the point z € €.

A generic evolution operator U has a non-degenerate spectrum, and the entropy
S(¥,) acquires another useful interpretation (Thiele and Stone, 1984; Mirbach and
Korsch, 1998): it is equal to the von Neumann entropy of the mixed state p obtained
by the time average over the trajectory initiated from the coherent state,

1 T
p = lim — Z U'\2)(z|(UTY . (7.71)

T—oo T 15

To show this it is sufficient to expand the coherent state |z) in the eigenbasis of the
evolution operator U and observe that the diagonal terms only do not dephase.

Let us return to the analysis of global properties of pure states in the classical
phase space 2. We have shown that for N >> 1 the random pure states are delocal-
ized in 2. One can ask, if the Husimi distribution of a random pure state tends to the
uniform distribution on the sphere in the semiclassical limit N — oo. Since strong
convergence is excluded by the presence of exactly N — 1 zeros of the Husimi
distribution, we will consider weak convergence only. To characterize this conver-
gence quantitatively we introduce the L, distance between the Husimi distribution
of the analysed state |1) and the uniform distribution Q, = 1/N, normalized as
N f 0,dQ2 = 1, representing the maximally mixed state p, = 1/N,

B 172 12
L2 = 1x(Qy. 0 = (N [ [0y = 5] au) " = ot - T
(7.72)

Applying the previous result (7.68) we see that the mean L, distance to the uniform
distribution tends to zero in the semiclassical limit,
(La(y)) 2/ 0 ' (7.73)
) = ——————————  — as — 00. .
2R = 0 D2j +2) /
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Thus the Husimi distribution of a typical random state tends, in the weak sense, to
the uniform distribution on the sphere.

The L, distance to O, may be readily computed for any coherent state |z),

J 1 .

- — —, as j— oo. (7.74)
2j+1 2
This outcome differs qualitatively from (7.73), which emphasizes the fact that
coherent states are exceedingly non-typical states in a large dimensional Hilbert
space. For random states the n stars cover the sphere uniformly, but the stars must
coalesce in a single point to give rise to a coherent state. From the generalized Lieb
conjecture proved for ¢ = 2 it follows that the L, distance achieves its maximum
for coherent states.

Ly(|z)) = L2(Qyy), O4) =

7.7 From the transport problem to the Monge distance

The stellar representation allows us to introduce a simple metric in the manifold of
pure states with an interesting ‘classical’ property: the distance between two spin
coherent states is equal to the Riemannian distance between the two points on the
sphere where the stars of the states are situated. We begin the story be formulating
a version of the famous transport problem:

Let n stars be situated at the n not necessarily distinct points x;. The stars are
moved so that they occupy n not necessarily distinct points y;. The cost of moving
a star from x; to y; is c¢;j. How should the stars be moved if we want to minimize
the total cost

n
T =) cinp (7.75)

i=1

where 1 (i) is some permutation telling us which star goes where ?'?

To solve this problem it is convenient to relax it, and consider the linear pro-
gramming problem of minimizing

N
T = Z cijBij 5 (776)
i,j=1

where B;; is any bistochastic matrix (Section 2.1). The minimum always occurs at a
corner of the convex polytope of bistochastic matrices, that is for some permutation
matrix, so a solution of the relaxed problem automatically solves the original prob-
lem. Since there are n! permutation matrices altogether one may worry about the

12 The problem is often referred to as the assignment problem. Clearly ‘cost’ suggests some application to
economics; during the Second World War the setting was transport of munitions to fighting brigades.
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growth of computer time with n. However, efficient algorithms exist where the
amount of computer time grows as n* only (Wu and Coppins, 1981).

We can now try to define the distance between two pure states in a finite-
dimensional Hilbert space as the minimal total cost T, of transporting their stars
into each other, where the cost ¢;; is given by the geodesic distance between the
stars on a sphere of an appropriate radius (chosen to be 1/2 if the dimension of the
Hilbert space is 2j + 1). If we wish we can formulate this as a distance between
two discrete probability distributions,

Dam(1¥), 1)) = Tin(P1(1¥1)), Pa(1$2))) (7.77)

where any state is associated with the distribution P =Y ", %S(Z — zi), where
z; are the zeros of the Husimi function Q.. This is a legitimate notion of
distance because, by construction, it obeys the triangle inequality (Rachev and
Riischendorf, 1998). We refer to this as the discrete Monge distance D ;) between
the states (Zyczkowski and Slomczyiiski, 2001), since it is a discrete analogue of
the continuous Monge distance that we will soon introduce. We observe that the
discrete Monge distance between two coherent states (each represented by 2 co-
inciding stars) then becomes equal to the usual distance between two points on the
unit sphere. In fact, locally the set of pure states will now have the same geometry
as a product of 2-spheres almost everywhere, although the global properties are
quite different.

Some further properties are worth noting. The discrete Monge distance between
the states | j, m) and | j, m") becomes

Dow(ljs m). 1j:m') = -l =l (1.78)
The set of eigenstates of J, therefore form a metric line with respect to Dy, while
they form the corners of a simplex with respect to the Fubini—Study distance. It is
also easy to see that all the eigenstates of J, are situated at the distance 7/2 from
any eigenstate of J,. Finally, consider two uncorrelated random states |{,,4) and
|¢rana) - Since the states are random their respective stars, carrying the weight 1/2j
each, will be evenly distributed on the sphere. Its surface can be divided into 2j
cells of diameter ~ (27)~'/? and given a star from one of the states the distance to
the nearest star of the other will be of the same order. Hence the discrete Monge
distance between two random states will behave as

2j 1

Dam([¥rand) s [@rand)) ~ ) = e -0 as j—oo. (7.79)

The discrete Monge distance between two random states goes to zero in the semi-
classical limit.
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4P P Py(x,y) Py (x,y)
y
»-
xy) W(x,y) T(x,y) X

Figure 7.8. Monge transport problem: How to shovel a pile of soil P;(x, y) into a
new location P>(x, y), minimizing the work done?

Using similar ideas, a more sophisticated notion of distance can be introduced
between continuous probability distributions. The original Monge problem, for-
mulated in 1781, emerged from studying the most effective way of transporting soil
(Rachev, 1991):

Split two equally large volumes of soil into infinitely small particles and then
associate them with each other so that the sum of the paths of the particles over the
volume is least. Along which paths must the particles be transported and what is
the smallest transportation cost?

Let Pi(x, y) and P»(x, y) denote two probability densities, defined on the Eu-
clidean plane, that describe the initial and the final location of the soil. Let the sets
€2; and €2, denote the supports of both probability distributions. Consider smooth
one-to-one maps T : 2 — 2 which generate volume preserving transformations
Q; into €2, that is

P (x,y) = Po(T(x, ) |T'(x,y)| (7.80)

for all points in ©, where T’(x, y) denotes the Jacobian of the map 7 at the point
(x, ). We shall look for a transformation giving the minimal displacement integral
(see Figure 7.8), and then we define the Monge distance between two probability
distributions as (Rachev, 1991)

Du(Py, P,) = inf/ |17V(x, y)| Pi(x, y)dxdy, (7.81)
Q

where |I7V(x, ¥)| = |(x,y) — T(x, y)| denotes the length of the path travelled — the
Euclidean distance between a point in €2 and its image. The infimum is taken over
all volume preserving transformations 7. The optimal transformation need not be
unique; its existence can be guaranteed under reasonably general conditions. The
generalization to curved spaces is straightforward; we just replace the Euclidean
distance with the appropriate Riemannian one.
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Note that in this formulation of the problem the vertical component of the soil
movement is neglected, so perhaps the definition does not capture the essence of
moving soil around. But we can use it to define the Monge distance between two
probability distributions, as well as the Monge distance between pairs of quantum
states as the Monge distance between their Husimi functions. A decided advantage
is that, since the Husimi function exists for any density matrix, the definition applies
to pure and mixed states alike:

Dyion(p, 0) = Dy (Q,(2), Q0(2)) - (7.82)

The definition depends on the choice of reference state for a set of coherent states,
and it is not unitarily invariant. But in some circumstances this may be a desirable
feature.

A price we have to pay is that the Monge distance is, in general, difficult to
compute (Rachev, 1991; Rachev and Riischendorf, 1998). Some things can be said
right away however. If two Husimi functions have the same shape then the optimal
transformation 7 is just a rigid translation, and the Monge distance becomes equal
to the Riemannian distance with which our classical phase space is equipped. In
particular this will be the case for pairs of coherent states. In some cases one
may use symmetry to reduce the two-dimensional Monge problem to the one-
dimensional case, for which an analytical solution due to Salvemini is known (see
Problem 7.6). In this way it is possible to compute the Monge distance between
two arbitrary Fock states (Zyczkowski and Stomczynski, 1998). An asymptotic
result, DMOH(|n), |m)) ; (. al/ 'k, has an intuitive interpretation: although
all Fock states are orthogonal, and hence equidistant according to the Fubini—Study
metric, the Monge distance shows that the state |100) is much closer to [101) than
to the vacuum state |0). Using Bloch coherent states to define the Monge distance
in finite-dimensional state spaces, one finds that the eigenstates of J, form a metric
line in the sense that

2N
Duen(1 =711+ 1) = 3" Dutn(l 1 1. 1. m) —x[i- (N>212N]_

m=—j+1

(7.83)

This is similar to the discrete Monge distance defined above (and very different
from the Fubini-Study distance).

As in the discrete case the task of computing the Monge distance is facilitated
by a relaxation of the problem (in this case due to Kantorovich (1942)), which is
explicitly symmetric with respect to the two distributions. Using discretization one
can make use of the efficient numerical methods that have been developed for the
discrete Monge problem.
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So what is the point? One reason why the Monge distance may be of interest
is precisely the fact that it is not invariant under unitary transformations. This
resembles the classical situation, in which two points in the phase space may drift
away under the action of a given Hamiltonian system. Hence the discrete Monge
distance (for pure states) and the Monge distance (for pure and mixed states) may
be useful to construct a quantum analogue of the classical Lyapunov exponent and
to elucidate various aspects of the quantum—classical correspondence. '3

Problems

Problem 7.1 For the angular momentum eigenstates |j, m), find the minimal
Fubini—Study distance to the set of coherent states.

Problem 7.2 For N =2, 3, 4,5, compute the Wehrl entropy Sy and the Wehrl
participation number R for the J, eigenstates, and for the states |14 ), three stars in
a equilateral triangle, and | ), four stars forming a regular tetrahedron.

Problem 7.3 Show that the squared moduli of components y; = |(i|/)|> of a
complex random vector (7.66) in CP" are distributed uniformly in A,,.

Problem 7.4 Show that the mean Fubini—Study distance of a random state |/ 4nq)
to any selected pure state |1) reads

T JAT(n+1/2)
2 2T(n+ 1)

which equals /4 for n = 1 and tends to 7 /2 in for n — oo.

(Drs(1). 1Yrand)) e = , (7.84)

Problem 7.5 Show that the average discrete Monge distance of a random state
|¥rana) to the eigenstates | j, m) of J, reads (Zyczkowski and Stomczyiski, 2001)

. . mim
(Dam(1j. m), [¥rana)))opss = X sinx +cos x, where x = T (7.85)

Problem 7.6 Prove that the Monge distance, in the one-dimensional case, Q2 = R,
is given by the Salvemini solution (Salvemini, 1943; Rachev, 1991, Zyczkowski
and Stomczynski, 1998).

+00

Dy(Py, Pr) = / |F1(x) — F(x)[dx , (7.86)

—0o0

where the distribution functions are F;(x) = ffoo P;(t)dt fori =1,2.

13 For further details consult Zyczkowski and Stomczynski (2001).
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Problem 7.7 Making use of the Salvemini formula (7.86) analyse the space of
N =2 mixed states form the point of view of the Monge distance: (a) prove
that Dyon(0+, p—) = /4, Dymon(p+, px) = /8, and in general (b) prove that the
Monge distance between any two mixed states of a qubit is proportional to their
Hilbert—Schmidt distance and generates the geometry of the Bloch ball (Zyczkowski
and Stomczyrski, 2001).
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The space of density matrices

Over the years, the mathematics of quantum mechanics has become more
abstract and, consequently, simpler.
V. S. Varadarajan

We have already introduced density matrices and made use of some of their prop-
erties. In general a complex N x N matrix is a density matrix if it is

i)  Hermitian, p = ,oT,
ii) positive, p >0, (8.1)
iii) normalized, Trp = 1.

The middle equation is shorthand for the statement that all the eigenvalues of p
are non-negative. The set of density matrices will be denoted M™), Tt is a convex
set sitting in the vector space of Hermitian matrices, and its pure states are density
matrices obeying p?> = p. Asexplained in Section 4.5 the pure states form a complex
projective space.

Why should we consider this particular convex set for our state space? One
possible answer is that there is a point in choosing vectors that are also matrices,
or a vector space that is also an algebra (a different way of saying the same thing).
In effect our vectors now have an intrinsic structure, namely their spectra when
regarded as matrices, and this enables us to define a positive cone, and a set of pure
states, in a more interesting way than that used in classical probability theory. We
will cast a glance at the algebraic framework towards the end of this chapter, but
first we explore the structure as it is given to us.

8.1 Hilbert-Schmidt space and positive operators

This section will be devoted to some basic facts about complex matrices, leading
up to the definition of the space M®). We begin with an N complex-dimensional

209
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Hilbert space H. There is then always a dual Hilbert space H* defined as the space
of linear maps from H to the complex numbers; in the finite-dimensional case these
two spaces are isomorphic. Another space that is always available is the space of
operators on . This is actually a Hilbert space in its own right when it is equipped
with the Hermitian form

(A, B) = cTrA'B, (8.2)

where c is a real number that sets the scale. This is Hilbert—Schmidt space HS;
an alternative notation is B(H) where B stands for ‘bounded operators’. All our
operators are bounded, and all traces exist, but this is so only because all our Hilbert
spaces are finite dimensional. The scalar product gives rise to an Euclidean distance,
the Hilbert—Schmidt distance

D3(A,B) = %Tr[(A—B)(AT—BT)] = %DﬁS(A,B). (8.3)

In this chapter we set the scale with ¢ = 1/2, and work with the distance D, while
in Chapter 9 we use Dys. As explained in Section 4.5 this ensures that we agree
with standard conventions in quantum mechanics.

Chapter 9 will hinge on the fact that

HS=HQH". 8.4)
This is a way of saying that any operator can be written in the form
A =alP)(Ql +bIR)(S|+---, (8.5)

provided that enough terms are included in the sum. Given H, the N? complex-
dimensional space HS — also known as the algebra of complex matrices —is always
with us.

Some brief reminders about (linear) operators may prove useful. First we recall
that an operator A can be diagonalized by a unitary change of bases, if and only if it
is normal, that is if and only if [A, Af1=0. Examples include Hermitian operators
for which AT = A and unitary operators for which AT = A~!. A normal operator is
Hermitian if and only if it has real eigenvalues. Any normal operator can be written
in the form

A=) zleel, (8.6)
i=1

where the sum includes orthogonal projectors corresponding to the » non-vanishing
eigenvalues z;. The eigenvectors |e;) span a linear subspace supp(A) known as the
support (or range) of the operator. There is an orthogonal subspace kern(A) called
the kernel, consisting of all vectors |y) such that A|y) = 0. For normal operators
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the kernel is the subspace spanned by all eigenvectors with zero eigenvalues, and
it has dimension N — r. The full Hilbert space may be expressed as the direct sum
‘H = kern(A) @ supp(A).

The vector space HM of Hermitian operators is an N? real-dimensional sub-
space of Hilbert—Schmidt space. It can also — and this will turn out to be important
— be thought of as the Lie algebra of U(N). The (N? — 1)-dimensional subspace
of Hermitian operators with zero trace is the Lie algebra of the group SU(N). In
Appendix 2 we give an explicit basis for the latter vector space, orthonormal with
respect to the scalar product (8.2). If we add the unit matrix we see that a general
Hermitian matrix can be written in the form

[2 N TrA 1
A=r1 Nﬂ + Z T;0; =4 T = 7, = =Tro; A, 8.7)
i=1

V2N’ 2

where o; are generators of SU(N) obeying
2
0,0 = N(S,-j + dijkak + if,-jkak . (88)

Here f;j; is totally anti-symmetric in its indices and d; j is totally symmetric (and
vanishing if and only if N = 2). The use of the notation (7o, 7;) for the Cartesian
coordinates in this basis is standard. Of course there is nothing sacred about the
basis that we have chosen; an orthonormal basis consisting of N2 elements of equal
trace may be a better choice.

We will now use the ‘internal structure’ of our vectors to define a positive cone.
By definition, a positive operator P is an operator such that (1| P|) is real and non-
negative for all vectors |y) in the Hilbert space. This condition actually implies
that the operator is Hermitian, so we can equivalently define a positive operator
as a Hermitian matrix with non-negative eigenvalues. (To see this, observe that
any matrix P can be written as P = X + 1Y, where X and Y are Hermitian — the
argument fails if the vector space is real, in which case a positive operator is usually
defined as a symmetric matric with non-negative eigenvalues.) The condition that
an operator be positive can be rewritten in a useful way:

Pz0 & (YIPIY) 20 & P=AAT, (8.9)
for all vectors |) and for some matrix A. The set P of positive operators obeys
P CHM dim[P] = dim[HM] = N*. (8.10)

Since it is easy to see that a convex combination of positive operators is again a
positive operator, the set P is a convex cone (in the sense of Section 1.1).
A positive operator admits a unique positive square root v/ P,

VPP =P. 8.11)
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For an arbitrary (not necessarily Hermitian) operator A we can define the positive
operator AAT, and then the absolute value |Al:

IA] = VAAT (8.12)

This is in itself a positive operator. Furthermore, any linear operator A can be
decomposed into polar form, which means that

A = |AlU = VAATU , (8.13)

where U is a unitary operator which is unique if A is invertible. This polar
decomposition is analogous to the representation z = re'? of a complex number.
The modulus r is non-negative; so are the eigenvalues of the positive operator |A|,
which are known as the singular values of A. (There exists an alternative left polar
decomposition, A = U~/ AT A, which we will not use. It leads to the same singular
values.) The polar decomposition can be used to prove that any operator, normal or
not, admits a singular values decomposition (SVD)

A =UDV, (8.14)

where U and V are unitary, and D is diagonal with non-negative entries which are
precisely the singular values of A.!

Evidently the question whether a given Hermitian matrix is positive is raising its
head — an ugly head since generally speaking it is not easy to diagonalize a matrix
and investigate its spectrum. A helpful fact is that the spectrum can be determined by
the traces of the first N powers of the matrix. To see how, look at the characteristic
equation

deth — A) =AY — s AV T odV 2 (= D)Vsy = 0. (8.15)

If the matrix is in diagonal form the coefficients s; — that clearly determine the
spectrum — are the elementary symmetric functions of the eigenvalues,

Si=) ki osm=Y Mhj. sz= Y Aikjhe. ... (8.16)

i<j i<j<k

and so on. If the matrix is not in diagonal form we can still write
1
si=TrA s = E(slTrA — TrA?) (8.17)
and in general, iteratively,

1
Sp = z(sk_lTrA — sk TrA? + -+ (= DF ' TrA%) . (8.18)

! In popular numerical routines for computing the SVD of an arbitrary matrix one obtains the vector of singular
values as well as the matrices U and V. An interesting review of properties of SVD may be found in Horn and
Johnson (1985, 1991).
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(Proof: Diagonalize the matrix. Since the traces are not affected by diagonalization
itis only a matter of comparing our two expressions for the coefficients.) Returning
to the question whether A is positive, it can be proved that A is positive if and only if
all the coefficients sy in the characteristic equation are positive. This is encouraging
since the criterion only requires the calculation of traces, but it remains a lengthy
business to apply it to a given A. There is no easy way.

8.2 The set of mixed states

Finally we come to the density matrices. The set of density matrices consists of all
positive operators o with unit trace, Trp = 1. We denote it by M, or by M™ if
we want to emphasize that it consists of N x N matrices. M is the intersection, in
the space of Hermitian matrices, of the positive cone P with a hyperplane parallel
to the linear subspace of traceless operators. It is a convex set in its own right,
whose pure states are projectors onto one-dimensional subspaces in H, that is
density matrices of the form

p=l)y & p%=22 & pi=p. (8.19)

In this chapter we assume that the vectors are normalized. As we observed in Section
4.5 this is an isometric embedding of CPV~! in HM.
Two different ways of coordinatizing M™ spring to mind. We can set

N2—1

1
p= i+ ; 07 . (8.20)

What we have done is to identify M@ with a subset of the Lie algebra of SU(N),
by shifting the origin of H.M from the zero matrix to the matrix

o, = 8.21)

19,
N
This is a special density matrix known as the maximally mixed state; it is also known
as the tracial state or, familiarly, as the ‘matrix of ignorance’. The components t;
of the Bloch vector serve as Cartesian coordinates in M®) and are also known
as mixture coordinates. A convex combination of two density matrices lies on a
manifestly straight line, when these coordinates are used. Moreover the definition
(8.3), with (A2.9), implies that

Da(p.p) = D (Zr,-o,-,Zr;a,) = D @—1)?. (8.22)
i j i

which is the familiar formula in an Euclidean space.
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e o
Figure 8.1. The spaces discussed in this chapter. Hilbert—Schmidt space HS only
serves as background for the linear subspace HM of Hermitian matrices, that

contains the positive cone P and the set of density matrices M. But compare with
Figure 9.1 in the next chapter!

There is another way of identifying M) with a subset of the Lie algebra of
SU(N), namely to set

e_ﬂH N2—1
P= g’ H=Y" xoi. (8.23)

i=

The coordinates x; are known as exponential coordinates; the real number 8 is
known as the inverse temperature and serves as a reminder of the role these coor-
dinates play in statistical mechanics. They are consistent with their own notion of
straight line — the analogue of the exponential families of classical statistics that we
studied in Section 3.2.

We would like to draw a more detailed picture of the set of density matrices than
that offered in Figure 8.1. If we choose to work over the real rather than the complex
numbers, then we can investigate the space of real symmetric 2 x 2 matrices. This
has only three dimensions. The condition that the trace be unity defines a two-
dimensional plane in this space, and we can literally see how it intersects the
convex cone of positive matrices in a circular disc, which is the two-dimensional
space of rebits. Physics requires complex qubits but rebits are simpler to look at.
But already for N = 3 the set of real density matrices has dimension 5, which is
too high for easy visualization.

Moving on to qubits, we find that the space M has three real dimensions.
This is the Bloch ball discussed in Section 5.2. There is no particular difficulty in
understanding a ball as a convex set. Physically however there is much to think
about, because we now have two different ways of adding two pure states together.
We can form a complex superposition (another pure state) and we can form a
statistical mixture (a mixed state). In the other direction, any given point in the
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Cu

= Ao

Figure 8.2. The cone of positive real symmetric 2 x 2 matrices and its intersection
with the plane of Hermitian matrices of unit trace.

interior can be obtained as a mixture of pure states in many different ways. We are
confronted with an issue that does not arise in classical statistics at all: any mixed
state can be expressed as a mixture of pure states in many different ways, indeed
in as many ways as a point in a ball can be thought of as the ‘centre of mass’ of a
mass distribution on the surface of the ball. Physically it is a basic tenet of quantum
mechanics that there does not exist an operational procedure to distinguish different
ensembles of pure states if they yield the same density matrix — otherwise quantum
correlations between separated systems could be used for instantaneous signalling
(Herbert, 1982).

Quantum mechanics is a significant generalization of classical probability the-
ory. When N = 2 there are two possible outcomes of any measurement described
by a Hermitian operator, or put in another way the sample space belonging to a
given observable consists of two points. They correspond to two orthogonal pure
states, placed antipodally on the surface of the Bloch ball. Each pair of antipo-
dal points on the surface corresponds to a new sample space coexisting with the
original.

The Bloch ball is a convenient example to keep in mind since it is easy to
visualize, but in some respects it is quite misleadingly simple. We begin to see this
if we ask what conditions one has to put on the Bloch vector in order for a density
matrix to describe a pure state. Using Eq. (8.8) it is straightforward to deduce
that

P=p & . (8.24)

(? * ‘?), = dz‘jktjfk = NTiz‘E,‘
The first condition implies that the Bloch vector of a pure state is confined to an
(N? — 2)-dimensional outsphere. The second condition arises only for N > 2, and

it says that the pure states form a certain well-defined subset of the surface of
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the outsphere.> We know that this subset is a complex projective space, of real
dimension 2(N — 1). When N > 2 this is a rather small subset of the outsphere.

8.3 Unitary transformations

It is convenient to think of the set of density matrices as a rigid body in RY =1 We
think of R¥"~! as an Euclidean space. When N > 2 our rigid body is not spherical,
and we must try to understand its shape. The first question one asks about a rigid
body is: what is its symmetry? What subgroup of rotations leaves it invariant?
Unless the body is spherical, the symmetry group is a proper subgroup of the group
of rotations. For the Platonic solids, the symmetry groups are discrete subgroups of
SO(3). Our case is subtler; although pure quantum states form only a small subset
of the outsphere, they do form a continuous manifold, and the symmetry group is
not discrete. As it happens there is an analogue of Wigner’s theorem (Section 4.5)
that applies to density matrices, and answers our question. Its assumptions concern
only the convex structure, not the Euclidean distance:

Theorem 8.1 (Kadison’s) Let there be a map ® from M to M which is one-to-one
and onto, and which preserves the convex structure in the sense that

®(po1 + (1 = p)p2) = pP(p1) + (1 = P)P(p2) . (8.25)
Then the map must take the form
O(p) = UpU™', (8.26)
where the operator U is either unitary or anti-unitary.
In infinitesimal form a unitary transformation takes the form
p =ilp, H], (8.27)

where H is an Hermitian operator (say, a Hamiltonian) that determines the one
parameter family of unitary operators U(t) = e i/,

Itis easy to see why something like this must be true.? Because the map preserves
the convex structure it must be an affine map, and it must map pure states to pure
states. For N = 2 the pure states form a sphere, and the only affine maps that
preserve the sphere are rotations; the map must belong to SO(3) = SU(2)/Z,, that
is, it must take the form (8.26). For N > 3 the pure states form just a subset of a

2 The elegant ‘star product’ used here occurs now and then in the literature, for instance in Arvind, Mallesh and
Mukunda (1997). As a general reference for this section we suggest Mahler and Weberruf3 (1995, (2nd. ed.)
1998).

3 We will not give a strict proof of Kadison’s theorem; a complete and elementary proof was given by Hunziker
(1972).
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sphere, and the rotation must be a rather special one — in particular, it must give
rise to an isometry of the space of its pure states. The last condition points right at
the unitary group.

In a sense Kadison’s theorem answers all our questions, but we must make
sure that we understand the answer. Because the body of density matrices sits in a
vector space that we have identified with the Lie algebra of SU(N), and because
the only unitary transformations that have any effect on density matrices are those
that belong to SU(N), we have here an example of an adjoint action of a group
on its own Lie algebra. What sets the scene is that SU(N)/Zy is a subgroup of
SO(N? — 1). An explicit way to see this goes as follows: let p be defined as in
Eq. (8.20) and let

1 1
o = UpUT:Nﬂ +Y nUoU' = Nﬂ+zr;a,-. (8.28)

Here 7/ is the rotated Bloch vector. We compute that

1 1
T = ETr,o’a,- =3 ZTr(a,-UGjUT)tj = Z 0;;t; , (8.29)
J J

where the matrix O by definition has the matrix elements
0;; = Tr(o;Uo;UY) . (8.30)

This must be an orthogonal matrix, and indeed it is. It is easy to check that the
elements are real. Using the completeness relation (A2.10) for the generators it is
fairly easy to check also that

(00T); = > 04 Oy = & . (8.31)
k

In this way we have exhibited SU(N)/Zy as a subgroup of the rotation group
SO(N* —1).

Another way to see what goes on is to observe that rotations preserve the distance
to the origin — in this case, to p,. This means that they preserve

2 1 21 2 1
D5 (p, p.) = ETY(P —p) = ETFP ToON (8.32)

Therefore all rotations preserve Trp2. But unitary transformations preserve the
additional traces Trp, Trp>, Trp* and so on, up to the last independent trace Tro® .
We are dealing with very special rotations that preserve the spectrum of every
density matrix.

Since rotations in arbitrary dimensions may be unfamiliar, let us first discuss the
action of a generic rotation matrix. With a suitable choice of basis it can always
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T0- &
O~
L 7 om
Figure 8.3. Rotations can be represented with 2 x 2 rotation matrices along the
diagonal, or pictorially as rotations in totally orthogonal 2-planes. We show (a) an

S O(3) rotation, (b) a generic SO(8) rotation, and (c) a generic SU(3) € SO(8)
rotation.

be block diagonalized, that is to say it can be written with 2 x 2 rotation matrices
occurring along the diagonal and zeros elsewhere. If the dimension is odd, we add
an extra 1 on the diagonal. What this means is that for any rotation of R” we can
choose a set of totally orthogonal 2-planes such that the rotation can be described
as independent rotations in these 2-planes; if n is odd there will always be, as
Euler pointed out, an axis that is not affected by the rotation at all. A typical flow
line is not a circle. If the dimension is either 2n or 2n 4 1 it will wind around a
flat torus of dimension 7, since there are n totally orthogonal 2-planes involved.
Unless the rotations in these 2-planes are carefully adjusted, the resulting curve
will not even be closed. (We came across this kind of thing in Section 4.6, and tried
to draw it in Figure 4.11. Now we offer Figure 8.3.) A generic rotation has only
one fixed point if the dimension of the space is even, and only one fixed axis if it
is odd.

The SU(N)/Zy subgroup of SO(N? — 1) that we are dealing with does not
describe generic rotations, and the picture changes as follows: after choosing a basis
in which the SU(N) matrix is diagonal, the latter belongs to a Cartan subgroup of
dimension N — 1. Generically therefore its flow lines will lie on a torus of dimension
N — 1; quite a bit smaller than the torus that occurs for a generic SO(N? — 1)
rotation. The set of fixed points consists of all density matrices that commute with
the given SU(N) matrix. When all the eigenvalues of the latter are different, the
set of fixed points consists of all density matrices that are diagonal in the chosen
basis. This setis the (N — 1)-dimensional eigenvalue simplex, to be discussed in the
next section. The eigenvalue simplex contains only N pure states: the eigenstates
of the SU(N) matrix that describes the rotation. The set of fixed points is of larger
dimension if degeneracies occur in the spectrum of the SU(/N) matrix.

The action of SU(N) on M™ contains a number of intricacies that will occupy
us later in this chapter, but at least now we have made a start.
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8.4 The space of density matrices as a convex set

Let us state some general facts and definitions.* The dimension of M®) is N2 — 1.
The pure states are the projectors

pPP=p &  p=Y)Yl. (8.33)

The space of pure states is CPY~!. As we observed in Section 4.5 this space is
isometrically embedded in the set of Hermitian matrices provided that we define
distance as the Hilbert—Schmidt distance (8.3). The pure states form a 2(N — 1)-
dimensional subset of the (N? — 2)-dimensional boundary of M™®). To see whether
a given density matrix belongs to the boundary or not, we diagonalize it and check
its eigenvalues. If one of them equals zero we are on the boundary.

Any density matrix can be diagonalized. The set of density matrices that are
diagonal in a given basis {|e;)} can be written as

N
p= Xleel, ple)=hnle), Y =1, (8.34)
i=1 i=1
This set is known as the eigenensemble or as the eigenvalue simplex. It forms a
special (N — 1)-dimensional cut through the set of density matrices, and every
density matrix sits in some eigenvalue simplex. It is a simplex since the eigenvalues
are positive and add to one — indeed it is a copy of the (N — 1)-dimensional simplex
with N corners that we studied in classical probability theory. It is centred at the
maximally mixed state p,.

In Section 1.1 we defined the rank of a point in a convex set as the minimum
number r of pure points that are needed to express it as a convex combination of
pure states. It is comforting to observe that this definition coincides with the usual
definition of the rank of a Hermitian matrix: a density matrix of matrix rank r
can be written as a convex sum of no less than r projectors (as is obvious when
the matrix is diagonalized). Hence the maximal rank of a mixed state is equal
to N, much less than the upper bound N? provided by Carathéodory’s theorem
(Section 1.1).

The distance between an arbitrary density matrix p and the centre p, was given
in Eq. (8.32), where we saw that Trp? determines the distance from p,. It happens
that Trp? < 1 with equality if and only if the state is pure, so as expected the pure
states lie at maximal distance from p,. This observation determines the radius Ry
of the outsphere or circumsphere (the smallest ball containing M). To compute the
radius ry, of the insphere (the largest ball inscribed in M), we observe that every

4 Some elementary properties of the convex set of density matrices were discussed by Bloore (1976) and by
Harriman (1978).
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Pure state,

becomes CP*

Rure state X7 =</ Pure state
lr\sphere,
Becomes solid 8— bEccmes 37

dimensional ball

Figure 8.4. This picture shows the eigenvalue simplex for N = 3 with its insphere
and its circumsphere, and indicates what happens if we apply SU(3)/Z; transfor-
mations to obtain the eight-dimensional space of density matrices.

density matrix belongs to some eigenvalue simplex. It follows that the radius of
the insphere of M®™ will equal that of a simplex Ay_;, and this we computed in
Section 1.2. So we find

N -1 1
Row = and 1y, = — (8.35)
2N IN(N - 1)

The maximally mixed state p, is surrounded by a ball of radius rj, consisting entirely
of density matrices. These deliberations are illustrated in Figure 8.4, which shows
the eigenvalue simplex for a qutrit.

In Eq. (1.26) we computed the angle subtended by two corners of a simplex and
found that it approaches 90° when N becomes large. The corners of the eigenvalue
simplex represent pure states at maximal distance from each other, so if x denotes
the angle subtended by two pure states at p, then

1

cosy < N _1' (8.36)
with equality if and only if the states are at maximal distance from each other, that
is to say if and only if they are orthogonal. When N is large this means that all
pure states in the hemisphere opposite to a given pure state (with respect to p,)
lie very close to the equator. This is not surprising since almost all the area of the
circumsphere is concentrated around the equator for large N (see Section 1.2). But
itis very different from the N = 2 case, where to every pure state there corresponds

an antipodal pure state.
For the N = 3 case we have to think in eight dimensions. This is not easy,
but we can try. By looking at Figure 8.4 we can see the in- and outspheres, but
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]

Figure 8.5. An attempt to visualize M. We rotate the eigenvalue simplex to
obtain a cone, then we rotate it in another dimension to turn the base of the cone
into a Bloch ball rather than a disc. That is a maximal face of M®. On the right,
we imagine that we have done this to all the three edges of the simplex. In each
maximal face we have placed three equidistant points — it happens that when these
points are placed correctly on all the three spheres, they form a regular simplex
inscribed in M®.

because M is left invariant only under quite special rotations — those that move
a given corner of the simplex through a two complex-dimensional projective space
embedded in R® — it is not so easy to imagine what the full structure looks like. An
example of an allowed rotation is a rotation of the eigenvalue simplex around an axis
joining a corner to p,. This turns the simplex into a cone (see Figure 8.5). In fact,
if we could imagine just one more dimension, we could see a four-dimensional
slice of M®, which would be a cone whose base is a three-dimensional ball,
having one of the edges of the simplex as its diameter. This ball is one of the faces
of M®,

Perhaps we should recall, at this point, that a face of a convex body is defined as
a convex subset stable under purification and mixing. Contemplation of Figure 8.5
shows that there is a face opposite to each pure state, consisting of all density
matrices that are mixtures of pure states that are orthogonal to the given pure state.
This is to say that M® has faces that in themselves are Bloch balls. There is an
interesting way to look at this, which goes as follows: Pick a pure state |Z) and
study the equation

Trp|ZWZ| = ZpZ =c, cel0,1]. (8.37)

For fixed |Z) this is an affine functional representing a family of parallel hyper-
planes in the space of Hermitian matrices of unit trace; when ¢ = 1 the hyperplane
intersects M in a single pure state and when ¢ = 0 in the face opposite to that
pure state. It is interesting to observe that for intermediate values of ¢ the hyper-
plane intersects the pure states in one of the squashed Berger spheres, depicted in
Figure 4.13.
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It is clear that we are far from understanding the shape of the set of qutrit states —
one can try various devices, such as looking at two-dimensional (Jakébczyk and
Siennicki, 2001) or three-dimensional (Bloore, 1976) sections through the body,
but the dimension is too high for easy comprehension. Since N = 3 does not bring
any great simplification, we will from now on discuss the case of arbitrary N.

The maximally mixed state p, can be obtained as a mixture of pure states by
putting equal weight (in the sense of the Fubini—Study measure) on all pure states,
or by putting equal weight on each corner in an eigenvalue simplex, and also in
many other ways. A similar non-uniqueness afflicts all mixed states. Interestingly
this non-uniqueness can be expressed in a precise way as follows:?

Theorem 8.2 (Schrodinger’s mixture) A density matrix p having the diagonal
form

N
p= hileeil (8.38)

i=1

can be written in the form

M M
p= pl¥iil, Y pi=1, pi=0 (8.39)

i=1 i=1

if and only if there exists a unitary M x M matrix U such that

1 N
i) = N ; Uijv/Ajlej) . (8.40)

Here all states are normalized to unit length but they need not be orthogonal to
each other.

Given p, this theorem supplies all the ways in which p can be expressed as an
ensemble of pure states. Observe that the matrix U does not act on the Hilbert
space but on vectors whose components are state vectors, and also that we may
well have M > N. But only the first N columns of U appear in the equation — the
remaining M — N columns are just added in order to allow us to refer to the matrix
U as a unitary matrix. What the theorem basically tells us is that the pure states that
make up an ensemble are linearly dependent on the N vectors |e;) that make up the
eigenensemble. Moreover an arbitrary state in that linear span can be included. For
definiteness we assume that all density matrices have rank N so that we consider
ensembles of M pure states in an N-dimensional Hilbert space.

5 This theorem has an interesting history. Schrodinger (1936) published it with no claim to priority. When the
time was ripe it was rediscovered by (among others) Gisin (1989) and Hughston, Jozsa and Wootters (1993); it
is now often known as the GHJIW lemma.
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It is straightforward to prove that Eq. (8.39) and Eq. (8.40) imply Eq. (8.38). To
prove the converse, define the first N columns of the unitary matrix U by

NG
Vv

The remaining N — M columns can be chosen at will, consistent with unitarity of
the matrix. The matrix will be unitary because

M M 1
ZU/@ Z (ej 1Y) (Wilen) = ——

J

U =

N
(ejlyn) = Y UyJhrjle;) = /pilwi) . (8.41)
j=1

(ejlplex) =8 . (3.42)

~

This concludes the proof of the mixture theorem. Since only a rectangular submatrix
of U is actually used in the theorem we could leave it like that and refer to U as
a ‘right unitary’ or isometry matrix if we wanted to, but the extra columns do no
harm. In fact they are helpful. We can deduce that

N
pi= Y U I 2. (8.43)

Jj=1

Thus p = BX, where B is a unistochastic, and hence bistochastic, matrix. In the
language of Section 2.1, the vector p is majorized by the eigenvalue vector x.

To see how useful the mixture theorem is, consider the face structure of M),
Recall (from Section 1.1) that a face is a convex subset of a convex set that is stable
under mixing and purification. But the mixture theorem tells us that a density matrix
is always a mixture of pure states belonging to that subspace of Hilbert space that is
spanned by its eigenvectors. What this means is that every face is a copy of M),
the body of density matrices for a system whose Hilbert space has dimension K. If
K < N the face is a proper face, and belongs to the boundary of M®™.

On closer inspection, we see that the face structure of M) reveals ‘crystalline’
regularities. A given face corresponds to some subspace Hg of Hilbert space.
Introduce a projector E that projects down to that subspace. In full analogy to
Eq. (8.37) we can consider the affine functional

TrpE =c, ce€]0,1]. (3.44)

Again, this defines a family of parallel hyperplanes in the space of Hermitian
matrices of unit trace. For ¢ = 1 it defines a face of density matrices with support
in Hg, and for ¢ = 0 it defines an opposing face with support in the orthogonal
complement of that subspace. There is a straight line between the ‘centres of mass’
of these two faces, passing through the ‘center of mass” of M®) (i.e. through p,).
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Next, we recall from Section 1.1 that the faces of a convex body always form a
partially ordered structure known as a lattice, and from Section 4.2 that the set of
subspaces of a Hilbert space also forms a lattice. The following is true:

Theorem 8.3 The lattice of faces of MW is identical to the orthocomplemented
lattice of subspaces in Hy.

The identity of the two lattices is by now obvious, but interesting nevertheless. A
lattice is said to be orthocomplemented if and only if there is a map @ — a’ of the
lattice L onto itself, such that

@Y=a a<b=b<d and =0 aUd =L (8.45)

for all a, b € L, where N and U denote, respectively, the greatest lower and the
smallest upper bound of a pair of elements (for the lattice of subspaces of Hy,
they are, respectively, the intersection and the linear span of the union of a pair
of subspaces). In our lattice, two opposing faces of M®) are indeed related by a
map a — a’. It is possible to single out further properties of this lattice, and to use
them for an axiomatic formulation of quantum mechanics — this is the viewpoint
of quantum logic.®

Let us mention in passing that there is another angle from which we can try to
view the structure: we choose a convex polytope that we feel comfortable with, let
it have the same outradius as the body of density matrices itself, and ask if it can be
inscribed in M), The obvious choice is a regular simplex. The simplex Ag can
be inscribed in M, and Figure 8.5 indicates how. (To avoid misunderstanding:
this Ag does not have edges of unit length. The largest simplex with edge lengths
equal to one that can be placed inside MY is Ay_;.) Oddly enough it is not as
easy to do this for N > 3, but at least for moderately small N it can be done, and
so our intuition has a little more material to work with.”

8.5 Stratification

Yet another way to organize our impressions of M) is to study how it is partitioned
into orbits of the unitary group (recall Section 7.2). We will see that each individual
orbit is a flag manifold (Section 4.9) and that the space of orbits has a transparent
structure.® We begin from the fact that any Hermitian matrix can be diagonalized

6 Further details can be found in the books by Jauch (1968) and Varadarajan (1985); for a version of the story that
emphasizes the geometry of the convex set one can profitably consult Mielnik (1981).

7 The N? corners of such a simplex define what is known as a symmetric informationally complete POVM. See
Renes, Blume-Kohout, Scott and Caves (2004); it is likely, but not proven, that such POVMs exist for any N.
See Wootters and Fields (1989) for another choice of the convex polytope.

8 A general reference for this section is Adelman, Corbett and Hurst (1993).
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by a unitary rotation,
p = VAV, (8.46)

where A is a diagonal density matrix that fixes a point in the eigenvalue simplex.
We obtain a U(N) orbit from Eq. (8.46) by letting the matrix V range over U(N).
Before we can tell what the result is, we must see to what extent different choices
of V can lead to the same p. Let B be a diagonal unitary matrix. It commutes with
A, so

p=VAVI =VBABIV!. (8.47)

In the case of non-degenerate spectrum this is all there is; the matrix V is determined
up to the N arbitrary phases entering B, and the orbit will be the coset space
UN)/U) x U() x --- x U(1). From Section 4.9 we recognize this as the flag
manifold F(lNz) ~—1- If degeneracies occur in the spectrum of p, the matrix B need
not be diagoﬁal in order to commute with A, and various special cases ensue. In
the language of Section 7.2, the isotropy group changes, and so does the nature of
the orbit.

Let us discuss the case of N = 3 in detail to see what happens; our deliberations
are illustrated in Figure 8.6(b). The space of diagonal density matrices is the simplex
A,. However, using unitary permutation matrices we can change the order in which
the eigenvalues occur, so that without loss of generality we may assume that 1| >
A2 > Az > 0. This corresponds to dividing the simplex A, into 3! parts, and to
picking one of them. Denote it by A,. Wecallita Weyl chamber, with a terminology
borrowed from group theory. It is the Weyl chamber that forms the space of orbits
of U(3)in M®.

The nature of the orbit will depend on its location in the Weyl chamber. Depend-
ing on the degeneracy of the spectrum, we decompose A, into four parts (Adelman
et al., 1993; Zyczkowski and Stomczynski, 2001) (see also Figure 8.6(b)):

(a) apoint K3 representing the state p, with triple degeneracy {1/3, 1/3, 1/3}; the isotropy
group is U(3);

(b) a one-dimensional line K, representing the states with double degeneracy, A, = A3;
the isotropy group is U(1) x U(2);

(c¢) a one-dimensional line K5 representing the states with double degeneracy, A; = A;;
the isotropy group is U(2) x U(1);

(d) the two-dimensional part Ky;; of the generic points of the simplex, for which no de-
generacy occurs; the isotropy group is U(1) x U(1) x U(1).

Since the degeneracy of the spectrum determines the isotropy group it also deter-
mines the topology of the U(3) orbit. In case (a) the orbit is U(3)/U(3), that is,
a single point, namely the maximally mixed state p,. In the cases (b) and (c) the
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Figure 8.6. The eigenvalue simplex and the Weyl chamber for N = 2, 3 and 4.
The Weyl chamber Ay_;, enlarged on the right-hand side, can be decomposed
according to the degeneracy into 2V~! parts.

orbitis U(3)/[U(1) x U(Q)] = F(13) = CP?. In the generic case (d) we obtain the
generic flag manifold F(13)2

Now we are ready to tackle the general problem of N x N density matrices.
There are two things to watch: the boundary of M™), and the stratification of
MW by qualitatively different orbits under U(N). It will be easier to follow the
discussion if Figure 8.6 is kept in mind.

The diagonal density matrices form a simplex Ay_;. It can be divided into N'!
parts depending on the ordering of the eigenvalues, and we can select one of these
parts to be the Weyl chamber An-1. The Weyl chamber is the (N — 1)-dimensional
space of orbits under U (N). The nature of the orbits is determined by the degeneracy
of the spectrum, so we decompose the Weyl chamber into parts Ky, ., wWhere the
largest eigenvalue has degeneracy k;, the second largest degeneracy k,, and so on.
Clearly k| + - - - + k,, = N. Each of these parts parametrize a stratum (see Section
7.2) of M™Y)_ where each orbit is a flag manifold

(N) _ U(N)
kika,... k1 U(kl) X oee X U(km) °

(8.48)
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See Section 4.9 for the notation. The generic case is K ;1,1 consisting of the
interior of Ay_; together with one of its (open) facets corresponding to the case
of one vanishing eigenvalue. This means that, except for a set of measure zero, the
space M™ is equal to

1 =F") y_ xGy. (8.49)

......

..... s

Here we used TV to denote the product of N factors U(1), topologically a torus,
and we also used Gy = K 1. ;. The equality holds in a topological sense only,
but, as we will see in Chapter 14, it is also accurate when computing volumes in
M.

There are exceptional places in the Weyl chamber where the spectrum is degen-
erate. In fact there are 2V¥~! different possibilities for K ky....k,» DECaUSE there are
N — 1 choices between ‘larger than’ or ‘equal’ when the eigenvalues are ordered.
G,.. Each G,, can be realized in (Z:ll) different ways (e.g. for N = 4 the set G,
can be realized as K3 1, K> 2, K;,3). In this way we get a decomposition of the Weyl
chamber as

Ava= U Kieok (8.50)
kit +kn=N

and a topological decomposition of the space of density matrices as

UN)
MM~ [ ] X Kioko s 8.51
k,+.,,L+ka=N Utk x - x Ulky)] ~ 1t ®:3D

where the sum ranges over all partitions of N into sums of positive integers. The
total number of such partitions is 2V —1_ However, the orbits sitting over, say, K »
and K, ; will be flag manifolds of the same topology. To count the number of
qualitatively different flag manifolds that appear, we must count the number of
partitions of N with no regard to ordering, that is we must compute the number p(N)
of different representations of the number N as the sum of positive integers. For N =
1,2,...,10 the number p(N)isequalto 1,2,3,5,7, 11, 15, 22, 30, and 42, while
for large N the asymptotic Hardy—Ramanujan formula (Hardy and Ramanujan,
1918) gives p(N) =~ exp (7 +/2N/3) /4+/3N. Figure 8.6 and Table 8.1 summarize
these deliberations for N < 4.

Let us now take a look at the boundary of M™)_ It consists of all density matrices
of less than maximal rank. The boundary as a whole consists of a continuous family
of maximal faces, and each maximal face is a copy of M®~D_To every pure state
there corresponds an opposing maximal face, so the family of maximal faces can
be parametrized by CPY~!. It is simpler to describe the orbit space of the boundary,
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Table 8.1. Stratification of M), U(N) is the unitary group, T* is a k-dimensional
torus, and G, stands for a part of the eigenvalue simplex defined in the text. The
dimension d of the strata equals dr + ds, where dF is the even dimension of the

complex flag manifold ¥, while ds = m — 1 is the dimension of G,.

Part of the Topological Flag Dimension
N Label Subs
abe ubspace Weyl chamber structure manifold d =dr +ds
1 M Al point [UM/UM] x Gy =1{p}  FP 0=0+0
My A > A2 line with left edge [UQ2)/T*] x G2 F? 3=2+1
2
My A= Ao right edge [UQ/UI % Gy =1{p}  FP 0=0+0
Mt Mg >a,  tanglewith base [WG)/ T3] x Gs F)  8=6+2
without corners
Mz A >A =23 edges with Ff) 5=4+1
3 [UB)/(U2) x T)] x G2 )
Mo A =A2 > A3 lower corners F;
M; A=A =23 upper corner UG/ UBI % G ={p}  FY 0=0+0
interior of .
Mini A >4 >A3> A4 tetrahedron with [U@4)/T*] x G4 Fi2,  15=12+3
bottom face
Minn M > A >A3=M Fg)
faces without side
Mzt A > =43 > Ay edes [U@/(UQ) x TH] x G3 F)  12=10+2
. Mot A =Xy > 23> Mg F%)
Miz A >h=Ai3=»M\ F<14) T=6+1

edges with lower
corners

Ml A=h=A3 > Ay W@/UGxT) %Gy F

Mpn M=r>i3=k W&H/UQ x U@ x Gy FP 9=8+1
My AM=da=h3=hy upper corner U@/ UM x Gy = {p.}  F 0=0+0

because it is the base of the Weyl chamber and has dimension N — 2. It is clear
from Figure 8.6 that the orbit space of the boundary d M@ is the same as the orbit
space of M~ but the orbits are different because the group that acts is larger.
Generically there will be no degeneracies in the spectrum, so except for a set of
measure zero the boundary has the structure (U(N)/TV) x Gy_1.

Alternatively, the boundary can be decomposed into sets of matrices with dif-
ferent rank. It is not hard to show that the dimension of the set of states of rank
r=N —kisequalto N> — k> — 1.

The main message of this section has been that the Weyl chamber gives a good
picture of the set of density matrices, because it represents the space of orbits
under the unitary group. It is a very good picture, because the Euclidean distance
between two points within a Weyl chamber is equal to the minimal Hilbert—Schmidt
distance between the pair of orbits that they represent. In equations, let U and V
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denote arbitrary unitary matrices of size N. Then
Dus(Ud\U', Vds V1) > Dus(d:, do) , (8.52)

where d; and d, are two diagonal matrices with their eigenvalues in decreasing
order. The proof of this attractive observation is simple, once we know something
about the majorization order for matrices. For this reason its proof is deferred to
Problem 12.5.

8.6 An algebraic afterthought

Quantum mechanics is built around the fact that the set of density matrices is a
convex set of a very special shape. From the perspective of Chapter 1 it seems
a strange set to consider. There are many convex sets to choose from. The sim-
plex is evidently in some sense preferred, and leads to classical probability theory
and — ultimately, once the pure states are numerous enough to form a symplectic
manifold — to classical mechanics. But why the convex set of density matrices?
A standard answer is that we want the vector space that contains the convex set
to have further structure, turning it into an algebra.” (By definition, an algebra is
a vector space where vectors can be multiplied as well as added.) At first sight
this looks like an odd requirement: the observables may form an algebra, but why
should the states sit in one? We get an answer of sorts if we think of the states as
linear maps from the algebra to the real numbers, because then we will obtain a
vector space that is dual to the algebra and can be identified with the algebra. Some
further hints will emerge in Chapter 11. For now, let us simply accept it. The point
is that if the algebra has suitable properties then this will give rise to new ways of
defining positive cones — more interesting ways than the simple requirement that
the components of the vectors be positive.

To obtain an algebra we must define a product A o B. We may want the algebra
to be real in the sense that

AoA+BoB=0 = A=B=0. (8.53)

‘We do not insist on associativity, but we insist that polynomials of operators should
be well defined. In effect we require that A” o A” = A" where A" = A o A",
Call this power associativity. With this structure in hand we do have a natural
definition of positive vectors, as vectors A that can be written as A = B? for some
vector B, and we can define idempotents as vectors obeying A = A. If we can also
define a trace, we can define pure states as idempotents of unit trace. But by now

9 The algebraic viewpoint was invented by Jordan; key mathematical results were derived by Jordan, von Neumann
and Wigner (1934). To see how far it has developed, see Emch (1972) and Alfsen and Shultz (2003).
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Table 8.2. Jordan algebras

Jordan algebra Dimension Norm Positive cone Pure states
Iy NN +1)/2 det M Self dual RPN
I N? det M Self dual CpV-!
Iy NQN —1) det M Self dual HPV-!
(V) nt 1 X' X Self dual !

5 27 det M Self dual op?

there are not that many algebras to choose from. To make the algebra real in the
above sense we would like the algebra to consist of Hermitian matrices. Ordinary
matrix multiplication will not preserve Hermiticity, and therefore matrix algebras
will not do as they stand. However, because we can square our operators we can
define the Jordan product

AoB = l(A+B)2—l(A—B)2 (8.54)
(@] = 4 4 . .

There is no obvious physical interpretation of this composition law, but it does turn
the space of Hermitian matrices into a (commutative) Jordan algebra. If A and
B are elements of a matrix algebra this product is equal to one half of their anti-
commutator, but we need not assume this. Jordan algebras have all the properties we
want, including power associativity. Moreover all simple Jordan algebras have been
classified, and there are only four kinds (and one exceptional case). A complete list
is given in Table 8.2.1°

The case that really concerns us is J 1(5. Here the Jordan algebra is the space of
complex valued Hermitian N x N matrices, and the Jordan product is given by one
half of the anti-commutator. This is the very algebra that we have — implicitly —
been using, and with whose positive cone we are by now reasonably familiar. We
can easily define the trace of any element in the algebra, and the pure states in the
table are assumed to be of unit trace. One can replace the complex numbers with
real or quaternionic numbers, giving two more families of Jordan algebras. The
state spaces that result from them occur in special quantum mechanical situations,
as we saw in Section 5.5. The fourth family of Jordan algebras are the spin factors
J>(V,,). They can also be embedded in matrix algebras, their norm uses a Minkowski
space metric 7;;, and their positive cones are the familiar forward light cones in
Minkowski spaces of dimension n + 1. Their state spaces occur in special quantum

10 For a survey of Jordan algebras, see McCrimmon (1978).
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mechanical situations too (Uhlmann, 1996), but this is not the place to go into that.
(Finally there is an exceptional case based on octonions, that need not concern us).

So what is the point? One point is that very little in addition to the quantum me-
chanical formalism turned up in this way. This is to say: once we have committed
ourselves to finding a self dual positive cone in a finite-dimensional real algebra,
then we are almost (but not quite) restricted to the standard quantum mechanical
formalism already. Another point is that the positive cone now acquires an inter-
esting geometry. Not only is it self dual (see Section 1.1), it is also foliated in a
natural way by hypersurfaces for which the determinant of the matrix is constant.
These hypersurfaces turn out to be symmetric coset spaces SL(N, C)/SU(N), or
relatives of that if we consider a Jordan algebra other than J 1(5. Given the norm A/
on the algebra, there is a natural looking metric

1
g = _Eal-a,- In N4V (8.55)

where d is the dimension of the algebra. (Since the norm is homogeneous of order
N, the exponent ensures that the argument of the logarithm is homogeneous of
order d.) This metric is positive definite for all the Jordan algebras, and it makes
the boundary of the cone sit at an infinite distance from any point in the interior.
If we specialize to diagonal matrices — which means that the Jordan algebra is no
longer simple — we recover the positive orthant used in classical probability theory,
and the natural metric turns out to be flat, although it differs from the ‘obvious’ flat
metric on RV,

We doubt that the reader feels compelled to accept the quantum mechanical
formalism only because it looms large in a Jordan algebra framework. Another
way of arguing for quantum mechanics from (hopefully) simple assumptions is
provided by quantum logic. This language can be translated into convex set theory
(Mielnik, 1981), and turns out to be equivalent to setting conditions on the lattice
of faces that one wants the underlying convex set to have. From a physical point
of view it concerns the kind of ‘yes/no’ experiments that one expects to be able to
perform; choosing one’s expectations suitably (Araki, 1980) one can argue along
such lines that the state spaces that will emerge are necessarily state spaces of
Jordan algebras, and we are back where we started.

But there is a further algebraic structure waiting in the wings, and it is largely
this additional structure that Chapter 9 and passim are about.

8.7 Summary

Let us try to summarize basic properties of the set of mixed quantum states M®),
As before Ay_; is an (N — 1)-dimensional simplex, Ay_; is a Weyl chamber in

.....
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* MW is a convex set of N> — 1 dimensions. It is topologically equivalent to a ball and
does not have pieces of lower dimensions (‘no hairs’).

* The set M™) is inscribed in a ball of radius R, = (N — 1)/2N, and contains a maximal

ball of radius 72 = [2N(N — 1)]7L.

It is neither a polytope nor a smooth body. Its faces are copies of MK) with K < N.

It is partitioned into orbits of the unitary group, and the space of orbits is a Weyl chamber

Z N—1-

e The full measure of M®™ has locally the structure of FV) x Ap_;.

* The boundary 3 M ™) contains all states of less than maximal rank.

* The boundary has N> — 2 dimensions. Almost everywhere it has the local structure of
F(N) X A N=2-

In this summary we have not mentioned the remarkable way in which composite
systems are handled by quantum theory. The discussion of this topic starts in the
next chapter and culminates in Chapter 15.

Problems

Problem 8.1 Prove that the polar decomposition of an invertible operator is unique.

Problem 8.2 Consider a square matrix A. Perform an arbitrary permutation of its
rows and/or columns. Will its (a) eigenvalues, (b) singular values change?

Problem 8.3 What are the singular values of (a) a Hermitian matrix, (b) a unitary
matrix, (c) any normal matrix A (such that [A, A1 =0)?

Problem 8.4 A unitary similarity transformation does not change the eigenvalues
of any matrix. Show that this is true for the singular values as well.

Problem 8.5 Show that T((AAT) Tr(BBT) > |Tr(AB™)|?, always.
Problem 8.6 Show that the diagonal elements of a positive operator are positive.

Problem 8.7 Take a generic vector in RV =1 How many of its components can you
set to zero, if you are allowed to act only with an SU(N) subgroup of the rotation
group?

Problem 8.8 Transform a density matrix p of size 2 into p’ = Up U by a general
cos Pe¢ sin eV
—sinve ™™ cosve I
O € SO(3) which transforms the Bloch vector T ? Find the rotation angle ¢ and the

vector §2 determining the orientation of the rotations axis.

unitary matrix U = |: :| . What is the orthogonal matrix
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Purification of mixed quantum states

In this significant sense quantum theory subscribes to the view that ‘the
whole is greater than the sum of its parts’.
Hermann Weyl

In quantum mechanics the whole, built from parts, is described using the tensor
product that defines the composition of an N-dimensional vector space V and an
M -dimensional vector space V' as the N M -dimensional vector space V ® V’. One
can go on, using the tensor product to define an infinite-dimensional tensor algebra.
The interplay between the tensor algebra and the other algebraic structures is subtle
indeed. In this chapter we study the case of two subsystems only. The arena is
Hilbert—Schmidt space (real dimension 2N?), but now regarded as the Hilbert space
of a composite system. We will use a partial trace to take ourselves from Hilbert—
Schmidt space to the space of density matrices acting on an N-dimensional Hilbert
space. The result is the quantum analogue of a marginal probability distribution. It
is also like a projection in a fibre bundle, with Hilbert—Schmidt space as the bundle
space and the group U (N) acting on the fibres, while the positive cone serves as the
base space (real dimension 2N2 — N2 = N?). Physically, the important idea is that
of purification; a density matrix acting on H is regarded as a pure state in H ® H*,
with some of its details forgotten. We could now start an argument whether all
mixed quantum states are really pure states in some larger Hilbert space, but we
prefer to focus on the interesting geometry that is created on the space of mixed
states by this construction.!

! For an eloquent defence of the point of view that regards density matrices as primary, see Mermin (1998). With
equal eloquence, Penrose (2004) takes the opposite view.
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9.1 Tensor products and state reduction

The tensor product of two vector spaces is not all that easy to define. The easiest
way is to rely on a choice of basis in each of the factors.> We are interested in
the tensor product of two Hilbert spaces H; and H,, with dimensions N; and
N, respectively. The tensor product space will be denoted H,, and it will have
dimension N;N,. The statement that the whole is greater than its parts is related to
the fact that NyN, > N; + N, (unless Ny = N, = 2).

We expect the reader to be familiar with the basic features of the tensor product,
but to fix our notation let us choose the bases {|m)}n[\1/‘:1 in Hy, and {|,u,>}f:’2:1 in Ho,.
Then the Hilbert space H» = H; ® H, is spanned by the basis formed by the Ny N,
elements [m) @ |u) = |m)|u), where the sign ® will be written explicitly only on
festive occasions. The basis vectors are direct products of vectors in the factor
Hilbert spaces, but by taking linear combinations we will obtain vectors that cannot
be written in such a form — which explains why the composite Hilbert space H,
is so large. Evidently we can go on to define the Hilbert space H 3, starting from
three factor Hilbert spaces, and indeed the procedure never stops. By taking tensor
products of a vector space with itself, we will end up with an infinite-dimensional
tensor algebra. Our concern, however, is with bipartite systems that use only the
Hilbert space H». In many applications of quantum mechanics, a further elabora-
tion of the idea is necessary: it may be that the subsystems are indistinguishable
from each other, in which case one must take symmetric or anti-symmetric com-
binations of H,, and H;;, leading to bosonic or fermionic subsystems, or perhaps
utilize some less trivial representation of the symmetric group that interchanges the
subsystems. But we will not need this elaboration either.

The matrix algebra of operators acting on a given Hilbert space is itself a vector
space — the Hilbert—Schmidt vector space HS studied in Section 8.1. We can take
tensor products also of algebras. If A acts on H;, and A, acts on H,, then their
tensor or Kronecker product A} ® A, is defined by its action on the basis elements:

(A1 ®@ A2)lm) ® [u) = Ailm) ® Azlu) . O.1)

Again, this is not the most general operator in the tensor product algebra since we
can form linear combinations of operators of this type. For a general operator we
can form matrix elements according to

AT = (m| ® (ul|Aln) @ |v) . 9.2
On less festive occasions we may write this as A, »yv.
2 This is the kind of procedure that mathematicians despise; the basis independent definition can be found in

Kobayashi and Nomizu (1963). Since we tend to think of operators as explicit matrices, the simple-minded
definition is good enough for us.
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Everything works best if the underlying field is that of the complex numbers
(Araki, 1980): let the space of observables, that is Hermitian operators, on a Hilbert
space H be denoted HM(H). The dimensions of the spaces of observables on a
pair of complex Hilbert spaces H; and H, obey

dim[HM(H; ® Hy)] = dim[HM(H )] dim[HM(H2)] . 9.3)

That is, (N{N,)> = N 12N22 If we work over the real numbers the left-hand side of
Eq. (9.3) is larger than the right-hand side, and if we work over quaternions (using
a suitable definition of the ternsor product) the right-hand side is the largest. As
an argument for why we should choose to work over the complex numbers, this
observation may not be completely compelling. But the tensor algebra over the
complex numbers has many wonderful properties.

Most of the time we think of vectors as columns of numbers, and of operators as
explicit matrices — in finite dimensions nothing is lost and we gain concreteness. We
organize vectors and matrices into arrays, using the obvious lexicographical order.
At least, the order should be obvious if we write it out for a simple example: if

Ay Ap B B
A= and B =
[Azl A22:| |:le Bzzi|

then

AnBn AnBin ApBin ApBnp
AnB ApB | _ | AuBu AuBn AnBy AnpBn ©.4)
AyB AxnB Ay By AuBp AnBy ApBp | '

Ay By AuBxn AnBy AnBn

aen=|

Contemplation of this expression should make it clear what lexicographical ordering
that we are using. At first sight one may worry that A and B are treated quite
asymmetrically here, but on reflection one sees that this is only a matter of basis
changes, and does not affect the spectrum of A ® B. See Problems 9.1-9.5 for
further information about tensor products.

The tensor product is a main theme in quantum mechanics. We will use it to
split the world into two parts; a part 1 that we study and another part 2 that we
may refer to as the environment. This may be a physical environment that must be
taken into account when doing experiments, but not necessarily so. It may also be a
mathematical device that enables us to prove interesting theorems about the system
under study, with no pretence of realism as far as the environment is concerned.
Either way, the split is more subtle than it used to be in classical physics, precisely
because the composite Hilbert space Hj» = H; ® H is so large. Most of its vectors
are not direct products of vectors in the factor spaces. If not, the subsystems are
said to be entangled.
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Let us view the situation from the Hilbert space H,. To compute the expectation
value of an arbitrary observable we need the density matrix p;. Itis assumed that we
know exactly how H, is defined as a tensor product H; ® H,, so the representation
(9.2) is available for all its operators. Then we can define reduced density matrices
p1 and p,, acting on ‘H; and H,, respectively, by taking partial traces. Thus

Ny
o1 = Tropra  where  (p)" = Z(plz)m,’fu, 9.5)

n=1

and similarly for p,. This construction is interesting, because it could be that ex-
periments are performed exclusively on the first subsystem, in which case we are
only interested in observables of the form

A=AQ®1, & A" =(A)"5". (9.6)

Then the state p;, is more than we need; the reduced density matrix p; acting on
‘H, is enough, because

(A) = TrpnA = Trip1A; . 0.7

Here Tr; denotes the trace taken over the first subsystem only. Moreover p; =
Tryp12 is the only operator that has this property for every operator of the form
A = A; ® 1,; this observation can be used to give a basis independent definition
of the partial trace.

Even if py; is a pure state, the state p; will in general be a mixed state. Interest-
ingly, it is possible to obtain any mixed state as a partial trace over a pure state in a
suitably enlarged Hilbert space. To make this property transparent, we need some
further preparations.

9.2 The Schmidt decomposition

An exceptionally useful fact is the following:3

Theorem 9.1 (Schmidt’s) Every pure state in the Hilbert space Hiy = H; @ Ha
can be expressed in the form

N
W) = > Vale) @ 1), (9.8)

i=1

3 The original Schmidt’s theorem, that appeared in 1907 (Schmidt, 1907), concerns infinite-dimensional spaces.
The present formulation was used by Schrodinger (1936) in his analysis of entanglement, by Everett (1957) in his
relative state (or many worlds) formulation of quantum mechanics, and in the 1960s by Carlson and Keller (1961)
and Coleman (1963), and Coleman and Yukalov (2000). Simple expositions of the Schmidt decomposition are
provided by Ekert and Knight (1995) and by Aravind (1996).
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N2

where {|e,)} _, is an orthonormal basis for Hy, {| fi)};2

for Hy, and N < min{Ny, N,}.

| is an orthonormal basis

This is known as the Schmidt decomposition or Schmidt’s polar form of a bipartite
pure state. It should come as a surprise, because there is only a single sum; what is
obvious is only that any pure state can be expressed in the form

N N
¥) = DD Cile) ®@17)) . 9.9)
i=1 j=1
where C is some complex-valued matrix and the bases are arbitrary. The Schmidt
decomposition becomes more reasonable when it is observed that the theorem
concerns a special state |V); changing the state may force us to change the bases
used in Eq. (9.8).

To deduce the Schmidt decomposition we assume, without loss of generality,
that Ny < N,. Then we observe that we can rewrite Eq. (9.9) by introducing the
states |¢;) = > j C; j|j‘j); these will not be orthonormal states but they certainly
exist, and permit us to write the state in Hj, as

N A
=) 1e)ldi) - (9.10)

Taking a partial trace of py = |W) (V| with respect to the second subsystem, we
find

pr = Try(|W)(W]) =ZZ<<2>J-|¢3,-> i) ;1 - ©.11)

Now comes the trick. We can always perform a unitary transformation to a new
basis |e;) in H |, so that p; takes the diagonal form

N
=Y hleeil, (9.12)
i=1

where the coefficients A; are real and non-negative. Finally we go back and repeat
the argument, using this basis from the start. Taking the hats away, we find

(Djldi) = Aidij . (9.13)

That is to say, we can set |¢;) = /A;|f;). The result is precisely the Schmidt
decomposition.

An alternative way to obtain the Schmidt decomposition is to rely on the singular
value decomposition (8.14) of the matrix C in Eq. (9.9). In Section 8.1 we considered
square matrices, but since the singular values are really the square roots of the
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eigenvalues of the matrix CC' — which is square in any case — we can lift that
restriction here. Let the singular values of C be /A;. There exist two unitary
matrices U and V such that

Cij = Y Un/MduVy . (9.14)
k,l

Using U and V to effect changes of the bases in H; and H;, we recover the Schmidt
decomposition (9.8). Indeed

pp=Tnp=CC' and p, = Trip=C’C*. (9.15)

In the generic case all the singular values A; are different and the Schmidt de-
composition is unique up to phases, which are free parameters determined by any
specific choice of the eigenvectors of U and V. The bases used in the Schmidt
decomposition are distinguished because they are precisely the eigenbases of the
reduced density matrices, one of them is given in Eq. (9.12) and the other being

pr =T (0N Zx (A (9.16)

When the spectra of the reduced density matrices are degenerate the bases may be
rotated in the corresponding subspace.

At this point we introduce some useful terminology. The real numbers X; that
occur in the Schmidt decomposition (9.8) are called Schmidt coefficients,* and they
obey

du=1., x=0. 9.17)

The set of all possible vectors X forms an (N — 1)- dimensional simplex, known as
the Schmidt simplex. The number r of non-vanishing A; is called the Schmidt rank
of the state |W). It is equal to the rank of the reduced density matrix. The latter
describes a pure state if and only if » = 1. If r > 1 the state |V) is an entangled
state of its two subsystems (see Chapter 15).

A warning concerning the Schmidt decomposition is appropriate: there is no
similar strong result available for Hilbert spaces that are direct products of more
than two factor spaces.’ This is evident because if there are M factor spaces, all
of dimension N, then the number of parameters describing a general state grows
like N™ | while the number of unitary transformations one can use to choose basis
vectors within the factors grows like M x N2. But we can look at the Schmidt

4 We find this definition convenient. Others (Nielsen and Chuang, 2000) use this name for /%;.
5 A kind of generalization of the Schmidt decomposition for three qubits is provided in (Carteret, Higuchi and
Sudbery, 2000; Acin, Andrianov, Costa, Jané, Latorre and Tarrach, 2000).
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decomposition through different glasses. The Schmidt coefficients are not changed
by local unitary transformations, — that is to say, in the Hilbert space H ® H, where
both factors have dimension N, transformations belonging to the subgroup U(N) ®
U(N), acting on each factor separately. When there are many factors, we can ask
for invariants under the action of U(N) @ U(N) ® - - - ® U(N), characterizing the
orbits of that group — but this is an active research subject® that we do not go into.

9.3 State purification and the Hilbert—-Schmidt bundle

With the Schmidt decomposition in hand we can discuss the opposite of state
reduction: given any density matrix p on a Hilbert space H, we can use Eq. (9.8)
to write down a pure state on a larger Hilbert space whose reduction down to H is
p. The key statements are the following:

Lemma 9.1 (Reduction) Let p1; be a pure state on Hi,. Then the spectra of the
reduced density matrices py and p, are identical, except possibly for the degeneracy
of any zero eigenvalue.

Lemma 9.2 (Purification) Given a density matrix p\ on a Hilbert space H,, there
exists a Hilbert space Hy, and a pure state p1p on Hy @ Hy such that py = Tryp1o.

These statements follow trivially from Schmidt’s theorem, but they have far-
reaching consequences. It is notable that any density matrix p acting on a Hilbert
space H can be purified in the Hilbert-Schmidt space HS = H ® H*, that we
introduced in Section 8.1. Any attempt to use a smaller Hilbert space will fail in
general, and, mathematically, there is no point in choosing a larger space since the
purified density matrices will always belong to a subspace that is isomorphic to the
Hilbert—Schmidt space. Hence Hilbert—Schmidt space provides a canonical arena
for the purification of density matrices. We will try to regard it as a fibre bundle,
along the lines of Chapter 3. Let us see if we can.

The vectors of HS can be represented as operators A acting on H, and there is
a projection down to the cone P of positive operators defined by

M: A— p=AA". (9.18)

The fibres will consist of operators projecting to the same positive operator, and
the unitary group acts on the fibres as

A — A = AU. (9.19)

% To learn about invariants of local operations for three qubits see (Grassl, Rotteler and Beth, 1998; Sudbery,
2001; Barnum and Linden, 2001).
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We could have used the projection A —> p’ = At A instead. More interestingly,
we could have used the projection A —> p’ = AAT/TrAAT. This would take us
all the way down to the density matrices (of unit trace), but the projection (9.18)
turns out to be more convenient to work with.

Do we have a fibre bundle? Not quite, because the fibres are not isomorphic.
We do have a fibre bundle if we restrict the bundle space to be the open set of
Hilbert—Schmidt operators with trivial kernel. The boundary of the base manifold
is not really lost, since it can be recovered by continuity arguments. And the fibre
bundle perspective is really useful, so we will adopt it here.” The structure group of
the bundle is U(N) and the base manifold is the interior of the positive cone. The
bundle projection is given by Eq. (9.18). From a topological point of view this is a
trivial bundle, admitting a global section

T op— Jp. (9.20)

The map 7 is well defined because a positive operator admits a unique positive
square root, it is a section because H(T(p)) = (\/ﬁ)2 = p, and it is global because
it works everywhere.

What is interesting about our bundle is its geometry. We want to think of Hilbert—
Schmidt space as a real vector space, so we adopt the metric

XY= %((x, Y)+ (Y, X)) = %Tr(xfy +Y7X), (9.21)

where X and Y are tangent vectors. (Because we are in a vector space, the tangent
spaces can be identified with the space itself.) This is the Hilbert—Schmidt bundle.
A matrix in the bundle space will project to a properly normalized density matrix if
and only if it sits on the unit sphere in HS. The whole setting is quite similar to that
encountered for the 3-sphere in Chapter 3. Like the 3-sphere, the Hilbert—Schmidt
bundle space has a preferred metric, and therefore there is a preferred connection
and a preferred metric on the base manifold.

According to Section 3.6, a connection is equivalent to a decomposition of
the bundle tangent space into vertical and horizontal vectors. The vertical tangent
vectors pose no problem. By definition they point along the fibres; since any unitary
matrix U can be obtained by exponentiating an Hermitian matrix H, a curve along
a fibre is given by

AU@G) = A", (9.22)
Therefore every vertical vector takes the form iA H for some Hermitian matrix H.

The horizontal vectors must be defined somehow, and we do so by requiring that

7 From this point on, this chapter is mostly an account of ideas developed by Armin Uhlmann (Uhlmann, 1992,
1993, 1995) and his collaborators. For this section, see also Dabrowski and Jadczyk (1989).
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Figure 9.1. The Hilbert—Schmidt bundle. It is the unit sphere in HS that projects
down to density matrices.

they are orthogonal to the vertical vectors under our metric. Thus, for a horizontal
vector X, we require

TrXGAH) + TrGAE)XT = iTr(XTA — ATX)H =0 (9.23)

for all Hermitian matrices H. Hence X is a horizontal tangent vector at the point
A if and only if

xta—aAlx = 0. (9.24)

Thus equipped, we can lift curves in the base manifold to horizontal curves in the
bundle.

In particular, suppose that we have a curve p(s) in M™. We are looking for a
curve A(s) such that AAT(s) = p(s), and such that its tangent vector A is horizontal,
that is to say that

ATA=ATA . (9.25)
It is easy to see that the latter condition is fulfilled if
A=GA, (9.26)
where G is an Hermitian matrix. To find the matrix G, we observe that
AAl(0)=plc) = p=Gp+pG. (9.27)

As long as p is a strictly positive operator this equation determines G uniquely
(Sylvester, 1884; Bhatia and Rosenthal, 1997), and it follows that the horizontal
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lift of a curve in the base space is uniquely determined. We could go on to define a
mixed state generalization of the geometric phase discussed in Section 4.8, but in
fact we will turn to somewhat different matters.®

9.4 A first look at the Bures metric

Out of our bundle construction comes, not only a connection, but a natural metric
on the space of density matrices. It is known as the Bures metric, and it lives on
the cone of positive operators on H, since this is the base manifold of our bundle.
Until further notice then, p denotes a positive operator, and we allow Trp # 1. The
purification of p is a matrix A such that p = AAT, and A is regarded as a vector in
the Hilbert—Schmidt space.

In the bundle space, we have a natural notion of distance, namely the Euclidean
distance defined (without any factor 1/2) by

d2(A1, Ay) = ||A) — Ag|lBs = Tr(A AT + AJAL — A, AL — A,AT) . (9.28)

If Ay, A, lie on the unit sphere we have another natural distance, namely the geodesic
distance d4 given by

1 ,
cosdy = 5 Tr(A1A} + AyAD). (9.29)

Unlike the Euclidean distance, which measures the length of a straight chord, the
second distance measures the length of a curve that projects down, in its entirety,
to density matrices of unit trace. In accordance with the philosophy of Chapter 3,
we define the distance between two density matrices p; and p; as the length of the
shortest path, in the bundle, that connects the two fibres lying over these density
matrices. Whether we choose to work with d4 or dp, the technical task we face is
to calculate the root fidelity’

1 . .
VFE(p1, p2) = S max Tr(A Al + A,Al) = max|TrA, Al . (9.30)

The optimization is with respect to all possible purifications of p; and p,. Once we
have done this, we can define the Bures distance Dg,

Dg(p1., p2) = Trpy + Trpy — 2V F(p1. p2) . (9.31)

8 Geometric phases were among Uhlmann’s motivations for developing the material in this chapter (Uhlmann,
1992; Uhlmann, 1995). Other approaches to geometric phases for mixed states exist (Ericsson, Sjoqvist,
Brinnlund, Oi and Pati, 2003); for a recent review see Chruscinski and Jamiotkowski (2004).

9 Tts square was called fidelity by Jozsa (1994). Later several authors, including Nielsen and Chuang (2000),
began to refer to our root fidelity as fidelity. We have chosen to stick with the original names, partly to avoid
confusion, partly because experimentalists prefer a fidelity to be some kind of a probability — and fidelity is a
kind of transition probability, as we will see.
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and the Bures angle Da,
cos Da(p1, p2) = VF(p1, p2) - (9.32)

The Bures angle is a measure of the length of a curve within M), while the Bures
distance measures the length of a curve within the positive cone. By construction,
they are Riemannian distances — and indeed they are consistent with the same
Riemannian metric. Moreover they are both monotoneously decreasing functions
of the root fidelity.'?

Root fidelity is a useful concept in its own right and will be discussed in some
detail in Section 13.3. It is so useful that we state its evaluation as a theorem:

Theorem 9.2 (Uhlmann’s fidelity) The root fidelity, defined as the maximum of
|TrA1A£| over all possible purifications of two density matrices p; and p,, is

VF(p1, p2) = Trly/p2 /o1l = Try/ /2 p1/p2 - (9.33)
To prove this, we first use the polar decomposition to write
Ar=p Uy and Ay=./pU,. (9.34)
Here U, and U, are unitary operators that move us around the fibres. Then
TrA Al = Te(\/p1 UiUL/p2) = Tr(/p,/o1 Ui UJ) . (9.35)
We perform yet another polar decomposition
Voo = ooV, vVi=1. (9.36)
We define a new unitary operator U = VU, U2T . The final task is to maximize
Tr(|\/p2+/p1|U) + complex conjugate 9.37)

over all possible unitary operators U. In the eigenbasis of the positive operator
|/P24/p1] it is easy to see that the maximum occurs when U = 1. This proves the
theorem; the definition of the Bures distance, and of the Bures angle, is thereby
complete.

The catch is that root fidelity is difficult to compute. Because of the square roots,
we must go through the labourious process of diagonalizing a matrix twice. Indeed,
although our construction makes it obvious that v/F(p;, py) is a symmetric function
of p; and p,, not even this property is obvious just by inspection of the formula —
although in Section 13.3 we will give an elegant direct proof of this property. To

10 The Bures distance was introduced, in an infinite-dimensional setting, by Bures (1969), and then shown to be
a Riemannian distance by Uhlmann (1992). Our Bures angle was called Bures length by Uhlmann (1995), and
angle by Nielsen and Chuang (2000).
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come to grips with root fidelity, we work it out in two simple cases, beginning
with the case when p; = diag(py, p2, ..., pn) and p, = diag(qi, ¢z, - - . , gn), that
is when both matrices are diagonal. We also assume that they have trace one. This
is an easy case: we get

N
VE(pr1, ) = Y /Pidi - 9.38)
i=1

It follows that the Bures angle D equals the classical Bhattacharyya distance,
while the Bures distance is given by

N N
Di(p1, p2) =2—-2)  /Pidi = ) (VPi— @) = Di(P,Q),  (939)
i=1 i=1

where Dy is the Hellinger distance between two classical probability distributions.
These distances are familiar from Section 2.5. Both of them are consistent with the
Fisher—Rao metric on the space of classical probability distributions, so this is our
first hint that what we are doing will have some statistical significance.

The second easy case is that of two pure states. The good thing about a pure
density matrix is that it squares to itself and therefore equals its own square root.
For a pair of pure states a very short calculation shows that

VE(Iy) Wl 192) (al) = [ lva)] = Vic , (9.40)

where « is the projective cross-ratio, also known as the transition probability. It is
therefore customary to refer to fidelity, that is the square of root fidelity, also as the
Uhlmann transition probability, regardless of whether the states are pure or not.
Anyway, we can conclude that the Bures angle between two pure states is equal to
their Fubini—Study distance.

With some confidence that we are studying an interesting definition, we turn to
the Riemannian metric defined by the Bures distance. It admits a compact descrip-
tion that we will derive right away, although we will not use it until Section 14.1.
It will be convenient to use an old-fashioned notation for tangent vectors, so that
dA is a tangent vector on the bundle, projecting to dp, which is a tangent vector on
M) The length squared of dp is then defined by

ds® = min[TrdAdA'] , (9.41)

where the minimum is sought among all vectors d A that project to dp, and achieved
if dA is a horizontal vector (orthogonal to the fibres). According to Eq. (9.26) this
happens if and only if dA = G A, where G is a Hermitian matrix. As we know from
Eq. (9.27), as long as p is strictly positive, G will be determined uniquely by ,C

dp=Gp+pG. (9.42)
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Pulling the strings together, we find that
1
ds> =TrGAA'G = TrGpG = 3 TrGdp . (9.43)

This is the Bures metric. Its definition is somewhat implicit. It is difficult to do
better though: explicit expressions in terms of matrix elements tend to become so
complicated that they seem useless — except when p and dp commute, in which
case G = dp/(2p), and except for the special case N = 2 to which we now turn.!!
A head on attack on Eq. (9.43) will be made in Section 14.1.

9.5 Bures geometry for N =2

It happens that for the qubit case, N = 2, we can get fully explicit results with
elementary means. The reason is that every 2 x 2 matrix M obeys

M? —MTtM +detM =0, (9.44)
Hence
(TrM)? = TrM? + 2 det M . (9.45)
If we set
M = \/Jpip/pi (9.46)
we find, as a result of an elementary calculation, that
F = (TtM)? = Trpipy + 2/det py det p; . (9.47)

(where the fidelity F is used for the first time!). The N = 2 Bures distance is now
given by

Di(p1. p2) = Trpy + Trpy — 2\/ Trp1p2 + 2+/det p; det p; . (9.48)

It is pleasing that no square roots of operators appear in this expression.
It is now a matter of straightforward calculation to obtain an explicit expression
for the Riemannian metric on the positive cone, for N = 2. To do so, we set

l[t—{—z x—iy:| 1|:dt+dz dx —idy

P=2xtiy 1z P=Pt Sl e idy  df—dz

> > ] . (9.49)

It is elementary (although admittedly a little labourious) to insert this in Eq. (9.48),

1 Inthe N = 2 case we follow Hiibner (1992). Actually Dittmann (1999a) has provided an expression valid for all
N, which is explicit in the sense that it depends only on matrix invariants, and does not require diagonalization
of any matrix.
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Figure 9.2. Left: a faithful illustration of the Hilbert—Schmidt geometry of a rebit
(a flat disc, compare with Figure 8.2). Right: the same for its Bures geometry (a
round hemisphere). Above the rebit we show exactly how it sits in the positive
cone. On the right the latter appears very distorted, because we have adapted its
coordinates to the Bures geometry.

and expand to second order. The final result, for the Bures line element squared, is

(xdx + ydy + zdz — tdr)?
Z_x2_y_g .

(9.50)

1
ds? = ym (dx2 +dy? +dz> +

In the particular case that ¢ is constant, so that we are dealing with matrices of
constant trace, this is recognizable as the metric on the upper hemisphere of the
3-sphere, of radius 1/24/7, in the orthographic coordinates introduced in Eq. (3.2).
Indeed we can introduce the coordinates

XO=r2—x2—y2-22, X'=x, X’=y, X’=z. (951

Then the Bures metric on the positive cone is
1
ds? = E(dXOdXO +dxldx!' +dx%dx? +dx3dx?), (9.52)

where

Trp =1 = /(X%)2 4+ (X1 + (X2)2 + (X3)? . (9.53)

Only the region for which X° > 0 is relevant.

Letus setr = 1 for the remainder of this section, so that we deal with matrices of
unit trace. We see that, according to the Bures metric, they form a hemisphere of a
3-sphere of radius 1/2; the pure states sit at its equator, which is a 2-sphere isometric
with CP!. Unlike a 2-sphere in Euclidean space, the equator of the 3-sphere is a
totally geodesic surface — by definition, a surface such that a geodesic within the
surface itself is also a geodesic in the embedding space. We can draw a picture
(Figure 9.2) that summarizes the Bures geometry of the qubit. Note that the set of
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diagonal density matrices appears as a semicircle in this picture, not as the quarter
circle that we had in Figure 2.13. Actually, because this set is one-dimensional, the
intrinsic geometries on the two circle segments are the same, the length is /2 in
both cases, and there is no contradiction.

Finally, the qubit case is instructive, but it is also quite misleading in some
respects — in particular the case N = 2 is especially simple to deal with.

9.6 Further properties of the Bures metric

When N > 2itdoes not really pay to proceed as directly as we did for the qubit, but
the fibre bundle origins of the Bures metric mean that much can be learned about
it with indirect means. First, what is a geodesic with respect to the Bures metric?
The answer is that it is a projection of a geodesic in the unit sphere embedded in the
bundle space HS, with the added condition that the latter geodesic must be chosen
to be orthogonal to the fibres of the bundle. We know what a geodesic on a sphere
looks like, namely (Section 3.1)

A(s) = A(0)coss + A(0)sins , (9.54)
where
TrA(0)A'(0) = TrA(0)AT(0) = 1, Tr(A)AT(0) + A(0)AT(0)) =0. (9.55)

The second equation just says that the tangent vector of the curve is orthogonal to
the vector defining the starting point on the sphere. In addition the tangent vector
must be horizontal; according to Eq. (9.24) this means that we must have

AT0)A©0) = AT(0)A(0) . (9.56)

That is all. An interesting observation — we will see why in a moment — is that if we
start the geodesic in a point where A, and hence p = AA?, is block diagonal, and if
the tangent vector A at that point is block diagonal too, then the entire geodesic will
consist of block diagonal matrices. The conclusion is that block diagonal density
matrices form totally geodesic submanifolds in the space of density matrices.

Now let us consider a geodesic that joins the density matrices p; and p,, and let
them be projections of A; and A,, respectively. The horizontality condition says
that A{Az is a Hermitian operator, and in fact a positive operator if the geodesic
does not hit the boundary in between. From this one may deduce that

1 1
Ay = ——//p1pa/p1 — Al . 9.57)
2 N 102 l\/ﬁ 1

The operator front of A; is known as the geometric mean of pf] and p;; see
Section 12.1. It can also be proved that the geodesic will bounce N times from the
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boundary of M), before closing on itself (Uhlmann, 1995). The overall conclusion
is that we do have control over geodesics and geodesic distances with respect to
the Bures metric.

Concerning symmetries, it is known that any bijective transformation of the set
of density matrices into itself which conserves the Bures distance (or angle) is
implemented by a unitary or an anti-unitary operation (Molndar, 2001). This result
is a generalization of Wigner’s theorem concerning the transformations of pure
states that preserve the transition probabilities (see Section 4.5).

For further insight we turn to a cone of density matrices in M®, having a pure
state for its apex and a Bloch ball of density matrices with orthogonal support for
its base. This can be coordinatized as

PG 0 t(14+2)/2 tx—iy)/2 0
r= [ po 1— t] =|tx+iy/2 (1-2/2 0 |. (9.58)
0 0 1—¢

This is a submanifold of block diagonal matrices. It is also simple enough so that
we can proceed directly, as in the Section 9.5. Doing so, we find that the metric is

dr? t
+ -d’Q, (9.59)

ds? = ———
411 —1) 4

where d?<2 is the metric on the unit 3-sphere (in orthographic coordinates, and only
one half of the 3-sphere is relevant). As ¢t — 0, that is as we approach the tip of our
cone, the radii of the 3-spheres shrink, and their intrinsic curvature diverges. This
does not sound very dramatic, but in fact it is, because by our previous argument
about block diagonal matrices these 3-hemispheres are totally geodesic submani-
folds of the space of density matrices. Now it is a fact from differential geometry
that if the intrinsic curvature of a totally geodesic submanifold diverges, then the
curvature of the entire manifold also diverges. (More precisely, the sectional cur-
vatures, evaluated for 2-planes that are tangent to the totally geodesic submanifold,
will agree. We hope that this statement sounds plausible, even though we will not
explain it further.) The conclusion is that M®, equipped with the Bures metric, has
conical curvature singularities at the pure states. The general picture is as follows
(Dittmann, 1995):

Theorem 9.3 (Dittmann’s) For N > 2, the Bures metric is everywhere well
defined on submanifolds of density matrices with constant rank. However, the
sectional curvature of the entire space diverges in the neighbourhood of any
submanifold of rank less than N — 1.

For N > 2, this means that it is impossible to embed MM into a Riemannian
manifold of the same dimension, such that the restriction of the embedding to
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Figure 9.3. The eigenvalue simplex for N = 3. The curves consist of points
equidistant from the pure state (1, 0, 0) with respect to (a) Hilbert—Schmidt dis-
tance, (b) Bures distance, (c) trace distance (Section 13.2) and (d) Monge distance
(Section 7.7).

submanifolds of density matrices of constant rank is isometric. The problem does
not arise for the special case N = 2, and indeed we have seen that M® can be
embedded into the 3-sphere. Some further facts are known. Thus, the curvature
scalar R assumes its global minimum at the maximally mixed state p, = 1/N. It
is then natural to conjecture that the scalar curvature is monotone, in the sense that
if p; < po, that is if p; is majorized by p,, then R(p;) < R(p,). However, this is
not true.'?

This is perhaps a little disappointing. To recover our spirits, let us look at the
Bures distance in two cases where it is very easy to compute. The Bures distance
to the maximally mixed state is

2
Di(p, ps) = 1+ Trp — ﬁ Tr/p . (9.60)

To compute this it is enough to diagonalize p. The distance from an arbitrary density
matrix p to a pure state is even easier to compute, and is given by a single matrix
element of p. Figure 9.3 shows where density matrices equidistant to a pure state
lie on the probability simplex, for some of the metrics that we have considered.
In particular, the distance between a face and its complementary, opposite face —
that is, between density matrices of orthogonal support — is constant and maximal,
when the Bures metric is used.

12 The result here is due to Dittmann (1999b), who also found a counter-example to the conjecture (but did not
publish it, as far as we know).
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We are not done with fidelity and the Bures metric. We will come back to these
things in Section 13.3, and place them in a wider context in Section 14.1. This
context is — as we have hinted already — that of statistical distinguishability and
monotonicity under appropriate stochastic maps. Precisely what is appropriate here
will be made clear in the next two chapters.

Problems

Problem 9.1 Check that:

(@ AQR(B+(C)=A®B+AQRC;

(b) (A® B)(C ® D) = (AC ® BD);

(c) Tr(A ® B) =Tr(B ® A) = (TrA)(TrB);
(d) det (A ® B) = (detA)M(detB)";

(e) (A® B = AT @ BT;

where N and M denote sizes of A and B, respectively (Horn and Johnson, 1985,
1991).

Problem 9.2 Define the Hadamard product C = A o B of two matrices as the
matrix whose elements are the products of the corresponding elements of A and B,
Cij = AijB;j. Show that (A® B) o (C® D) = (Ao C)® (B o D).

Problem 9.3 Consider any matrix of size 4 written in standard basis in terms of

four 2 x 2 blocks
A B
G = [C D:| , (9.61)

and two local unitary operations Vi = 1 @ Uand V, = U ® 1, where U is arbitrary
unitary matrix of size 2. Compute G; = V| GVIT and G, = VQGV; .

Problem 9.4 Let A and B be square matrices with eigenvalues «; and f;, respec-
tively. Find the spectrum of C = A ® B. Use this to prove that C' = B ® A is
unitarily similar to C, and also that C is positive definite whenever A and B are
positive definite.

Problem 9.5 Show that the singular values of a tensor product satisfy the relation
{sv(A ® B)} = {sv(A)} x {sv(B)}.

Problem 9.6 Let p be a density matrix and A and B denote any matrices of the
same size. Show that |[Tr(pAB)|?> < Tr(pAAT) x Tr(pBBY).
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Quantum operations

There is no measurement problem. Bohr cleared that up.
Stig Stenholm

So far we have described the space of quantum states. Now we will allow some
action in this space: we shall be concerned with quantum dynamics. At first sight
this seems to be two entirely different issues — it is one thing to describe a given
space and another to characterize the way you can travel in it — but we will gradually
reveal an intricate link between them.

In this chapter we draw on results from the research area known as open quantum
systems. Our aim is to understand the quantum analogue of the classical stochastic
maps, because with their help we reach a better understanding of the structure of
the space of states. Stochastic maps can also be used to provide a kind of strobo-
scopic time evolution; much of the research on open quantum systems is devoted
to understanding how continuous time evolution takes place, but for this we have
to refer to the literature.'

10.1 Measurements and POVMs

Throughout, the system of interest is described by a Hilbert space H of dimen-
sion N. All quantum operations can be constructed by composing four kinds of
transformations.

The dynamics of an isolated quantum system are given by i) unitary transfor-
mations. But quantum theory for open systems admits non-unitary processes as
well. We can ii) extend the system and define a new state in an extended Hilbert

! Pioneering results in this direction were obtained by Gorini, Kossakowski and Sudarshan (1976) and by Lindblad
(1976). Good books on the subject include Alicki and Lendi (1987), Streater (1995), Ingarden, Kossakowski
and Ohya (1997), Breuer and Petruccione (2002) and Alicki and Fannes (2001).

251
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space H = Hy ® Hk,
p—> p =pRo. (10.1)

The auxiliary system is described by a Hilbert space Hx of dimension K (as yet
unrelated to V). It represents an environment, and is often referred to as the ancilla.?
The reverse of this operation is given by the iii) partial trace and leads to areduction
of the size of the Hilbert space,

p — p =Trgp sothat Trx(p o) = p. (10.2)

This corresponds to discarding the redundant information concerning the fate of
the ancilla. Transformations that can be achieved by a combination of these three
kinds of transformation are known as deterministic or proper quantum operations.

Finally, we have the iv) selective measurement, in which a concrete result of a
measurement is specified. This is called a probabilistic quantum operation.

Let us see where we get using tranformations of the first three kinds. Let us
assume that the ancilla starts out in a pure state |v), while the system we are
analysing starts out in the state p. The entire system including the ancilla remains
isolated and evolves in a unitary fashion. Adding the ancilla to the system (ii),
evolving the combined system unitarily (i), and tracing out the ancilla at the end
(iii), we find that the state p is changed to

K
P =Tre[U(p @ MU =D lumpwiUle) . (103)
n=1
where {| ”>}§=1 is a basis in the Hilbert space of the ancilla — and we use Greek
letters to denote its states. We can then define a set of operators in the Hilbert space
of the original system through

A, = (u|U) . (10.4)
We observe that
K 1
Do ALA =Y U (U ) = pUTU) =Ty, (105)
pn=1 Iz

where 1 denotes the unit operator in the Hilbert space of the system of interest.
In conclusion, first we assumed that an isolated quantum system evolves through
a unitary transformation,

o —> p =UpU', UU=1. (10.6)

2 In Latin an ancilla is a maidservant. This not 100 per cent politically correct expression was imported to quantum
mechanics by Helstrom (1976) and has become widely accepted.
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By allowing ourselves to add an ancilla, later removed by a partial trace, we were
led to admit operations of the form

K K
p— =Y AipAl. Y Ala=1, (10.7)
i=1 i=1
where we dropped the subscript on the unit operator and switched to Latin indices,
since we are not interested in the environment per se. Formally, this is the operator
sum representation of a completely positive map. Although a rather special assump-
tion was slipped in — a kind of Stofizahlansatz whereby the combined system started
out in a product state — we will eventually adopt this expression as the most general
quantum operation that we are willing to consider.

The process of quantum measurement remains somewhat enigmatic. Here we
simply accept without proof a postulate concerning the collapse of the wave func-
tion. It has the virtue of generality, not of preciseness:

Measurement postulate. Let the space of possible measurement outcomes
consist of k elements, related to k measurement operators A;, which satisfy
the completeness relation

k
> ala = 1. (10.8)
i=1

The quantum measurement performed on the initial state p produces the ith
outcome with probability p; and transforms p into p; according to

A;pAl

pi= ———  with pi = Tr(A;pA]) . (10.9)
Tr(AipA;)

p —

The probabilities are positive and sum to unity due to the completeness rela-
tion. Such measurements, called selective since concrete results labelled by i are
recorded, cannot be obtained by the transformations (i)—(iii) and form another class
of transformations (iv) on their own. If no selection is made based on the outcome
of the measurement, the initial state is transformed into a convex combination of
all possible outcomes — namely that given by Eq. (10.7).

Note that the ‘collapse’ happens in the statistical description that we are using.
Similar ‘collapses’ occur also in classical probability theory. Suppose that we know
that either Alice or Bob is in jail, but not both. Let the probability that Bob is
in jail be p. If this statement is accepted as meaningful, we find that there is a
collapse of the probability distribution associated to Bob as soon as we run into
Alice in the cafeteria — even though nothing happened to Bob. This is not a real
philosophical difficulty, but the quantum case is subtler. Classically the pure states



254 Quantum operations

are safe from collapse, but in quantum mechanics there are no safe havens. Also,
a classical probability distribution P(X) can collapse to a conditional probability
distribution P(X|Y;), but if no selection according to the outcomes Y; is made
classical probability theory informs us that

> P(XIY) P(Y)) = P(X). (10.10)

Thus nothing happens to the probability distribution in a non-selective measure-
ment, while the quantum state is severely affected also in this case. A non-selective
quantum measurement is described by Eq. (10.7), and this is a mixed state even
if the initial state p is pure. In general one cannot receive any information about
the fate of a quantum system without performing a measurement that perturbs its
unitary time evolution.

In a projective measurement the measurement operators are orthogonal projec-
tors, so A; = P, = Aj, and P;P; =§;;P; fori, j =1,..., N. A projective mea-
surement is described by an observable — an Hermitian operator O. Possible out-
comes of the measurement are labelled by the eigenvalues of O, which for now
we assume to be non-degenerate. Using the spectral decomposition O = )", A; P;
we obtain a set of orthogonal measurement operators P; = |e;)(e;|, satisfying the
completeness relation (10.8). In a non-selective projective measurement, the initial
state is transformed into the mixture

N
p— p =) PpP. (10.11)
i=1
The state has been forced to commute with O.
In a selective projective measurement the outcome labelled by A; occurs with
probability p;; the initial state is transformed as

PipP;

= W s Where pPi = Tr(P,pP,) = Tr([’lp) . (1012)

o= pi

The expectation value of the observable reads

N N
(0) =Y piri=Y_NTrPip =Tr(Op) . (10.13)
i=1 i=1
A key feature of projective measurements is that they are repeatable, in the sense
that the state in Eq. (10.12) remains the same — and gives the same outcome — if
the measurement is repeated.’

3 Projective measurements are also called Liiders—von Neumann measurements (of the first kind), because of the
contributions by von Neumann (1955) and Liiders (1951).
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Most measurements are not repeatable. The formalism deals with this by relaxing
the orthogonality constraint on the measurement operators. This leads to Positive
Operator Valued Measures (POVM), which are defined by any partition of the
identity operator into a set of k positive operators E; acting on an N-dimensional
Hilbert space H . They satisfy

E;=1 and E, =E/, E >0, i=1,... k (10.14)
i=1

A POVM measurement applied to the state p produces the ith outcome with prob-
ability p; = TrE; p. Note that the elements of the POVM - the operators E; — need
not commute. The name POVM refers to any set of operators satisfying (10.14),
and suggests correctly that the discrete sum may be replaced by an integral over
a continuous index set, thus defining a measure in the space of positive operators.
Indeed the coherent states resolution of unity (6.7) is the paradigmatic example,
yielding the Husimi Q-function as the resulting probability distribution. POVMs
fit into the general framework of the measurement postulate, since one may choose
E;, = AlTAi. Note however that the POVM does not determine the measurement
operators A; uniquely (except in the special case of a projective measurement).
Exactly what happens to the state when a measurement is made depends on how
the POVM is implemented in the laboratory.*

The definition of the POVM ensures that the probabilities p; = TrE; p sum to
unity, but the probability distribution that one obtains is a constrained one. (We came
across this phenomenon in Section 6.2, when we observed that the Q-function is
a very special probability distribution.) This is so because the POVM defines an
affine map from the set of density matrices M) to the probability simplex A_;.
To see this, use the Bloch vector parametrization

1
0= Nﬂ —1—2021:0% and E; =e¢e;o1 + Xa:eiaoa . (10.15)

Then an easy calculation yields

pi:TrE,»pzzze,-ara—f—eio. (10.16)
a

This is an affine map. Conversely, any affine map from M™ to A;_; defines a
POVM. We know from Section 1.1 that an affine map preserves convexity. Therefore
the resulting probability vector p must belong to a convex subset of the probability
simplex. For qubits M® is a ball. Therefore its image is an ellipsoid, degenerating

4 POVMs were introduced by Jauch and Piron (1967) and they were explored in depth in the books by Davies
(1976) and Holevo (1982). Holevo’s book is the best source of knowledge that one can imagine. For a more
recent discussion, see Peres and Terno (1998).
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1

Figure 10.1. Two informationally complete POVMs for a rebit; we show first a
realistic picture in the space of real Hermitian matrices, and then the affine map
from the rebit to the probability simplex.

to a line segment if the measurement is projective. Figure 10.1 illustrates the case
of real density matrices, for which we can draw the positive cone. For N > 2
illustration is no longer an easy matter.

A POVM is called informationally complete if the statistics of the POVM
uniquely determine the density matrix. This requires that the POVM has N2
elements — a projective measurement will not do. A POVM is called pure if each op-
erator E; is of rank one, so there exists a pure state |¢;) such that E; is proportional
to |¢;) (¢:|. An impure POVM can always be turned into a pure POVM by replacing
each operator E; by its spectral decomposition. Observe that a set of k pure states
|¢;) defines a pure POVM if and only if the maximally mixed state p,, = 1/N may
be decomposed as p, = Zf‘: 1 Pil®i) (@i, where { p;} form a suitable set of positive
coefficients. Indeed any ensemble of pure or mixed states representing p, defines
a POVM (Hughston et al., 1993). For any set of operators E; defining a POVM we
take quantum states p; = E;/TrE; and mix them with probabilities p; = TrE; /N
to obtain the maximally mixed state:

k k
Yopm=) yE=x =0 (10.17)

Conversely, any such ensemble of density matrices defines a POVM (see Fig-
ure 10.2).

Arguably the most famous of all POVMs is the one based on coherent states.
Assume that a classical phase space 2 has been used to construct a family of
coherent states, x €  — |x) € H. The POVM is given by the resolution of the
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(1000) —
(1000) (0100) "2 (0100) (0100)
Figure 10.2. Any POVM is equivalent to an ensemble representing the maximally
mixed state. For N = 4 p, is situated in the centre of the tetrahedron of diagonal

density matrices; (a) a pure POVM —in the picture a combination of four projectors
with weights 1/4, (b) and (c) unpure POVMs.

identity

f lx)(x|dx =1, (10.18)
Q

where dx is a natural measure on 2. Examples of this construction were given in
Chapter 6, and include the ‘canonical’ phase space where x = (¢, p). Any POVM
can be regarded as an affine map from the set of quantum states to a set of clas-
sical probability distributions; in this case the resulting probability distributions
are precisely those given by the Q-function. A discrete POVM can be obtained by
introducing a partition of phase space into cells,

Q=Q U ---UQ. (10.19)

This partition splits the integral into k terms and defines & positive operators E; that
sum to unity. They are not projection operators since the coherent states overlap,
and thus

Bi= [ acmi 2 [ o [ ayineiio = 2. (10.20)
Q; Q; Q;

Nevertheless they do provide a notion of localization in phase space; if the state is
p the particle will be registered in cell €2; with probability

p=TeEip) = [ o) ar= [ Q,wdr. (10.21)
i Qi
These ideas can be developed much further, so that one can indeed perform approx-
imate but simultaneous measurements of position and momentum.’

S A pioneering result is due to Arthurs and Kelly, Jr (1965); for more, see the books by Holevo (1982), Busch,
Lahti and Mittelstaedt (1991) and Leonhardt (1997).
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The final twist of the story is that POVM measurements are not only more general
than projective measurements, they are a special case of the latter too. Given any
pure POVM with k elements and a state o in a Hilbert space of dimension N, we
can find a state p ® po in a Hilbert space H ® H’ such that the statistics of the
original POVM measurement is exactly reproduced by a projective measurement
of p ® po. This statement is a consequence of Naimark’s theorem:

Theorem 10.1 (Naimark’s) Any POVM {E;} in the Hilbert space H can be dilated
to an orthogonal resolution of identity { P;} in a larger Hilbert space in such a way
that E; = I1P;I1, where T1 projects down to 'H.

For a proof, see Problem 10.1. The next idea is to choose a pure state py such that,
in a basis in which IT is diagonal,

0
p®po= [g—ﬁ] = TIp @ poll . (10.22)

It follows that TrP; p ® pg = TrP;Tlp ® poll = TrE; p.

We are left somewhat at a loss to say which notion of measurement is the fun-
damental one. Let us just observe that classical statistics contains the notion of
randomized experiments: equip an experimenter in an laboratory with a random
number generator and surround the laboratory with a black box. The experimeter
has a choice between different experiments, and will perform them with different
probabilites p;. It may not sound like a useful notion, but it is. We can view a POVM
measurement as a randomized experiment in which the source of randomness is a
quantum mechanical ancilla. Again the quantum case is more subtle than its clas-
sical counterpart; the set of all possible POVMs forms a convex set whose extreme
points include the projective measurements, but there are other extreme points as
well. The symmetric POVM shown in the upper panel in Figure 10.1, reinterpreted
as a POVM for a qubit, may serve as an example.

10.2 Algebraic detour: matrix reshaping and reshuffling

Before proceeding with our analysis of quantum operations, we will discuss some
simple algebraic transformations that one can perform on matrices. We also in-
troduce a notation that we sometimes find convenient for work in the composite
Hilbert space Hy ® H s, or in the Hilbert—Schmidt (HS) space of linear operators
Hus.

Consider a rectangular matrix A;;,i =1,...,M and j =1,..., N. The ma-
trix may be reshaped by putting its elements in lexicographical order (row after
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row)® into a vector dy of size M N,

ar=A;; where k=G(—-DN+j, i=1,....M, j=1,...N.
(10.23)

Conversely, any vector of length M N may be reshaped into a rectangular matrix.
The simplest example of such a vectorial notation for matrices reads

A A R
A = |: 1 12] <~ a = (A1, A, Ay, Ax). (10.24)
Ay Axp

The scalar product in Hilbert—Schmidt space (matrices of size N) now looks like
an ordinary scalar product between two vectors of size N2,

(A|B) = TrA'B = @*-b = (a|b) . (10.25)

Thus the Hilbert—Schmidt norm of a matrix is equal to the norm of the associated
vector, ||A|[}s = TrATA = |a|>.

Sometimes we will label a component of d by a;;. This vector of length M N may
be linearly transformed intoa” = Ca by amatrix C of size MN x M N .Itselements

may be denoted by Cyp withk, k' =1, ..., MN, but it is also convenient to use a

four index notation, Cmu where m,n =1,..., N while u,v =1, ..., M. In this
nv

notation the elements of the transposed matrix are C,, T =C s since the upper

pair of indices determines the row of the matrix, while the lower pair determines
its column. The matrix C may represent an operator acting in a composite space
‘H = Hy ® Huy. The tensor product of any two bases in both factors provides a
basis in H, so that

CVZ{,}' = (en ® f,L|C|e,, ® fi), (10.26)

where Latin indices refer to the first subsystem, H 4 = Hy, and Greek indices to the
second, H g = Hy,. For instance the elements of the identity operator 1y = 1y ®
1 are ﬂm p= = 8undyy. The trace of a matrix reads TrC = Cm/j,, where summation
over repeatmg indices is understood. The operation of partlal trace over the second
subsystem produces the matrix C4 = TrzC of size N, while tracing over the first
subsystem leads to an M x M matrix C® = Tr,C,

If C = A® B, then Cmp_ = Ay B),y. This form should not be confused with a
product of two matrices C= AB, the elements of which are given by a double sum

6 Some programs like MATLAB offer a built-in matrix command reshape, which performs such a task. Storing
matrix elements column after column leads to the anti-lexicographical order.
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over repeating indices, Cmy = Amu By, . Observe that the standard product of three
nv A nv
matrices may be rewritten by means of an object @,

ABC = ®B where ® = AQCT. (10.28)

This is a telegraphic notation; since @ is a linear map acting on B we might write
®(B) on the right-hand side, and the left-hand side could be written as A - B - C
to emphasize that matrix multiplication is being used there. Equation (10.28) is a
concise way of saying all this. It is unambiguous once we know the nature of the
objects that appear in it.

Consider a unitary matrix U of size N2, Unitarity of U implies thatits N? columns
ar=Uypk,i=1,...N? reshaped into square N x N matrices Ay as in (10.24),
form an orthonormal basis in Hys, since (Ai|A;) = TrAZA j = Oj. Alternatively,
in a double index notation with k = (m — 1)N + pn and j = (n — 1)N + v this
orthogonality relation reads (A™*|A"") = §,,,6,.». Note that in general the matrices
A} are not unitary.

Let X denote an arbitrary matrix of size N2. It may be represented as a double
(quadruple) sum,

N2 N?
1X) = )Y CulAd) @ 14;) = CnulA™) @ |A™) (10.29)
k=1 j=1

where Cy; = Tr((Ax ® A j)TX ). The matrix X may be considered as a vector in the
composite Hilbert-Schmidt space Hus ® Hps, so applying its Schmidt decompo-
sition (9.8) we arrive at

N2
1X) = Y VA ®147) (10.30)
k=1

where /), are the singular values of C, that is the square roots of the non-negative
eigenvalues of CCT. The sum of their squares is determined by the norm of the
operator, Z,iv; M= Tr(XXT) = || X[}

Since the Schmidt coefficients do not depend on the initial basis, let us choose
the basis in Hyg obtained from the identity matrix, U = 1 of size N2, by reshaping
its columns. Then each of the N2 basis matrices of size N consists of only one non-
zero element which equals unity, A, = A™* = |m)(u|, wherek = N(m — 1) + .
Their tensor products form an orthonormal basis in Hys ® Hps and allow us to
represent an arbitrary matrix X in the form (10.29). In this case the matrix of the
coefficients C has a particularly simple form, Cr% =Tr[(A™™ ® A")X] = X’ﬁl’,"
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This particular reordering of a matrix deserves a name, so we shall write XX =
C(X) and call it reshuffling.” Using this notion our findings may be summarized in
the following lemma:

Lemma 10.1 (Operator Schmidt decomposition) The Schmidt coefficients of an
operator X acting on a bipartite Hilbert space are equal to the squared singular
values of the reshuffled matrix, X ®.

More precisely, the Schmidt decomposition (10.30) of an operator X of size M N
may be supplemented by a set of three equations

M, = {SV(XR)}2 :  eigenvalues of (XF)IX%
|A}) : reshaped eigenvectors of (X)) X% | (10.31)
|A}) : reshaped eigenvectors of XX(XF)f

where SV denotes singular values and we have assumed that N < M. The initial
basis is transformed by a local unitary transformation W, ® W,, where W, and W,
are matrices of eigenvectors of matrices (X®)T X% and XR(X®)f, respectively. If
and only if the rank of X®(X*)! equals one, the operator can be factorized into a
product form, X = X; ® X,, where X| = Tr, X and X, = Tr| X.

To get a better feeling for the reshuffling transformation, observe that reshaping
each row of an initially square matrix X of size M N according to Eq. (10.23) into
arectangular M x N submatrix, and placing it in lexicographical order block after
block, one produces the reshuffled matrix X®. Let us illustrate this procedure for
the simplest case N = M = 2, in which any row of the matrix X is reshaped into
a2 x 2 matrix

Xn X]z ‘ X21 X22

X3 X X X
Cy = Xf = |2 14‘ . (10.32)

X5 X3 Xy Xp
X33 X34 Xz Xy

In the symmetric case with M = N, N3 elements of X (typeset boldface) do not
change position during reshuffling, while the remaining N* — N3 elements do.
Thus the space of complex matrices with the reshuffling symmetry X = X is
2N* — 2(N* — N?) = 2N3 dimensional.

The operation of reshuffling can be defined in an alternative way, say the re-
shaping of the matrix A from (10.23) could be performed column after column

7 In general one may reshuffle square matrices, if their size K is not prime. The symbol X ¥ has a unique meaning if
a concrete decomposition of the size K = M N is specified. If M # N the matrix X ¥ isa N> x M? rectangular
matrix. Since (X ®)® = X we see that one may also reshuffle rectangular matrices, provided both dimensions
are squares of natural numbers. Similar reorderings of matrices were considered by Oxenrider and Hill (1985)
and Yopp and Hill (2000).
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into a vector a’. In the four indices notation introduced above the two reshuffling
operations take the form

Xip = X and Xp, = Xou . (10.33)
nv nv

Two reshuffled matrices are equivalent up to permutation of rows and columns and
transposition, so the singular values of XX and X* are equal.

For comparison we provide analogous formulae showing the action of partial
transposition: with respect to the first subsystem, T4 = T ® 1 and with respect to
the second, T = 1Q T,

Xm0

mu
nv

= Xuu and  X,! = Xmv . (10.34)
my ny np

Note that all these operations consist of exchanging a given pair of indices. However,

while partial transposition (10.34) preserves Hermiticity, the reshuffling (10.33)

does not. There is a related swap transformation among the two subsystems, X5 =

ny
Xum, the action of which consists in relabelling certain rows (and columns) of the
vn
matrix, so its spectrum remains preserved. Note that foratensor product X =Y ® Z
one has X5 = Z ® Y. Alternatively, define a SWAP operator

N

S = > i )il sothat Suwu =8 - (10.35)
nv
i, j=1

Observe that S is symmetric, Hermitian, and unitary and the identity X5 = SX§
holds. In full analogy to partial transposition we use also two operations of partial
swap, X' = SX and X% = XS§.

All the transformations listed in Table 10.1 are involutions, since performed
twice they are equal to identity. It is not difficult to find relations between them,
for example X5 = [(X®)4]R = [(X®)T5]R . Since X® = [(X®)5]T = [(X®)T7]5,
while X2 = (X™)T and X5 = (X%)5, thus the spectra and singular val-
ues of the reshuffled (partially transposed, partially swapped) matrices do not
depend on the way, each operation has been performed, that is eig(X%®) =
eig(X®) and SV(XF)=SV(XF), while eig(X") = eig(X*) and SV(X%) =
SV(X*5).

10.3 Positive and completely positive maps

Thus equipped, we return to physics. We will use the notation of Section 10.2 freely,
so an alternative title for this section is ‘Complete positivity as an exercise in index
juggling’. Let p € M™) be a density matrix acting on an N-dimensional Hilbert
space. What conditions need to be fulfilled by a map & : MW — MW if it is
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Table 10.1. Reorderings of a matrix X representing an operator which acts on a
composite Hilbert space. The arrows denote the indices exchanged.

Preserves Preserves

Transformation Definition Symbol Hermiticity spectrum

transposition xI w=Xnm 3 yes yes
ny miL

partial X ,ﬁ}L = Xnu o yes no
nv mv

.. T

transpositions X m‘; = Xmv $ yes no
nv np

reshuffling X = X /! no no

i

nv

reshuffling ’ XK, =Xw N no no
nv nm

<>

swap X3 u = Xum <~ yes yes

nv vn
. <~

partial X ,S,,'H = Xum . no no
nv nv

swaps X ,ffu = Xmp < no no
nv vn

to represent a physical operation? One class of maps that we will admit are those
given in Eq. (10.7). We will now argue that nothing else is needed.

Our first requirement is that the map should be a linear one. It is always hard to
argue for linearity, but at this level linearity is also hard to avoid, since we do not
want the image of p to depend on the way in which p is presented as a mixture of
pure states — the entire probabilistic structure of the theory is at stake here.® We are
thus led to postulate the existence of a linear superoperator @,

pl = Pp or puu= Pmupu . (10.36)

Summation over repeated indices is understood throughout this section. Inhomo-
geneous maps p’ = ®p + o are automatically included, since

CDIZM Py + Omu = (qDl:ll# + Ump,&w)pnv = q);nu Pnv (1037)
v v nv

due to Trp = 1. We deal with affine maps of density matrices.
The map should take density matrices to density matrices. This means that when-
ever p is (i) Hermitian, (ii) of unit trace, and (iii) positive, its image o’ must share

8 Non-linear quantum mechanics is actually a lively field of research; see Mielnik (2001) and references therein.
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these properties.® These three conditions impose three constraints on the matrix ®:

@ =) & Owu=0d, so =5  (10.38)
nv vn
(ii) Trp'=1 < DPrmm = 8y (10.39)
(iii) o =0 & Ouup,, >0 whenp >0. (10.40)
ny
As they stand, these conditions are not very illuminating.
The meaning of our three conditions becomes much clearer if we reshuffle ®
according to (10.33) and define the dynamical matrix 10

Dy = ®®  sothat Dy = Py . (10.41)

nv
The dynamical matrix D¢ uniquely determines the map ®. It obeys
Dyoypy =aDg +bDy , (10.42)

that is to say it is a linear function of the map.
In terms of the dynamical matrix our three conditions become

) o =@) & Dm=D), so De=DL. (1043)

v i
(ii) Trp'=1 < Dimn = Sy (10.44)
(iii) >0 & Dmpn,, >0 whenp>0. (10.45)

Condition (i) holds if and only if D¢ is Hermitian. Condition (ii) also takes a familiar
form — the partial trace with respect to the first subsystem is the unit operator for
the second subsystem:

Only condition (iii), for positivity, requires further unravelling.

The map is said to be a positive map if it takes positive matrices to positive
matrices. To see if a map is positive, we must test if condition (iii) holds. Let us first
assume that the original density matrix is a pure state, so that p,, = z,2}. Then its
image will be positive if and only if, for all vectors x,,,

/
X OppXys = XmZn Dm x,z, > 0. (10.47)

This means that the dynamical matrix itself must be positive when it acts on prod-
uct states in H 2. This property is called block-positivity. We have arrived at the
following (Jamiolkowski, 1972):

9 Any map ®p can be normalized according to p — <I>p/Tr[<I>p]. It is sometimes convenient to work with
unnormalized maps, but the a-posteriori normalization procedure may spoil linearity.

10 This concept was introduced by Sudarshan, Mathews and Rau (1961), and even earlier (in the mathematics
literature) by Schatten (1950).
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Theorem 10.2 (Jamiolkowski’s theorem) A linear map ® is positive if and only
if the corresponding dynamical matrix Dy is block-positive.

The converse holds since condition (10.47) is strong enough to ensure that condition
(10.45) holds for all mixed states p as well.

Interestingly, the condition for positivity has not only one but two drawbacks.
First, it is difficult to work with. Second, it is not enough from a physical point
of view. Any quantum state p may be extended by an ancilla to a state p @ o
of a larger composite system. The mere possibility that an ancilla may be added
requires us to check that the map ® ® 7 is positive as well. Since the map leaves the
ancilla unaffected this may seem like a foregone conclusion. Classically it is so, but
quantum mechanically it is not. Let us state this condition precisely: a map @ is said
to be completely positive if and only if for an arbitrary K-dimensional extension

Hy > Hy ® Hx themap & ® 1g is positive. (10.48)

This is our final condition on a physical map.!!

In order to see what the condition of complete positivity says about the dynamical
matrix we will backtrack a little, and introduce a canonical form for the latter. Since
the dynamical matrix is an Hermitian matrix acting on H y2, it admits a spectral
decomposition

r N2
Dy = Z;d,- %) (x| sothat Dy = Z;di Konn Koo - (10.49)

The eigenvalues d; are real, and the notation emphasizes that the matrices /. are
(reshaped) vectors in H y2.

Now we are in a position to investigate the conditions that ensure that the map
® ® 1 preserves positivity when it acts on matrices in HS = H ® H’. We pick an
arbitrary vector z,,,y in HS, and act with our map on the corresponding pure state:

/ _ ko * _ i i *
Pmm'uw = (b’gff 8m:ﬂ,,/ Znn' Ty = D’ﬁ"}l Znm' Ty = Zdt anznm’(X;wZvM’) .
nv i
(10.50)

Then we pick another arbitrary vector x,,,,, and test whether o’ is a positive operator:

I * i 2
Xmm! pmm’u;ﬂ xu;u = Zdl |Xyl,mxmn’znm’| > 0. (1051)
i

This must hold for arbitrary x,,, and z,,,, and therefore all the eigenvalues d; must
be positive (or zero). In this way we have arrived at Choi’s theorem:

! The mathematical importance of complete positivity was first noted by Stinespring (1955); its importance in
quantum theory was emphasized by Kraus (1971), Accardi (1976) and Lindblad (1976).
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Theorem 10.3 (Choi’s) A linear map ® is completely positive if and only if the
corresponding dynamical matrix D is positive.

There is some fine print. If condition (10.48) holds for a fixed K only, the map
is said to be K-positive. The map will be completely positive if and only if it is
N-positive — which is the condition that we actually investigated.'?

It is striking that we obtain such a simple result when we strengthen the condition
on the map from positivity to complete positivity. The set of completely positive
maps is isomorphic to the set of positive matrices Dg of size N2. When the map is
also trace preserving we add the extra condition (10.46), which implies that TrDg =
N. We can therefore think of the set of trace preserving completely positive maps as
a subset of the set of density matrices in H 2, albeit with an unusual normalization.
This analogy will be further pursued in Chapter 11, where (for reasons that will
become clear later) we will also occupy ourselves with understanding the way in
which the set of completely positive maps forms a proper subset of the set of all
positive maps.

The dynamical matrix is positive if and only if it can be written in the form

Doy = Z A (Al sothat Dy = ZA;mAjw, (10.52)
1 1

where the vectors A; are arbitrary to an extent given by Schrodinger’s mixture
theorem (see Section 8.4). In this way we obtain an alternative characterization of
completely positive maps. They are the maps that can be written in the operator
sum representation:

Theorem 10.4 (Operator sum representation) A linear map ® is completely
positive if and only if it is of the form

p— p = ZA,-ij . (10.53)
i

This is also known as the Kraus or Stinespring form, since its existence follows
from the Stinespring dilation theorem.'> The operators A; are known as Kraus
operators. The map will be trace preserving if and only if condition (10.44) holds,
which translates itself to

dAlA =y (10.54)

12 <Choi’s theorem’ is theorem 2 in Choi (1975a). Theorem 1 (the existence of the operator sum representation)
and theorem 5 follow below. The paper contains no theorems 3 or 4.

13 In physics the operator sum representation was introduced by Kraus (1971), based on an earlier (somewhat
more abstract) theorem by Stinespring (1955), and independently by Sudarshan et al. (1961). See also Kraus
(1983) and Evans (1984).
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We have recovered the class of operations that were introduced in Eq. (10.7), but
our new point of view has led us to the conclusion that this is the most general
class that we need to consider. Trace preserving completely positive maps go under
various names: deterministic or proper quantum operations, quantum channels, or
stochastic maps. They are the sought for analogue of classical stochastic maps.

The convex set of proper quantum operations is denoted CPy. To find its dimen-
sion we note that the dynamical matrices belong to the positive cone in the space
of Hermitian matrices of size N2, which has dimension N*; the dynamical matrix
corresponds to a trace preserving map if only if its partial trace (10.46) is the unit
operator, so it is subject to N2 conditions. Hence the dimension of CPy equals
N* — N2

Since the operator sum representation does not determine the Kraus operators
uniquely we would like to bring it to a canonical form. The problem is quite simi-
lar to that of introducing a canonical form for a density matrix — in both cases,
the solution is to present an Hermitian matrix as a mixture of its eigenstates.
Such a decomposition of the dynamical matrix was given in Eq. (10.49). A set of
canonical Kraus operators can be obtained by setting A; = +/d; x;. The following
results:

Theorem 10.5 (Canonical Kraus form) A completely positive map ® : M®) —
MW can be represented as

r<nN? r
p— o =Y dixipxl =) AipAl, (10.55)
i=1 f
where
TrAlA; = Jdid; (xilx)) = di 8 - (10.56)

If the map is also trace preserving then
YAlai =1y = Yd=N. (10.57)
i
If Dy is non-degenerate the canonical form is unique up to phase choices for the
Kraus operators. The Kraus rank of the map is the number of Kraus operators that

appear in the canonical form, and equals the rank » of the dynamical matrix.
The operator sum representation can be written

®=> A®A =) dxex (10.58)
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system + environment

a) b)
K p.®0 U(P?(S)UT environment
Mg o, o,
d=NK*-1 : _— 18]
A R
; P=Tr(U(pgo)u")

principal system

principal system

Figure 10.3. Quantum operations represented by (a) unitary operator U of size
NK in an enlarged system including the environment, (b) black box picture.

The CP map can be described in the notation of Eq. (10.28), and the operator sum
representation may be considered as a Schmidt decomposition (10.30) of @, with
Schmidt coefficients A; = d?.

10.4 Environmental representations

We began this chapter by adding an ancilla (in the state o) to the system, evolving
the composite system unitarily, and then removing the ancilla through a partial
trace at the end. This led us to the environmental representation of the map @, that
is to

o> p = Trenv[U(p@m)UT]; (10.59)

see Figure 10.3. We showed that the resulting map can be written in the Kraus
form, and now we know that this means that it is a completely positive map.
What was missing from the argument was a proof that any CP map admits an
environmental representation, and indeed one in which the ancilla starts out in a
pure state ¢ = |v)(v]. This we will now supply.'*

We are given a set of K Kraus operators A, (equipped with Greek indices because
we use such letters to denote states of the ancilla). Due to the completeness relation
(10.54) we can regard them as defining N orthogonal columns in a matrix U with
N K rows,

Al = (m, u|U|n, v) = U;% & A= {(ulUl) . (10.60)

14 Originally this was noted by Arveson (1969) and Lindblad (1975).
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Here v is fixed, but we can always find an additional set of columns that turns
U into a unitary matrix of size NK. By construction then, for an ancilla of
dimension K,

K K
P = Tren| U0 ® ) (] UT]ZZMIUIV VUt = )" Aupal, .
(10.61)

This is the Kraus form, since the operators A, satisfy the completeness relation

K K
D ALAL =Y U (U ) = wUTUv) =Ty . (10.62)
=1 n=l1

Note that the ‘extra’ columns that we added to the matrix U do not influence the
quantum operation in any way.

Although we may choose an ancilla that starts out in a pure state, we do not
have to do it. If the initial state of the environment in the representation (10.59)
is a mixture o = ) | _, g,|v)(v|, we obtain an operator sum representation with
rK terms,

r rkK
p =0 =T [U(p® Y auln)0)UT] =3 Aipa] (10.63)
v=1 =1

where A; = \/q,(u|Ulv) and ] = u + v(K —1).

If the initial state of the ancilla is pure the dimension of its Hilbert space needs
not exceed N2, the maximal number of Kraus operators required. More precisely
its dimension may be set equal to the Kraus rank of the map. If the environ-
ment is initially in a mixed state, its weights ¢, are needed to specify the op-
eration. Counting the number of parameters one could thus speculate that the
action of any quantum operation may be simulated by a coupling with a mixed
state of an environment of size N. However, this is not the case: already for
N = 2 there exist operations which have to be simulated with a three-dimensional
environment (Terhal, Chuang, DiVincenzo, Grassl and Smolin, 1999; Zalka
and Rieffel, 2002). The general question of the minimal size of He,, remains
open.

It is illuminating to discuss the special case in which the initial state of the
N-dimensional environment is maximally mixed, o = 15/N. The unitary ma-
trix U of size N2, defining the map, may be treated as a vector in the com-
posite Hilbert—Schmidt space His ® HEg and represented in its Schmidt form
U= Zl  VAilA) ® A, where A; are eigenvalues of (UR)TUR. Since the oper-
ators A (reshaped eigenvectors of (U Ry U RY form an orthonormal basis in Hpys,
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the procedure of partial tracing leads to a Kraus form with N2 terms:

1
P =up =Tra[Ulp & 1) U']

N2 N2
1

=Tren [ Y 2 Vs (Aind)) @ (NA;A',»'*)] (10.64)

i=1 j=1

([
= N IXI: )»,A ,pA i
The standard Kraus form is obtained by rescaling the operators, A; = /A;/NA;.
Operations for which there exist a unitary matrix U providing a representation
in the above form, we shall call unistochastic channels.”®> Note that the matrix U
is determined up to a local unitary matrix V of size N, in the sense that U and
U' = U(1y ® V) generate the same unistochastic map, &y = ®y.

One may consider analogous maps with an arbitrary size of the environment.
Their physical motivation is simple: not knowing anything about the environment
(apart from its dimensionality), one assumes that it is initially in the maximally
mixed state. In particular we define generalized,K -unistochastic maps 16 deter-
mined by a unitary matrix U(NX*!), in which the environment of size NX is
initially in the state 1y« /NX.

A debatable point remains, namely that the combined system started out in
the product state. This may look like a very special intitial condition. However,
in general it not so easy to present a well-defined procedure for how to assign
a state of the composite system, given only a state of the system of interest to
start with. Suppose p — w is such an assignment, where @ acts on the composite
Hilbert space. Ideally one wants the assignment map to obey three conditions: (i)
it preserves mixtures, (ii) Trepnv@ = p, and (iii) w is positive for all positive p. But
it is known!” that these conditions are so stringent that the only solution is of the
foomw=p®o.

10.5 Some spectral properties

A quantum operation P is uniquely characterized by its dynamical matrix, but the
spectra of these matrices are quite different. The dynamical matrix is Hermitian,

15 In analogy to classical transformations given by unistochastic matrices, p’ = T p, where T;; = |U;; 2.

16 Such operations were analysed in the context of quantum information processing (Knill and Laflamme, 1998;
Poulin, Blume—Kohout, Laflamme and Olivier, 2004), and, under the name ‘noisy maps’, when studying
reversible transformations from pure to mixed states (Horodecki, Horodecki and Oppenheim, 2003a). By
definition, 1-unistochastic maps are unistochastic.

17 See the exchange between Pechukas (1994) and Alicki (1995).
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Table 10.2. Quantum operations ® : M™N) — MW): properties of the
superoperator ® and the dynamical matrix Do = ®F. For the coarse graining
map consult Eq. (12.77) while for the entropy S see Section 12.6.

Matrices Superoperator ® = (Dg)R Dynamical matrix Dg
Hermiticity No Yes
Trace spectrum is symmetric Tr Dy = N
= TrdeR
Eigenvectors invariant states
(right) or transient corrections Kraus operators
lzil <1, weights of Kraus
Eigenvalues —In|z;| = decay rates operators, d; > 0
Unitary evolution ||d>U|\IZ{S = N? S(Dy)=0
Dy = (U ®U"*
Coarse graining [|Pcollfs = N S(Dcg) =In N
Complete depolarization ||<I>*||%{s =1 S(Dy) =2InN

but ® is not and its eigenvalues z; are complex. Let us order them according to their
moduli, |z1] > |z2] = -+ > |zny2| = 0. The operation ® sends the convex compact
set M) into itself. Therefore, due to the fixed-point theorem, the transformation
has a fixed point — an invariant state o; such that ®o; = ;. Thus z; = 1 and all
eigenvalues fulfil |z;| < 1, since otherwise the assumption that & is positive would
be violated. These spectral properties are similar to those enjoyed by classical
stochastic matrices (Section 2.1).

The trace preserving condition, applied to the equation ®o; = z;0;, implies that
if z; # 1 then Tro; = 0. If R = |z»| < 1, then the matrix @ is primitive (Marshall
and Olkin, 1979); under repeated applications of the map all states converge to the
invariant state ;. If @ is diagonalizable (its Jordan decomposition has no non-
trivial blocks, so that the number of right eigenvectors o; is equal to the size of the
matrix), then any initial state py may be expanded in the eigenbasis of P,

N> N?
0o = Zcia,- while p;, = ®'pg = Zcizl’-cr,- . (10.65)
i=1 i=1
Therefore py converges exponentially fast to the invariant state oy with a decay
rate not smaller than —In R and the right eigenstates o; for i > 2 play the role
of the transient traceless corrections to pg. The superoperator ¢ sends Hermitian
operators to Hermitian operators, pI =p1 = Ppy = Cb,og, SO

if &y =zx then ®xl =z, (10.66)



272 Quantum operations

and the spectrum of & (contained in the unit circle) is symmetric with respect to
the real axis. Thus the trace of & is real, as follows also from the hermiticity of
Dy = ®F. Using (10.58) we obtain'®

Trd = Y (TrA)(TrA) = Y [TrA;, (10.67)
i=1 i=1

equal to N2 for the identity map and to unity for a map given by the rescaled
identity matrix, D, = 1 y2/N. The latter map describes the completely depolarizing
channel @, which transforms any initial state p into the maximally mixed state,
@0 = p. = Ty/N.

Given a set of Kraus operators A; for a quantum operation ®, and any two unitary
matrices V and W of size N, the operators A; = V A; W will satisfy the relation
(10.54) and define the operation

p—pl = Dywp = ZA/ p ALt (ZA (WpwhAl )V' (10.68)
i=1 i=1
The operations ® and ®yy are in general different, but unitarily similar, in the
sense that their dynamical matrices have the same spectra. The equality ||®||gs =
||®Pyw|lus follows from the transformation law

Oy =(VRVHD(WR W), (10.69)

which is a consequence of (10.58). This implies that the dynamical matrix trans-
forms by a local unitary, Dyy = (U @ VT)D(U @ V)i,

10.6 Unital and bistochastic maps

A trace preserving completely positive map is called a bistochastic map if it is also
unital, that is to say if it leaves the maximally mixed state invariant.'® Evidently this
is the quantum analogue of a bistochastic matrix — a stochastic matrix that leaves
the uniform probability vector invariant. The composition of two bistochastic maps
is bistochastic. In the operator sum representation the condition that the map be
bistochastic reads

p— o =Y AipAl. Y Ala=1. Y aal=1. (10.70)
i i i

For the dynamical matrix this means that Try D = Trg D = 1.

18 This trace determines the mean operation fidelity (F (pw, <l>p¢,))\,, averaged over random pure states py

(Nielsen, 2002; Zanardi and Lidar, 2004).
19 See the book by Alberti and Uhlmann (1982).
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The channel is bistochastic if all the Kraus operators obey [A;, Aj] =0. In-
deed the simplest example is a unitary transformation. A more general class of
bistochastic channels is given by convex combinations of unitary operations, also
called random external fields (REF),

k k
p' = Prerp = Zpi V,-pV,-T, with p; >0 and Zpi =1, (10.71)

i=1 i=1
where each operator V; is unitary. The Kraus form (10.53) can be reproduced by
setting A; = /p; V.

The set of all bistochastic CP maps, denoted By, is a convex set in itself. The
set of all bistochastic matrices is, as we learned in Section 2.1, a convex polytope
with permutation matrices as its extreme points. Reasoning by analogy one would
guess that the extreme points of By are unitary transformations, in which case By
would coincide with the set of random external fields. This happens to be true for
qubits, as we will see in detail in Section 10.7, but it fails for all N > 2.

There is a theorem that characterizes the extreme points the set of stochastic
maps (Choi, 1975a):

Lemma 10.2 (Choi’s) A stochastic map ® is extreme in CPy if and only if it admits
a canonical Kraus form for which the matrices A] A are linearly independent.

We prove that the condition is sufficient: assume that ® = p\W¥, + (1 — p)W,. If so
it will be true that

©p =) AipAl = pYip + (1 = p)¥ap
i
=pY BipB/+(1—-p)> Cpcl. (10.72)

The right-hand side is not in the canonical form, but we assume that the left-hand
side is. Therefore there is a unique way of writing

J

In fact this is Schrodinger’s mixture theorem in slight disguise. Next we observe
that

Y oBlB=1=) Ala = D (m'm)y;—s;)AlA;=0. (10.74)
i i ij
Because of the linear independence condition this means that (mtm); ; = 6. This

is what we need in order to show that that ® = W, and it follows that the map ®
is indeed pure.
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The matrices A; A; are of size N, so there can be at most N linearly independent
ones. This means that there can be at most N Kraus operators occurring in the
canonical form of an extreme stochastic map.

It remains to find an example of an extreme bistochastic map which is not unitary.
Using the N = (2j + 1)-dimensional representation of SU(2), we take the three
Hermitian angular momentum operators J; and define the map

1 3
'=—— N "Jpdi, PHIR+I2=jG+1. 10.75
p—>p j(jH); p LA+ =G+ (10.75)

Choi’s condition for an extreme map is that the set of matrices J; J} = J;J; must
be linearly independent. By angular momentum addition our set spans a 9 = 5 +
3 4+ 1 dimensional representation of SO(3), and all the matrices will be linearly
independent provided that they are non-zero. The example fails for N = 2 only —
in that case J; J; + J;J; = 0, the J; are both Hermitian and unitary, and we do not
get an extreme point.%°

For any quantum channel ® one defines its dual channel ®, such that the Hilbert—
Schmidt scalar product satisfies (Po|p) = (o|®p) for any states o and p. If a CP
map is given by the Kraus form ®p =", A,-pA:f, the dual channel reads ®p =
> A}L pA;. This gives a link between the dynamical matrices representing dual
channels,

d = (@) =(@%)" and Dg = (DL)’ = (D5)" = DS, (10.76)

Since neither the transposition nor the swap modify the spectrum of a matrix, the
spectra of the dynamical matrices for dual channels are the same.

If channel @ is trace preserving, its dual ® is unital, and conversely, if ® is
unital then & is trace preserving. Thus the channel dual to a bistochastic one is
bistochastic.

Let us analyse in some detail the set BUy of all unistochastic operations, for
which the representation (10.64) exists. The initial state of the environment is
maximally mixed, o = 1/N, so the map Wy is determined by a unitary matrix
U of size N2. The Kraus operators A; are eigenvectors of the dynamical matrix
Dy, . On the other hand, they enter also the Schmidt decomposition (10.30) of U as
shown in (10.64), and are proportional to the eigenvectors of (U ®)TU®. Therefore?!

1 1
Dy, = —(UNTUR sothat w, = —[UH UF]". (10.77)
N N
20 This example is due to Landau and Streater (1993).

21 The same formula holds for K -unistochastic maps (Section 10.3), but then U* is a rectangular matrix of size
N2 x N2K,
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Table 10.3. Quantum maps acting on density matrices and given by a positive
definite dynamical matrix D versus classical Markov dynamics on probability
vectors defined by transition matrix T with non-negative elements

Completely Markov chains
Quantum positive maps: Classical given by:
N 1Q Trace preserving, Tra D = 1 N IC’ Stochastic matrices T'
SZQ Unital, TrgD = 1 s<! TT is stochastic
S3Q Unital & trace preserving maps S3C’ Bistochastic matrices B
S4Q Maps with A; = A,T s Symmetric stochastic
= D=DT matrices, B = BT
55Q Unistochastic operations, s¢! Unistochastic matrices,
D =URUR) Byj = |Uy|?
52 Unitary transformations s¢! Permutations

We have thus arrived at an important result: for any unistochastic map the spec-
trum of the dynamical matrix is given by the Schmidt coefficients, d; = A;/N,
of the unitary matrix U treated as an element of the composite HS space. For
any local operation, U = U; ® U, the superoperator is unitary, ¥y = U; ® U; so
||y |12-IS =TrYy ‘-IJIT] = N2.The resulting unitary operation is an isometry, and can
be compared with a permutation Sgl acting on classical probability vectors. The
spaces listed in Table 10.3 satisfy the relations S; N S, = S3 and S3 D S5 D Sg in
both the classical and the quantum set-up. However, the analogy is not exact since
the inclusion S5 O S§! does not have a quantum counterpart.

10.7 One qubit maps

When N = 2 the quantum operations are called binary channels. In general, the
space CPy is (N* — N?)-dimensional. Hence the set of binary channels has 12
dimensions. To parametrize it we begin with the observation that a binary channel
is an affine map of the Bloch ball into itself — subject to restrictions that we will
deal with later.?? If we describe density matrices through their Bloch vectors, as in
Eq. (5.9), this means that the map p’ = ®p can be written in the form

T =174k = OnO0JT+¥i, (10.78)
22 The explicit description given below is due to Fujiwara and Algoet (1999) and to King and Ruskai (2001).

Geometric properties of the set of positive one-qubit maps were also studied in (Oi, n.d.; Wédkiewicz, 2001).
A relation with Lorentz transformations is explained in Arrighi and Patricot (2003).
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where ¢ denotes a real matrix of size 3 which we diagonalize by orthogonal trans-
formations O; and O,. Actually we permit only rotations belonging to the SO(3)
group, which means that some of the elements of the diagonal matrix n may be
negative — the restriction is natural because it corresponds to using unitarily similar
quantum operations, cf. Eq. (10.68). The elements of the diagonal matrix n are
collected into a vector 77 = (1, 1y, ;). called the distortion vector because the
transformation T’ = 1 T takes the Bloch ball to an ellipsoid given by

1 s 3 o \2 /1y \2 /T2
o2y = (—) +('—) +(—) . (10.79)
4 1= M ny n:

Finally the vector & = (i, Ky, k) is called the translation vector, because it moves
the centre of mass of the ellipsoid. We can now see where the 12 dimensions come
from: there are three parameters 7 that determine the shape of the ellipsoid, three
parameters k that determine its centre of mass, three parameters to determine its
orientation, and three parameters needed to rotate the Bloch ball to a standard
position relative to the ellipsoid (before it is subject to the map described by 7).

The map is positive whenever the ellipsoid lies within the Bloch ball. The map
is unital if the centre of the Bloch ball is a fixed point of the map, which means
that £ = 0. But the map is completely positive only if the dynamical matrix is
positive definite, which means that not every ellipsoid inside the Bloch ball can be
the image of a completely positive map. We are not so interested in the orientation
of the ellipsoid, so as our canonical form of the affine map we choose

T = nt+i. (10.80)

It is straightforward to work out the superoperator @ of the map. Reshuffling this
according to (10.41) we obtain the dynamical matrix

l+n,+«, 0 Ky + 1Ky Nx + 1y
p=1! 0 L= 4k me—ny  ketik, (10.81)
2| Ky —iky ne =1y l=n—« B
7]x+77y KX_iKy 0 1+nZ_KZ

Note that Try D = 1, as required. But the parameters 7 and ¥ must now be chosen so
that D is positive definite, otherwise the transformation is not completely positive.

We will study the simple case when k¥ = 0, in which case the totally mixed state
is invariant and the map is unital (bistochastic). Then the matrix D splits into two
blocks and its eigenvalues are

1 1
d0,3 = 5[1 + n: =+ (nx + ny)] and d1,2 - E[l —n; =+ (nx - ny)] . (1082)
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Hence, if the Fujiwara—Algoet conditions
(£ n.)* = (e £1y)° (10.83)

hold, the dynamical matrix is positive definite and the corresponding positive map
®; is CP. There are four inequalities: they define a convex polytope, and in-
deed a regular tetrahedron whose extreme points are 7 = (1, 1, 1), (1, —1, —1),
(—1,1,-1), (—1, —1, 1). All maps within the cube defined by |n;| < 1 are posi-
tive, so the tetrahedron of completely positive unital maps is a proper subset B, of
the set of all positive unital maps.

Note that dynamical matrices of unital maps of the form (10.81) commute. In
effect, if we think of dynamical matrices as rescaled density matrices, our tetrahe-
dron can be regarded as an eigenvalue simplex in M®. The eigenvectors consist of
the identity oy = 1, and the three Pauli matrices. Our conclusion is that any map
® € B, can be brought by means of unitary rotations (10.68) into the canonical
form of one-qubit bistochastic maps:

) 1 3 ] 3
p— p = E;dioipaf with ;d,:z. (10.84)

This explains the name Pauli channels. The factor of 1/2 compensates the normal-
ization of the Pauli matrices, Tr o = 2. The Kraus operators are A; = /d; /2 0;. For
the Pauli matrices o; = —iexp(iwo;/2) and the overall phase is not relevant, so the
extreme points that they represent are rotations of the Bloch ball around the corre-
sponding axis by the angle 7. This confirms that the set of binary bistochastic chan-
nels is the convex hull of the unitary operations, which is no longer true when N > 2.

For concreteness let us distinguish some one-qubit channels; the following list
should be read in conjunction with Table 10.4, which gives the distortion vector 7
and the Kraus spectrum d for each map. Figure 10.4 illustrates the action of the
maps.

unital channels (with ¥ = 0)

* Identity which is our canonical form of a unitary rotation.

e Phase flip (or phase-damping channel), 7 = (1 — 2p, 1 — 2p, 1). This channel turns the
Bloch ball into an ellipsoid touching the Bloch sphere at the north and south poles.
When p = 1/2 the image degenerates to a line. The analogous channel with 7§ = (1, 1 —
2p, 1 —2p)is called a bit flip, while the channel with 7 = (1 —2p, 1,1 — 2p) is called
a bit—phase flip. To understand these names we observe that, with probability p, a bit flip
exchanges the states |0) and |1).

Linear channel, ij = (0, 0, ). It sends the entire Bloch ball into a line segment of length
2q. For ¢ = 0 and ¢ = 1 we arrive at the completely depolarizing channel \V, and the
coarse graining operation, Wcg(p) = diag(p), respectively.



278 Quantum operations

Table 10.4. Some one-qubit channels: distortion vector 1), translation vector K
equal to zero for unital channels, Kraus spectrum d, and Kraus rank r.

-

Channels 0 K unital d r
rotation (1,1,1) 0,0,0) yes 2,0,0,0) 1
phase flip 1—=p,1—=p, 1 0,0,0) yes 2-p,p,0,0) 2
decaying (VT—p,/T—p,1—p) (0,0,p) no 2-p,p,0,0) 2
depolarizing [1—=x]1,1,1) 0,0,0) yes %(4 —3x,x,x,Xx) 4
linear 0,0, ¢) (0,0,0) yes %(11 + ;1: 11 - Z)’ 4
planar 0,s,q) (0,0,0) yes %(1 tqts,l—g—s 4

l—g+s,14+g—5)

5) 6)

", £ ; ! 4
N ]I Y A ,

ALY T

8)

_.T
Ky

b) Non - unital
maps

a) Unital maps

X .
Figure 10.4. One-qubit maps: (a) unital Pauli channels: 1) identity, 2) rotation, 3)
phase flip, 4) bit-phase flip, 5) coarse graining, 6) linear channel, 7) completely
depolarizing channel; (b) non-unital maps (v # 0): 8) decaying channel.
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e Planar channel, 1 = (0, s, q), sends the Bloch ball into an ellipse with semi-axis s and
g. Complete positivity requires s < 1 — g.

e Depolarizing channel, 7 = [1 — x](1, 1, 1). This simply shrinks the Bloch ball. When
x = 1 weagain arrive at the centre of the tetrahedron, that is at the completely depolarizing
channel ®,. Note that the Kraus spectrum has a triple degeneracy, so there is an extra
freedom in choosing the canonical Kraus operators.

If we drop the condition that the map be unital our canonical form gives a six-
dimensional set; it is again a convex set but considerably more difficult to analyse.?
A map of C'P,, the canonical form of which consists of two Kraus operators, is either
extremal or bistochastic (if AIAI ~ A;Az ~ 7). Table 10.4 gives one example of
a non-unital channel, namely:

* Decaying channel (also called amplitude-damping channel), defined by 7=
W1T—=p,/T—p,1—p)andk = (0,0, p). The Kraus operators are

_J1 0 [0 p
Al_[o m] and Az_[o 0] (10.85)

Physically this is an important channel — and it exemplifies that a quantum operation
can take a mixed state to a pure state.

Problems
Problem 10.1 Prove Naimark’s theorem.

Problem 10.2 A map & is called diagonal if all Kraus operators A; mutually
commute, so in a certain basis they are diagonal, di = diag(UtA;U). Show that
such a dynamics is given by the Hadamard product, from Problem 9.2, &5 =
H o p, where H,,, = Zle did withm,n =1,..N while 5 = U'p U (Landau
and Streater, 1993; Havel, Sharf, Viola and Cory, 2001).

Problem 10.3 Let p be an arbitrary density operator acting on H y and {A; }lN:z | be
a set of mutually orthogonal Kraus operators representing a given CP map ® in its
canonical Kraus form. Prove that the matrix

oij = (AilplA;) = TrpA;Al (10.86)

forms a state acting on an extended Hilbert space, H y2. Show that in particular, if
o = 1/N, then this state is proportional to the dynamical matrix represented in its
eigenbasis.

23 A complete treatment of the qubit case was given by Ruskai, Szarek and Werner (2002).
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Problem 10.4 Show that a binary, unital map ®,,_, . defined by (10.81) trans-
forms any density matrix p in the following way (King and Ruskai, 2001)

[a z ]_1[ 14 Qa— Dy, (z+Z)nx+(Z—Z)ﬂy:|
N sNysMz '

7 l—al|” 2|G@+2Dn—(@—2Dn, 1 —Q2a—1n,

Problem 10.5 What qubit channel is described by the Kraus operators

1 0 0 O
Al = |:0 m:l and A, = |:0 \/ﬁ] ? (10.87)

Problem 10.6 Let p € M™). Show that the operation ®, defined by D¢ =
p ® 1y acts as a complete one-step contraction, ®,0 = p for any o € MM,
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Duality: maps versus states

Good mathematicians see analogies.
Great mathematicians see analogies between analogies.
Stefan Banach

We have already discussed the static structure of our ‘Quantum Town’ — the set
of density matrices — on the one hand, and the set of all physically realizable
processes which may occur in it on the other hand. Now we are going to reveal a
quite remarkable property: the set of all possible ways to travel in the ‘Quantum
Town’ is equivalent to a ‘Quantum Country’ — an appropriately magnified copy of
the initial ‘Quantum Town’! More precisely, the set of all transformations which
map the set of density matrices of size N into itself (dynamics) is identical to a
subset of the set of density matrices of size N* (kinematics). From a mathematical
point of view this relation is based on the Jamiotkowski isomorphism, analysed later
in this chapter. Before discussing this intriguing duality, let us leave the friendly
set of quantum operations and pay a short visit to a neighbouring land of maps, as
yet unexplored, which are positive but not completely positive.

11.1 Positive and decomposable maps

Quantum transformations which describe physical processes are represented by
completely positive (CP) maps. Why should we care about maps which are not CP?
On the one hand it is instructive to realize that seemingly innocent transformations
are not CP, and thus do not correspond to any physical process. On the other hand,
as discussed in Chapter 15, positive but not completely positive maps provide a
crucial tool in the investigation of quantum entanglement.

Consider the transposition of a density matrix in a fixed basis, T : p — p”.
(Since p is Hermitian this is equivalent to complex conjugation.) The superop-
erator entering (10.36) is the SWAP operator, T%L = 8mvOny = S'ﬁ”v’“' Hence it

281
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z
T = reflection, /T a)

-«

Xy

U = rotation,

completely positive y

Figure 11.1. Non-contracting transformations of the Bloch ball: (a) transposition
(reflection with respect to the x—z plane) — not completely positive; (b) rotation by
7 around z-axis — completely positive.

is symmetric with respect to reshuffling, T = T® = D;. This permutation ma-
trix contains N diagonal entries equal to unity and N(N — 1)/2 blocks of size
two. Thus its spectrum consists of N(N + 1)/2 eigenvalues equal to unity and
N(N — 1)/2 eigenvalues equal to —1, consistent with the constraint TrD = N.
The matrix Dr is not positive, so the transposition 7 is not CP. Another way to
reach this conclusion is to act with the extended map of partial transposition on the
maximally entangled state (11.21) and to check that [T ® 1](|¥)(|) has negative
eigenvalues.

The transposition of an N-dimensional Hermitian matrix changes the signs of
the imaginary part of the elements D;;. This is a reflection in an N(N +1)/2 — 1
dimensional hyperplane. As shown in Figure 11.1 this is simple to visualize for
N = 2: when we use the representation (5.8) the transposition reflects the Bloch
ball in the (x, z) plane. Note that a unitary rotation of the Bloch ball around the
z-axis by the angle 7 also exchanges the ‘western’ and the ‘eastern’ hemispheres,
but is completely positive.

As discussed in Section 10.3 a map fails to be CP if its dynamical matrix D
contains at least one negative eigenvalue. Let m > 1 denote the number of the
negative eigenvalues (in short, the neg rank! of D). Ordering the spectrum of D
decreasingly allows us to rewrite its spectral decomposition

N2—m N2
D= Y dilx)xl — Y ldillx)xl- (11.1)
i=1 i=N2—m+1

! For transposition, the neg rank of Dy ism = N(N — 1)/2.
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Thus a not completely positive map has the canonical form

NZim . P Nz : :
pr=dix' o = Y0 X p OO (112)
i=1 i=N?—m+1

where the Kraus operators A; = /[d;| x' form an orthogonal basis. This is analo-
gous to the canonical form (10.55) of a CP map, and it shows that a positive map
may be represented as a difference of two completely positive maps (Sudarshan
and Shaji, 2003). While this is true, it does not solve the problem: taking any two
CP maps and constructing a quasi-mixture’ ® = (1 + a)¥* — a WP, we do not
know in advance how large the contribution a of the negative part might be to
keep the map @ positive. .. . In fact the characterization of the set Py of positive
maps: M®™ — MW for N > 2 is by far not simple.* By definition, Py contains
the set CPy of all CP maps as a proper subset. To learn more about the set of
positive maps we will need some other features of the operation of transposition
T. For any operation ¢ the modifications of the dynamical matrix induced by a
composition with T may be described by the transformation of partial transpose
(see Table 10.1),

Td=d%, Dro=DL, and ®T =%, Der=DF. (11.3)

To demonstrate this it is enough to use the explicit form of @7 and the observation
that

Dye = [DEDEIR. (11.4)

Positivity of Dyg follows also from the fact that the composition of two CP
maps is completely positive. This follows directly from the identity (V@) ® 1 =
(P ® 1) (®® 1) and implies the following:

Lemma 11.1 (Reshuffling) Consider two Hermitian matrices A and B of the
same size K N.

If A>0 and B>0 then (ARB®F>0. (11.5)

For a proof (Havel, 2003) see Problem 11.1.

2 The word quasi is used here to emphasize that some weights are negative.

3 Although some criteria for positivity are known (Stgrmer, 1963; Jamiotkowski, 1975; Majewski, 1975), they do
not lead to a practical test of positivity. A recently proposed technique of extending the system (and the map)
a certain number of times gives a constructive test for positivity for a large class of maps (Doherty, Parillo and
Spedalieri, 2004).

4 This issue was a subject of mathematical interest many years ago (Stgrmer, 1963; Choi, 1972; Woronowicz,
1976b; Takesaki and Tomiyama, 1983) and quite recently (Eom and Kye, 2000; Majewski and Marciniak, 2001;
Kye, 2003).
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Dg»

CcP CcP T(M(NZ)) M(NZ)
a) linear maps AN AN b) states in AN
Figure 11.2. (a) The set of CP maps, its image with respect to transposition CcP =
T (CP), and their intersection PPT M = CP N CcP; (b) the isomorphic sets M®)

of quantum states (dynamical matrices), its image T4 (M) under the action of
partial transposition, and the set of PPT states.

Sandwiching ® between two transpositions does not influence the spectrum of
the dynamical matrix, 7®7T = &3 = &* and Dyor = Dg = D3 Thusif ®isa
CP map, sois T®T (if Dy is positive so is Dg). See Figure 11.2.

The not completely positive transposition map 7 allows one to introduce the
following definition (Stgrmer, 1963; Choi, 1975a; Choi, 1980):

A map ® is called completely co-positive (CcP), if the map T ® is CP.

Properties (11.3) of the dynamical matrix imply that the map ®7 could be used
instead to define the same set of CcP maps. Thus any CcP map ® may be written
in a Kraus-like form

k
pl=d(p) =) Aip"Al. (11.6)
i=l

Moreover, as shown in Figure 11.2, the set Cc’P may be understood as the image
of C'P with respect to the transposition. Since we have already identified the trans-
position with a reflection, it is rather intuitive to observe that the set CcP is a twin
copy of C'P with the same shape and volume. This property is easiest to analyse for
the set B, of one qubit bistochastic maps (Oi, n.d.), written in the canonical form
(10.84). Then the dual set of CcP unital one qubit maps, 7' (13;), forms a tetrahedron
spanned by four maps T'o; fori = 0, 1, 2, 3. This is the reflection of the set of bis-
tochastic maps with respect to its centre — the completely depolarizing channel ®,.
See Figure 11.3(b). Observe that the corners of 13, are formed by proper rotations
while the extremal points of the set of CcP maps represent reflections. The inter-
section of the tetrahedra forms an octahedron of PPT inducing maps (PP7T M);
see Section 15.4.

A positive map @ is called decomposable, if it may be expressed as a convex
combination of a CP map and a CcP map,

® =adcep+ (1 —a)beep with a €0, 1]. (11.7)
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Figure 11.3. Subsets of one-qubit maps: (a) set 3, of bistochastic maps (unital and
CP), (b) set T'(3,) of unital and CcP maps, (c) set of positive (decomposable) unital
maps. The intersection of the two tetrahedra forms an octahedron of super-positive
maps.

A relation between CP maps acting on quaternion matrices and the decomposable
maps defined on complex matrices was found by Kossakowski (2000). An important
characterization of the set PP, of positive maps acting on (complex) states of one
qubit follows from Stgrmer (1963) and Woronowicz (1976a):

Theorem 11.1 (Stgrmer—Woronowicz’s) Every one-qubit positive map ¥V € P,
is decomposable.

In other words, the set of N = 2 positive maps can be represented by the convex
hull of the set of CP and CcP maps. This property is illustrated for unital maps (in
canonical form) in Figure 11.3, where the cube of positive maps forms the convex
hull of the two tetrahedra, and schematically in Figure 11.4(a). It holds also for the
maps M® — M and M® - M@ (Woronowicz, 1976b), but is not true in
higher dimensions, see Figure 11.4(b).

Consider a map defined on M®, depending on three non-negative parameters,

api1 + bpxn + cp33 0 0
Wy p,c(0)= 0 cp11 +apxn + bpsz 0 - p.
0 0 bp11 + cpxn + aps3

(11.8)

The map W, 9, € P; was a first example of a indecomposable map, found by Choi
in 1975 (Choi, 1975b). As denoted schematically in Figure 11.4(b) this map is
extremal and belongs to the boundary of the convex set Ps;. The Choi map was
generalized in Choi and Lam (1977) and in Cho, Kye and Lee (1992), where it was
shown that the map (11.8) is positive if and only if

a>1, a+b+c>3, 1<a<?2 = bc>Q2—a), (11.9)
while it is decomposable if and only if

a>1, l<a<3 = bc > (3—a)/4. (11.10)
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Figure 11.4. Sketch of the set positive maps: (a) for N = 2 all maps are decompos-
ablesoSP = CP NCcP = PPT M,(b)for N > 2there exist non-decomposable
maps and SP C CP N CcP — see Section 11.2.

In particular, W, o . is positive but not decomposable for ¢ > 1. All generalized
indecomposable Choi maps are known to be atomic (Ha, 1998), that is they cannot
be written as a convex sum of 2-positive and 2-co-positive maps (Tanahashi and
Tomiyama, 1988). Examples of indecomposable maps belonging to P, were given
in Woronowicz (1976b) and in Robertson (1983). A family of indecomposable
maps for an arbitrary finite dimension N > 3 was recently found by Kossakowski
(2003). They consist of an affine contraction of the set M) of density matrices
into a ball inscribed in it, followed by a generic rotation from O(N? — 1). Although
several other methods of construction of indecomposable maps were proposed
(Tang, 1986; Tanahashi and Tomiyama, 1988; Osaka, 1991; Kim and Kye, 1994),
some of them in the context of quantum entanglement (Terhal, 2000b; Ha, Kye and
Park, 2003), the general problem of describing all positive maps remains open. In
particular, it is not known if one can find a finite set of K positive maps {W;}, such
that Py = conv hull (Uf:]\llj(C’PN)).

Due to the theorem of Stgrmer and Woronowicz the answer is known for N =
2, for which K =2, ¥; = 1 and ¥, = T. As we shall see in Chapter 15 these
properties of the set Py are decisive for the separability problem: the separability
criterion based on positivity of (1 ® T')p is conclusive for the system of two qubits,
while in the general case of N x N composite systems it provides a partial solution
only (Horodecki, Horodecki and Horodecki, 1996a).

Indecomposable maps are worth investigating, since each such map provides a
criterion for separability (see Section 15.4. Conditions for a positive map P to be
decomposable were found some time ago by Stgrmer (1982). Since this criterion
is not a constructive one, we describe here a simple test. Assume first that the map
is not symmetric with respect to the transposition,> ® % T ®. These two points

5 If this is the case, one may perform this procedure with a perturbed map, ® = (1 — €)® + €W, for which
@’ # TP’, and study the limit e — 0.
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a) decomposable map P b) non-decomposable map P

Figure 11.5. Geometric criterion to verify decomposability of a map ®: (a) if the
line passing through ® and ®T crosses the set of completely positive maps, a
decomposition of & is explicitly constructed.

determine a line in the space of maps, parameterized by 8, along which we check
if the dynamical matrix

Dgo+i—-pyre = Do + (1 — B)Dg' (11.11)

is positive. If it is found to be positive for some B, < 0 (or B, > 1) then the line
(11.11) crosses the set of completely positive maps (see Figure 11.5(a)). Since
D(B,) represents a CP map Wcp, hence D(1 — B,) defines a completely co—positive
map Wecp, and we find an explicit decomposition, ® = [— B, Wcp + (1 — B)Weepl/
(1 —2B,). In this way decomposability of & may be established, but one cannot
confirm that a given map is indecomposable.

To study the geometry of the set of positive maps one may work with the Hilbert—
Schmidt distance d(¥, &) = ||¥ — ®||gs. Since reshuffling of a matrix does not
influence its HS norm, the distance can be measured directly in the space of dy-
namical matrices, d(V, ®) = Dys(Dy, Dg). Note that for unital one qubit maps,
(10.81) with ¥ = 0, one has d(®;, ®,) = |i§; — 12|, so Figue 11.3 represents cor-
rectly the HS geometry of the space of N = 2 unital maps.

In order to characterize to what extent a given map is close to the boundary of
the set of positive (CP or CcP) maps, let us define the quantities:

* Complete positivity

cp(P) = E}}/}(MDNP) (11.12)
* Complete co-positivity
cep(®) = min(p| DY | p) (11.13)
M)
¢ Positivity
p(®)= min [(x ® y|Dolx ® y)]. (11.14)

[x),y)eC PN
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The first two quantities are easily found by diagonalization, since cp(®) =
min{eig(Dg)}and ccp(P) = min{eig(DQ)}. Although p(®) > cp(®P) by construc-
tion,® the evaluation of positivity is more involved, since one needs to perform
the minimization over the space of all product states, that is the Cartesian prod-
uct CP¥~! x CPV~!. No straightforward method of computing this minimum is
known, so one has to rely on numerical minimization.”

A given map ® is completely positive (CcP, positive) if and only if the complete
positivity (ccp, positivity) is non-negative. As marked in Figure 11.4(b), the relation
cp(®) = 0 defines the boundary of the set CPy, while ccp(®) = 0 and p(®) =0
define the boundaries of Cc’Py and Py. By direct diagonalization of the dynamical
matrix we find that cp(1) = ccp(T) = 0 and cep(1) = ep(T) = —1.

For any not completely positive map ®,cp one may look for its best approxima-
tion with a physically realizable® C P map ®cp, for example by minimizing their HS
distance d(®P,cp, Pcp) —see Figure 11.8(a). To see a simple application of complete
positivity, consider a non-physical positive map with cp(®$pcp) = —x < 0.One—in
general not optimal — CP approximation may be constructed out of its convex com-
bination with the completely depolarizing channel W,.. Diagonalizing the dynamical
matrix representing the map WV, = a®,cp + (1 — a)¥, witha = 1/(Nx + 1) we
see that its smallest eigenvalue is equal to zero, so W, belongs to the boundary of
CPy. Hence the distance d(®,cp, ®,), which is a function of the complete posi-
tivity ¢p(®ncp), gives an upper bound for the distance of ®,cp from the set CP.
In a similar way one may use ccp(®) to obtain an upper bound for the distance of
an analysed non-CcP map ®,ccp from the set Cc’P — compare with Problem 11.6.
As discussed in further sections and, in more detail, in Chapter 15, the solution of
the analogous problem in the space of density matrices allows one to characterize
the entanglement of a two-qubit mixed state p by its minimal distance to the set of
separable states.

11.2 Dual cones and super-positive maps

Since a CP map @ is represented by a positive dynamical matrix Dg, the trace
TrP Dy is non-negative for any projection operator P. Furthermore, for any two
CP maps, the HS scalar product of their dynamical matrices satisfies TrDo Dy > 0.
If such a relation is fulfilled for any CP map W, it implies complete positivity of .

6 Both quantities are equal if D is a product matrix, which occurs if only one singular value £ of the superoperator
® = DX is positive.

7 In certain cases this quantity was estimated analytically by Terhal (2000b) and numerically by Giihne, Hyl-
lus, BruB3, Ekert, Lewenstein, Macchiavello and Sanpera (2002) and Giihne, Hyllus, BruB, Ekert, Lewenstein,
Macchiavello and Sanpera (2003) when characterizing entanglement witnesses.

8 Such structural physical approximations were introduced in Horodecki and Ekert (2002) to propose an experi-
mentally feasible scheme of entanglement detection and later studied in Fiurdsek (2002).
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a) dual cones \" b) compact, convex sets
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Figure 11.6. (a) Dual cones P <> SP and self dual CP <> CP; (b) the corre-
sponding compact sets of trace preserving positive, completely positive and super-
positive maps, P D CP D SP.

More formally, we define a pairing between maps,

(®,¥) = (Do, Dy) :TrDII,Dq, =Tr D¢ Dy, (11.15)
and obtain the following characterization of the set CP of CP maps,

{PeCP} & (,¥) >0 forall WeCP. (11.16)

This property is illustrated in Figure 11.6(a) — the angle formed by any two positive

dynamical matrices at the zero map 0 will not be greater than /2. Thus the set of

CP maps has a self-dual property and is represented as a right angle cone. All trace

preserving maps belong to the horizontal line given by the condition TrDg = N.
In a similar way one may define the cone dual to the set P of positive maps.

A linear map ® : MW — MW s called super-positive’ (SP) (Ando, 2004), if
{(beSP} & (P,¥) >0 forall VeP. (11.17)

Once SP is defined as a set containing all SP maps, one may write a dual condition
to characterize the set of positive maps,

([PeP} & (b, V) >0 foral WeSP. (11.18)

The cones SP and P are dual by construction and any boundary line of P determines
the perpendicular (dashed) boundary line of SP. The self-dual set of CP maps is
included in the set of positive maps P, and includes the dual set of super-positive
maps. All the three sets are convex. See Figure 11.6.

The dynamical matrix of a positive map W is block positive, so it is clear that
condition (11.17) implies that a map ® is super-positive if its dynamical matrix
admits a tensor product representation

k
D¢:ZA,»®B1~, with A; >0, B, >0; i=1,...,k. (11.19)
i

9 SP maps are also called entanglement breaking channels (see Section 15.4).



290 Duality: maps versus states

As we shall see in Chapter 15, this very condition is related to separability of the
state p associated with Dg € C’P. In particular, if the angle o between the vectors
pointing to D¢ and a block positive Dy is obtuse, the state p = D¢ /N is entangled
(compare the notion of entanglement witness in Section 15.4).

In general it is not easy to describe the set SP explicitly. The situation simplifies
for one-qubit maps: due to the theorem by Stgrmer and Woronowicz any positive
map may be represented as a convex combination of a CP map and a CcP map.
The sets CP and CcP share similar properties and are both self dual. Hence a
map P is super-positive if it is simultaneously CP and CcP. But the neat relation
SP =CP NCcP holds for N =2 only. For N > 2 the set P of positive maps
is larger (there exist non-decomposable maps), so the dual set becomes smaller,
SP CcCPNCcP = PPT M (see Figure 11.4).

11.3 Jamiolkowski isomorphism

Let C'Py denote the convex set of all trace preserving, completely positive maps
@ : MM — MW, Any such map may be uniquely represented by its dynamical
matrix D¢ of size N2. It is a positive, Hermitian matrix and its trace is equal to
N. Hence the rescaled matrix pp = Do /N represents a mixed state in M@ ",
In fact rescaled dynamical matrices form only a subspace of this set, determined
by the trace preserving conditions (10.46), which impose N2 constraints. Let us
denote this (N* — N?)-dimensional set by ./\/l(qu). Since any trace preserving CP
map has a dynamical matrix, and vice versa, the correspondence between maps in
CPy and states in M%Nz) is one-to-one. In Table 11.1 this isomorphism is labelled
J II-
Let us find the dynamical matrix for the identity operator:

Dt = Sundyw sothat Dy = (D) ® = 8,800 = Npfh,., (11.20)
ny nv nv nv

where p? = |¢*)(¢"| represents the operator of projection on a maximally entan-
gled state of the composite system, namely

1 N
) = = Dl ®i). (11.21)
i=1

This state is written in its Schmidt form (9.8), and we see that all its Schmidt coeffi-
cients are equal, A; = A; = Ay = 1/N. Thus we have found that the identity oper-
ator corresponds to the maximally entangled pure state |¢™1) (¢ ™| of the composite
system. Interestingly, this correspondence may be extended for other operations,
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Figure 11.7. Duality (11.22) between a quantum map ¢ acting on a [part of the
maximally entangled state [¢*) and the resulting density matrix p = 5 Do.

or in general, for arbitrary linear maps. The Jamiolkowski isomorphism '°
MY > MYV py=Do/N=[0@1]p*) 4T (1122)

allows us to associate a linear map & acting on the space of mixed states MY) with
an operator acting in the enlarged Hilbert state Hy ® Hy. To show this relation
write the operator ® ® 7 as an eight-indices matrix'' and study its action on the
state p? expressed by two Kronecker’s deltas as in (11.20),

1 ¢ 1 1

quT’Z/ /fzp','l"j = ﬁ%’lﬂ = ND%L. (11.23)
Conversely, for any positive matrix D we find the corresponding map ® by diago-
nalization. The reshaped eigenvectors of D, rescaled by the roots of the eigenvalues,
give the canonical Kraus form (10.55) of the operation ®. If Trype = 7/N so that
pa € M,(GNZ), the map @ is trace preserving.

Consider now a more general case in which p denotes a state acting on a com-
posite Hilbert space Hy ® Hy. Let ® be an arbitrary map which sends M ™ into
itself and let Dy = ®F denote its dynamical matrix (of size N?). Acting with the
extended map on p we find its image o’ = [® ® 1](p). Writing down the explicit
form of the corresponding linear map in analogy to (11.23) and contracting over
four indices which represent 1 we obtain

(0 = dpf sothat o = (DEpF)X. (11.24)

In the above formula the standard multiplication of square matrices takes place, in
contrast to Eq. (10.36) in which the state p acts on a simple Hilbert space and is
treated as a vector.

Note that Eq. (11.22) may be obtained as a special case of (11.24) if one takes
for p the maximally entangled state (11.21), for which (0?)® = 1. Formula (11.24)
provides a useful application of the dynamical matrix corresponding to a map &,

10 This refers to the contribution of Jamiotkowski (1972). Various aspects of the duality between maps and states
were recently investigated in (Havel, 2003; Arrighi and Patricot, 2004; Constantinescu and Ramakrishna, 2003).
1" An analogous operation 1 ® ® acting on p? leads to the matrix D’ with the same spectrum.



292 Duality: maps versus states

which acts on a subsystem. Since the normalization of matrices does not influence
positivity, this result implies the reshuffling lemma (11.5).

Formula (11.22) may also be used to find operators D associated with positive
maps ¢ which are neither trace preserving nor complete positive. The Jamiotkowski
isomorphism thus relates the set of positive linear maps with dynamical matri-
ces acting in the composite space and positive on product states. Let us men-
tion explicitly some special cases of this isomorphism, labelled J; in Table 11.1.
The set of completely positive maps & is isomorphic to the set of all positive
matrices D. The case J;; concerns quantum operations which correspond to quan-
tum states p = D/ N fulfilling an additional constraint,'? Try D = 7. States satis-
fying Trg D = 1 correspond to unital CP maps.

An important case J;; of the isomorphism concerning the super-positive maps
which for N = 2 are isomorphic with the PPT states (with positive partial transpose,
pT4 > 0) will be further analysed in Section 15.4, but we are now in position to
comment on item E; ;. If the map & is a unitary rotation, p’ = ®(p) = Up U then
(11.22) results in the pure state (U ® ﬂ)]qﬁ). The local unitary operation (U ® 1)
preserves the purity of a state and its Schmidt coefficients. As shown in Section
15.2 the set of unitary matrices U of size N — or more precisely SU(N)/Zy — is
isomorphic to the set of maximally entangled pure states of the composite N x N
system. In particular, vectors obtained by reshaping the Pauli matrices o; represent
the Bell states in the computational basis, as listed in Table 11.1. Eventually, case J;y
consists of a single, distinguished point in both spaces: the completely depolarizing
channel &, : MW — piN) and the corresponding maximally mixed state piNz).

Table 11.1 deserves one more comment: the key word duality may be used here
in two different meanings. The ‘vertical’ duality between its both columns describes
the isomorphism between maps and states, while the ‘horizontal’ duality between
the rows J; and J;;; follows from the dual cones construction. Note the inclusion
relations J; O Jy;; D Jyp O Jiv and J;; O Eyyy, valid for both columns of the
Table and visualized in Figure 11.8.

11.4 Quantum maps and quantum states

The relation (11.22) links an arbitrary linear map ® with the corresponding linear
operator given by the dynamical matrix Dg. Expressing the maximally entangled
state |¢T) in (11.22) by its Schmidt form (11.21) we may compute the matrix
elements of D¢y in the product basis consisting of the states |i ® j). Due to the
factorization of the right-hand side we see that the double sum describing pe =

12° An apparent asymmetry between the role of both subsystems is due to the particular choice of the relation
(11.22); if the operator 1 ® & is used instead, the subsystems A and B need to be interchanged.
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Table 11.1. Jamiotkowski Isomorphism (11.22) between trace-preserving, linear
maps ® on the space of mixed states M™) and the normalized Hermitian
operators Do acting on the composite space Hy ® Hy.

Linear maps

Hermitian operators

Isomorphism & MM - MW Do : Hy» — Hye
J set P of block positive
! positive maps ® operators D
J set CP of positive operators D:
I completely positive ® subset M of quantum states
7 set SP of subset of separable
rm super-positive ® quantum states
unitary rotations maximally entangled
E;g D(p) = U,oUT, pure states
Do = (U ® U"F U e Do)
N = 2 example +y = L
of Eypy 1< (1,0,0,1) lo™) = Z5(100) +[11))
Pauli matrices oy < (0,1,1,0) ly™) = %001) +10)
versus oy < (0, —i,i,0) [v™) = %(|01) — [10))
Bell states _ 1
; 1,0,0,—1 = —=(]00) — |11
06 = |6) (9] o, < ( ) l¢7) ﬁ(| ) —111))
J completely depolarizing maximally mixed
v channel ®, state p, = 1/N

Dy /N drops out and the result reads
(k®ilDoll ® j) = (k|@(li)(jD|])- (11.25)

This equation may also be understood as a definition of a map ® related to the linear
operator Dg. Its special case, k =/ and i = j, proves the isomorphism J; from
Table 11.1: if D¢ is block positive, then the corresponding map & sends positive
projection operators |i)(i| into positive operators (Jamiolkowski, 1972).

As listed in Table 11.1 and shown in Figure 11.8, the Jamiolkowski isomorphism
(11.25) may be applied in various setups. Relating linear maps from Py with
operators acting on an extended space Hy ® Hy we may compare:

(i) individual objects, e.g. completely depolarizing channel @, and the maximally mixed

state Oy
(ii) families of objects, e.g. the depolarizing channels and generalized Werner states;
(iii) entire sets, e.g. the set of CP N CcP maps and the set of PPT states;
iv) entire problems, e.g. finding the SP map closest to a given CP map versus finding the
separable state closest to a given state; and
(v) their solutions. .. .
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Figure 11.8. Isomorphism between objects, sets, and problems: (a) linear one-
qubit maps, (b) linear operators acting in two-qubit Hilbert space H,4. Labels J;
refer to the sets defined in Table 11.1.

For a more comprehensive discussion of the issues related to quantum entanglement
see Chapter 15. Some general impression may be gained by comparing both sides
of Figure 11.8, in which a drawing of both spaces is presented. Note that this
illustration may also be considered as a strict representation of a fragment of the
space of one-qubit unital maps (a) or the space of two-qubits density matrices in
the HS geometry (b). It is nothing but the cross section of the cube representing the
positive maps in Figure 11.3(c) along the plane determined by 1, T and ®,.

The maps—states duality is particularly fruitful in investigating quantum gates:
unitary operations U performed on an N-level quantum system. Since the overall
phase is not measurable, we may fix the determinant of U to unity, restricting our
attention to the group SU(N). For instance, the set of SU(4) matrices may be
considered as:

* the space of maximally entangled states of a composite, 4 x 4 system, |/) € CP C
M(16);

* the set of two-qubit unitary gates,'® acting on M®;

e the set B, of one-qubit unistochastic operations (10.64), ¥y € BU, C Bs.

There exist a classical analogue of the Jamiotkowski isomorphism. The space
of all classical states forms the (N — 1)-dimensional simplex Ay_;. A discrete
dynamics in this space is given by a stochastic transition matrix Ty : Ay_; —
Apn_1. Its entries are non-negative, and due to stochasticity (2.4.ii), the sum of all
its elements is equal to N. Hence the reshaped transition matrix is a vector 7 of

13 As shown by DiVincenzo (1995) and Lloyd (1995) such gates are universal for quantum computing, which
means that their suitable composition can produce an arbitrary unitary transformation. Such gates may be
realized experimentally (Monroe, Meekhof, King, Itano and Wineland, 1995; DeMarco, Ben-Kish, Leibfried,
Meyer, Rowe, Jelenkovic, Itano, Britton, Langer, Rosenband and Wineland, 2002).
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length N2. The rescaled vector 7/ N may be considered as a probability vector. The
classical states defined in this way form a measure zero, N(N — 1)-dimensional,
convex subset of A y2_;. Consider, for instance, the set of N = 2 stochastic matrices,

which can be parameterized as 7, = [1 L_la | Eb} with a, b € [0, 1]. The set of

the corresponding probability vectors 7/2 = (a, b, 1 —a, 1 — b)/2 forms a square
of size 1/2 — the maximal square which may be inscribed into the unit tetrahedron
Aj of all N = 4 probability vectors.

Classical dynamics may be considered as a (very) special subclass of quantum
dynamics, defined on the set of diagonal density matrices. Hence the classical
and quantum duality between maps and states may be succinctly summarized in a
commutative diagram:

quantum : [@: MM - MM] — LDy e MO
I Yeo | maps | states (11.26)
classical : [T:An_1 = Ay — AT € Ayay .

Alternatively, vertical arrows may be interpreted as the action of the coarse grain-
ing operation W¢g defined in Eq. (12.77). For instance, for the trivial (do nothing)
one-qubit quantum map @4, the super-operator 1,4 restricted to diagonal matrices
gives the identity matrix, T = 7,, and the classical state 7/2 =(1,0,0,1)/2 € As.
But this very vector represents the diagonal of the maximally entangled state
%qu = |¢"){(¢T|. To prove commutativity of the diagram (11.26) in the general
case define the stochastic matrix 7" as a submatrix of the superoperator (10.36),
Toin = d>mn21 (left vertical arrow). Note that the vector 7 obtained by its reshap-
ing satisfies 7 = diag(®*X) = diag(D¢). Hence, as denoted by the right vertical
arrow, it represents the diagonal of the dynamical matrix, which completes the
reasoning.

Problems

Problem 11.1 Prove the reshuffling lemma (11.5).

Problem 11.2 (a) Find the Kraus spectrum of the (non-positive) dynamical matrix
representing transposition acting in M. (b) Show that the canonical Kraus rep-
resentation of the transposition of one qubit is given by a difference between two
CP maps,

1
p' =1+ a)Pcp(p) — a®p(p) = (00000 + 0290 + 0:p0. = 0yp0,)
(11.27)
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Problem 11.3 Show that the map ¥,(p) = (Np, — p)/(N — 1), acting on M®),
is not completely positive. Is it positive or completely co-positive?

Problem 11.4 Show that &7 = %CID* + %T is the best structural physical approxi-
mation (SPA) of the non-CP map T of the transposition of a qubit (Horodecki and
Ekert, 2002). How does such a SPA look like for the transposition of a quNit?

Problem 11.5 Compute complete positivity (complete co-positivity) of the gener-
alized Choi map (11.8). Find the conditions for ¥, ;, . to be CP (CcP).

Problem 11.6 Show that the minimal distance of a positive (but not CcP) map
®,ccp from the set CcPy is smaller than Nx+/Tr(D74)2 — 1/(Nx + 1), where D¢
represents the dynamical matrix, and the positive number x is opposite to the
negative, minimal eigenvalue of Der = DQ.
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Density matrices and entropies

A given object of study cannot always be assigned a unique value, its
‘entropy’. It may have many different entropies, each one worthwhile.
Harold Grad

In quantum mechanics, the von Neumann entropy
S(p) =—-Trplnp (12.1)

plays a role analogous to that played by the Shannon entropy in classical proba-
bility theory. They are both functionals of the state, they are both monotone under
a relevant kind of mapping, and they can be singled out uniquely by natural re-
quirements. In Section 2.2 we recounted the well-known anecdote according to
which von Neumann helped to christen Shannon’s entropy. Indeed von Neumann’s
entropy is older than Shannon’s, and it reduces to the Shannon entropy for diagonal
density matrices. But in general the von Neumann entropy is a subtler object than
its classical counterpart. So is the quantum relative entropy, that depends on two
density matrices that perhaps cannot be diagonalized at the same time. Quantum
theory is a non-commutative probability theory. Nevertheless, as a rule of thumb
we can pass between the classical discrete, classical continuous and quantum cases
by choosing between sums, integrals and traces. While this rule of thumb has to
be used cautiously, it will give us quantum counterparts of most of the concepts
introduced in Chapter 2, and conversely we can recover Chapter 2 by restricting
the matrices of this chapter to be diagonal.

12.1 Ordering operators

The study of quantum entropy is to a large extent a study in inequalities, and this
is where we begin. We will be interested in extending inequalities that are valid
for functions defined on R to functions of operators. This is a large step, but it is

297
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at least straightforward to define operator functions, that is functions of matrices,
as long as our matrices can be diagonalized by unitary transformations: then, if
A = Udiag(A)U', we set f(A) = Udiag(f(x;))U", where f is any function on
R. Our matrices will be Hermitian and therefore they admit a partial order; B > A
if and only B — A is a positive operator. It is a difficult ordering relation to work
with though, ultimately because it does not define a lattice — the set {X : X > A
and X > B} has no minimum point in general.

With these observations in hand we can define an operator monotone function
as a function such that

A=B = [f(A) = f(B). (12.2)
Also, an operator convex function is a function such that

f(pA+dA—-p)B) < pf(A)+A—-p)f(B), pel01]. (12.3)

Finally, an operator concave function f is a function such that — f is operator
convex. In all three cases it is assumed that the inequalities hold for all matrix sizes
(so that an operator monotone function is always monotone in the ordinary sense,
but the converse may fail).!

The definitions are simple, but we have entered deep water, and we will be
submerged by difficulties as soon as we evaluate a function at two operators that
do not commute with each other. Quite innocent looking monotone functions fail
to be operator monotone. An example is f(¢) = t>. Moreover the function f(¢) =
e’ is neither operator monotone nor operator convex. To get serious results in
this subject some advanced mathematics, including frequent excursions into the
complex domain, are needed. We will confine ourselves to stating a few facts.
Operator monotone functions are characterized by

Theorem 12.1 (Lowner’s) A function f(t) on an open interval is operator mono-
tone if and only if it can be extended analytically to the upper half plane and
transforms the upper half plane into itself.
Therefore the following functions are operator monotone:
f@)=t", t>0 ifandonlyif y €]0,1]
fO)y=4% " 15 —d/c, ad—bc>0 (12.4)
f@)=Int, t>0.

This small supply can be enlarged by the observation that the composition of two
operator monotone functions is again operator monotone; so is f(t) = —1/g(t)

! The theory of operator monotone functions was founded by Lowner (1934). An interesting early paper is by
Bendat and Sherman (1955). For a survey see Bhatia (1997), and (for matrix means) see Ando (1994).
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if g(¢) is operator monotone. The set of all operator monotone functions is con-
vex, as a consequence of the fact that the set of positive operators is a convex
cone.

A continuous function f mapping [0, oo) into itself is operator concave if
and only if f is operator monotone. Operator convex functions include f(¢) =
—Int, and f(z) = tInt when ¢ > 0; we will use the latter function to construct
entropies. More generally f(z) =tg(¢) is operator convex if g(t) is operator
monotone.

Finally we define the mean A#B of two operators. We require that A#A = A,
as well as homogeneity, a(A#B) = (¢ A)#(aB), and monotonicity, A#B > C#D
if A> C and B > D. Moreover we require that (TATHY#T BT > T(A#B)TT,
as well as a suitable continuity property. It turns out (Ando, 1994) that every mean
obeying these demands takes the form

A#B:ﬂf(%B%)ﬂ, (12.5)

where A > 0 and f is an operator monotone function on [0, oo) with f(1) = 1.

The mean will be symmetric in A and B if and only if f is self inversive, that is if
and only if

faj/n = f@/r. (12.6)

Special cases of symmetric means include the arithmetic meanfor f(t) = (1 +1)/2,
the geometric mean for f(t) = «/t, and the harmonic mean for f(t) = 2t/(1 + ).
It can be shown that the arithmetic mean is maximal among symmetric means,
while the harmonic mean is minimal (Kubo and Ando, 1980).

We will find use for these results throughout the next three chapters. But to
begin with we will get by with inequalites that apply, not to functions of operators
directly but to their traces. The subject of convex trace functions is somewhat more
manageable than that of operator convex functions. A key result is that the inequality
(1.11) for convex functions can be carried over in this way:?

Klein’s inequality. If f is a convex function and A and B are Hermitian operators,
then

Tr{ f(A) — f(B)] = Tr{(A — B)f'(B)]. (12.7)

As a special case
Tr(AlnA — Aln B) > Tr(A — B) (12.8)

with equality if and only if A = B.

2 The original statement here is due to Oskar Klein (1931).
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To prove this, use the eigenbases:
Alei) = aile;)  Blfi) =bilfi) (eilfi) = cij - (12.9)
A calculation then shows that

(eil f(A) — F(B) — (A — B)f'(B)le:)
= fla) = Y _lejl’Lf (b)) — (@ —b)f' bl (12.10)

J

=D leyPLf@) = fb)) = (@ = b f Bl .
J

This is positive by Eq. (1.11). The special case follows if we specialize to f(¢) =
t Int. The condition for equality requires some extra attention — it is true.
Another useful result is:

Peierl’s inequality. If f is a strictly convex function and A is a Hermitian operator,
then

Tef(A) = Y fUAIALLD (12.11)

where {| f;)} is any complete set of orthonormal vectors, or more generally a res-
olution of the identity. Equality holds if and only if |f;) = |e;) for all i, where
Ale;) = aile;).

To prove this, observe that for any vector | f;) we have

(ALY =Y W filepPfap = f (Z I(filej)lzaj) = F((filALf)) -
J J

(12.12)
Summing over all i gives the result.
We quote without proofs two further trace inequalities, the Golden Thompson
inequality

Tre*e? > Tredt? (12.13)

with equality if and only if the Hermitian matrices A and B commute, and its more
advanced cousin, the Lieb inequality
1 1
A B du ,
CH+ul C+ul

o0
Tre]nA—lnC-HnB > TI’/ (1214)
0
where A, B, C are all positive.

3 Golden was a person (Golden, 1965). The Lieb inequality was proved in Lieb (1973).
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12.2 Von Neumann entropy

Now we can begin. First we establish some notation. In Chapter 2 we used S
to denote the Shannon entropy S(p) of a probability distribution. Now we use
S to denote the von Neumann entropy S(p) of a density matrix, but we may want
to mention the Shannon entropy too. When there is any risk of confusing these
entropies, they are distinguished by their arguments. We will also use S; = S(p;) to
denote the von Neumann entropy of a density matrix p; acting on the Hilbert space
H;.

Inclassical probability theory a state is a probability distribution, and the Shannon
entropy is a distinguished function of a probability distribution. In quantum theory
a state is a density matrix, and a given density matrix p can be associated to
many probability distributions because there are many possible POVMs. Also any
density matrix can arise as a mixture of pure states in many different ways. From
Section 8.4 we recall that if we write our density matrix as a mixture of normalized
states,

M
p =Y pilyi)¥il, (12.15)
i=1
then a large amount of arbitrariness is present, even in the choice of the number M.
So if we define the mixing entropy of p as the Shannon entropy of the probability
distribution p then this definition inherits a large amount of arbitrariness. But on
reflection it is clear that there is one such definition that is more natural than the
other. The point is that the density matrix itself singles out one preferred mixture,
namely

N
p = hleeil (12.16)
i=1
where |e;) are the eigenvectors of p and N is the rank of p. The von Neumann
entropy is*

N
S(p) = —Trplnp = =) Ailnk; . (12.17)

i=1
Hence the von Neumann entropy is the Shannon entropy of the spectrum of p, and
varies from zero for pure states to In N for the maximally mixed state p, = 71/N.
Further reflection shows that the von Neumann entropy has a very distinguished
status among the various mixing entropies. While we were proving Schrodinger’s

4 The original reference is von Neumann (1927), whose main concern at the time was with statistical mechanics.
His book (von Neumann, 1955), Wehrl (1978) and the (more advanced) book by Ohya and Petz (1993) serve as
useful general references for this chapter.
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mixture theorem in Section 8.4 we observed that any vector p occurring in Eq.
(12.15) is related to the spectral vector s by p= B, where B is a bistochastic
(and indeed a unistochastic) matrix. Since the Shannon entropy is a Schur concave
function, we deduce from the discussion in Section 2.1 that

M N
Swix = =Y _pilnpi= =) 2ilni; = S(p). (12.18)
i=1 i=1

Hence the von Neumann entropy is the smallest possible among all the mixing
entropies Smix-

The von Neumann entropy is a continuous function of the eigenvalues of p, and it
can be defined in an axiomatic way as the only such function that satisfies a suitable
set of axioms. In the classical case, the key axiom that singles out the Shannon
entropy is the recursion property. In the quantum case this becomes a property
that concerns disjoint states — two density matrices are said to be disjoint if they
have orthogonal support, that is if their respective eigenvectors span orthogonal
subspaces of the total Hilbert space.

e Recursion property. If the density matrices p; have support in orthogonal sub-
spaces H; of a Hilbert space H = GB,»ALIH,-, then the density matrix p = Zi Di Pi
has the von Neumann entropy

M
S(p) = S(p) + ZpiS(pi)- (12.19)
i=1
Here S(p) is a classical Shannon entropy. It is not hard to see that the von Neumann
entropy has this property; if the matrix p; has eigenvalues A;; then the eigenvalues
of p are p;A;;, and the result follows from the recursion property of the Shannon
entropy (Section 2.2).

As with the Shannon entropy, the von Neumann entropy is interesting because
of the list of the properties that it has, and the theorems that can be proved using
this list. So, instead of presenting a list of axioms we present a selection of these
properties in the form of Table 12.1, where we also compare the von Neumann
entropy to the Shannon and Boltzmann entropies. Note that most of the entries
concern a situation where p; is defined on a Hilbert space H, p, on another Hilbert
space H;, and pj, on their tensor product H, = H; ® H,, or even more involved
situations involving the tensor product of three Hilbert spaces. Moreover p; is
always the reduced density matrix obtained by taking a partial trace of p;, thus

S1 =S, Si2= S, p=Tnen, (12.20)

and so on (with the obvious modifications in the classical cases). As we will see,
even relations that involve one Hilbert space only are conveniently proved through
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Table 12.1. Properties of entropies

Property Equation von Neumann Shannon Boltzmann
Positivity S>0 Yes Yes No
Concavity (12.22) Yes Yes Yes
Monotonicity S > S No Yes No
Subadditivity Sp<85+5% Yes Yes Yes
Araki-Lieb inequality [S1 — 821 < Si2 Yes Yes No
Strong subadditivity S123 + 82 < Si12 + o3 Yes Yes Yes

a detour into a larger Hilbert space. We can say more. In Section 9.3 we proved a
purification lemma, saying that the ancilla can always be chosen so that, for any
p1, itis true that p; = Tryp1» wWhere py; is a pure state. Moreover we proved that in
this situation the reduced density matrices p; and p, have the same spectra (up to
vanishing eigenvalues). This means that

prpr=pr = S=25%. (12.21)

If the ancilla purifies the system, the entropy of the ancilla is equal to the entropy
of the original system.

Let us begin by taking note of the property (monotonicity) that the von Neu-
mann entropy does not have. As we know very well from Chapter 9 a composite
system can be in a pure state, so that S;; = 0, while its subsystems are mixed,
so that S; > 0. In principle, although it might be a very contrived Universe, your
own entropy can increase without limit while the entropy of the world remains
Zero.

It is clear that the von Neumann entropy is positive. To convince ourselves of the
truth of the rest of the entries in the table®> we must rely on Section 12.1. Concavity
and subadditivity are direct consequences of Klein’s inequality, for the special case
that A and B are density matrices, so that the right-hand side of Eq. (12.8) vanishes.
First out is concavity, where all the density matrices live in the same Hilbert space:

e Concavity. If p = po + (1 — p)w, 0 < p < 1, then
S(p) =z pS(e)+ 1 = p)S(w). (12.22)
In the proof we use Klein’s inequality, with A = o or w and B = p:

Trplnp = pTrolnp + (1 — p)Trolnp < pTrolno + (1 — p)Trolnw .
(12.23)

5 These entries have a long history. Concavity and subadditivity were first proved by Delbriick and Moliere (1936).
Lanford and Robinson (1968) observed that strong subadditivity is used in classical statistical mechanics, and
conjectured that it holds in the quantum case as well. Araki and Lieb (1970) were unable to prove this, but
found other inequalities that were enough to complete the work of Lanford and Robinson. Eventually strong
subadditivity was proved by Lieb and Ruskai (1973).
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Sign reversion gives the result, which is a lower bound on S(p).

Using Peierl’s inequality we can prove a much stronger result. Let f be any
convex function. With O < p < 1 and A and B any Hermitian operators, it will be
true that

Trf(pA+ (1 —p)B) < pTrf(A)+ (1 — p)TrB. (12.24)
Namely, let |e;) be the eigenvectors of pA + (1 — p)B. Then

Trf(pA+ (1 —p)B) =) (eilf(pA+(1—p)B)le;)

=Y f(leilpA+ (1 = p)Ble;)) (12.25)

< pi(<ei|A|ei>) +(1 - p)Zf(<e,-|B|el~>)
< pTef(A) + (1 — pYTrf(B)

where Peierl’s inequality was used in the last step.
The recursion property (12.19) for disjoint states can be turned into an inequality
that, together with concavity, neatly brackets the von Neumann entropy:

K K K
P= papa = P paS(pa) < S(p) < SP)+ Y paS(pa) . (12.26)
a=1 a=1 a=1
(The index a is used because, in this chapter, i labels different Hilbert spaces.) To
prove this, one first observes that for a pair of positive operators A, B one has the
trace inequality

TrA[ln(A+ B)—InA]>0. 12.27)

This is true because Int is operator monotone, and the trace of the product of two
positive operators is positive. When K = 2 the upper bound in (12.26) follows if
we first set A = p1p; and B = pypo, then A = py0,, B = p1p1, add the resulting
inequalities, and reverse the sign at the end. The result for arbitrary K follows if
we use the recursion property (2.19) for the Shannon entropy S(p).

The remaining entries in Table 12.1 concern density matrices defined on different
Hilbert spaces, and the label on the density matrix tells us which Hilbert space.

o Subadditivity.

S(p12) = S(p1) + S(p2) , (12.28)

with equality if and only if pjo = p; ® p».
To prove this, use Klein’s inequality with B = p1 ® p» = (01 ® 1)(1 ® p2) and
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A = py3. Then

Triz012In p12 > TrpppipInp; @ o2
=Trp2(np; ® 1 +1In1Q p2) (12.29)
=Trip1Inp; +Tr2p2In o3,

which becomes subadditivity when we reverse the sign. It is not hard to see that
equality holds if and only if p;» = p; ® p».

We can now give a third proof of concavity, since it is in fact a consequence of
subadditivity. The trick is to use a two level system, with orthogonal basis vectors
|a) and |b), as an ancilla. The original density matrix will be written as the mixture
01 = ppa + (1 — p)pp. Then we define

P12 = ppa @ la)(al + (1 — p)pp @ [b)(D] . (12.30)

By the recursion property

Si2(p12) = S(p, 1 = p) + pSi(pa) + (1 = p)Si(ps) - (12.31)

But S, = S(p, 1 — p), sothat subadditivity implies that S; is concave, as advertized.
Next on the list:

e The Araki-Lieb triangle inequality.

[S(o1) — S(p)| < S(p12) . (12.32)

This becomes a triangle inequality when combined with subadditivity.

The proof is a clever application of the fact that if a bipartite system is in a
pure state (with zero von Neumann entropy) then the von Neumann entropies
of the factors are equal. Of course the inequality itself quantifies how much the
entropies of the factors can differ if this is not the case. But we can consider a
purification of the state pj, using a Hilbert space Hy3. From subadditivity we
know that S3 + S; > Si3. By construction Si,3 = 0, so that Sj3 = S, and S5 = S)5.
A little rearrangement gives the result.

The final entry on our list is:

o Strong subadditivity.

S(p123) + S(p2) =< S(p12) + S(p23) - (12.33)

This is a deep result, and we will not prove it — although it follows fairly easily
from Lieb’s inequality (12.14).% Let us investigate what it says, however. First, it is

6 For a proof — in fact several proofs — and more information on entropy inequalities generally, we recommend
two reviews written by experts, Lieb (1975) and Ruskai (2002).
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equivalent to the inequality

S(p1) + S(p2) = S(p13) + S(p23) - (12.34)

To see this, purify the state p»3 by factoring with a fourth Hilbert space. Then we
have

S1234 =0 = Si123=3S84 and Sjp = S34. (12.35)

Inserting this in (12.33) yields (12.34), and conversely. This shows that strong sub-
additivity of the Shannon entropy is a rather trivial thing, since in that case mono-
tonicity implies that S; < Sj3 and S, < Sy3. In the quantum case these inequalities
do not hold separately, but their sum does!

The second observation is that strong subadditivity implies subadditivity — to see
this, let the Hilbert space H, be one dimensional, so that S, = 0. It implies much
more, though. It is tempting to say that every deep result follows from it; we will
meet with an example in the next section. Meanwhile we can ask if this is the end of
the story? Suppose we have a state acting on the Hilbert space H; @ Ho ® - - - ® H,,.
Taking partial traces in all possible ways we get a set of 2" — 1 non-trivial density
matrices, and hence 2" — 1 possible entropies constrained by the inequalities in
Table 12.1. These inequalities define a convex cone in an (2" — 1)-dimensional
space, and we ask if the possible entropies fill out this cone. The answer is no. There
are points on the boundary of the cone that cannot be reached in this way, and there
may be further inequalities waiting to be discovered (Linden and Winter, n.d.).

To end on a somewhat different note, we recall that the operational significance of
the Shannon entropy was made crystal clear by Shannon’s noiseless coding theorem.
There is a corresponding quantum noiseless coding theorem. To state it, we imagine
that Alice has a string of pure states |v;), generated with the probabilities p;. She
codes her states in qubit states, using a channel system C. The qubits are sent to
Bob, who decodes them and produces a string of output states p;. The question is:
how many qubits must be sent over the channel if the message is to go through
undistorted? More precisely, we want to know the average fidelity

F =" pi (Wilpiln) (12.36)

that can be achieved. The quantum problem is made more subtle by the fact that
generic pure states cannot be distinguished with certainty, but the answer is given
by

Theorem 12.2 (Schumacher’s noiseless coding theorem) Ler

p=Y pilYi)(Wil and S(p)=—Trplog,p . (12.37)
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Alsolete, 5§ > 0 and let S(p) + 8 qubits be available in the channel per input state.
Then for large N, it is possible to transmit blocks of N states with average fidelity
F>1-—e

This theorem marks the beginning of quantum information theory.”

12.3 Quantum relative entropy

In the classical case the relative entropy of two probability distributions played a
key role, notably as a measure of how different two probability distributions are
from each other. There is a quantum relative entropy too, and for roughly similar
reasons it plays a key role in the description of the quantum state space. In some
ways it is a deeper concept than the von Neumann entropy itself and we will see
several uses of it as we proceed. The definition looks deceptively simple: for any
pair of quantum states p and o their relative entropy is®

S(pllo) = Tr[p(Inp —Ino)]. (12.38)

If o has zero eigenvalues this may diverge, otherwise it is is a finite and continuous
function. The quantum relative entropy reduces to the classical Kullback-Leibler
relative entropy for diagonal matrices, but is not as easy to handle in general. Using
the result of Problem 12.1, it can be rewritten as

© 1 1
S = T - du . 12.39
(pllo) /0 rp0+uﬂ(p o)eruﬂ u ( )

This is convenient for some manipulations that one may want to perform.
Two of the properties of relative entropy are immediate:

* Unitary invariance. S(p||02) = S(Up  UT||Up,UT).
* Positivity. S(p||o) > 0 with equality if and only if p = o.

The second property is immediate only because it is precisely the content of Klein’s
inequality — and we proved that in Section 12.1. More is true:

S(pllo) = %Tr(p — o) =D3(p,0). (12.40)

7 The quantum noiseless coding theorem is due to Schumacher (1995) and Jozsa and Schumacher (1994); a
forerunner is due to Holevo (1973). For Shannon’s theorem formulated in the same language, see section 3.2 of
Cover and Thomas (1991).

8 The relative entropy was introduced into quantum mechanics by Umegaki (1962) and resurfaced in a paper by
Lindblad (1973). A general reference for this section is Ohya and Petz (1993); for recent reviews see Schumacher
and Westmoreland (n.d.) and Vedral (2002).
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This is as in the classical case, Eq. (2.30); in both cases a stronger statement can be
made, and we will come to it in Chapter 13. In general S(p||lo) # S(o||p); also as
in the classical case.

Three deep properties of relative entropy are as follows:

¢ Joint convexity. For any p € [0, 1] and any four states
S(poa + (A = p)ppllpoe + (1 = p)aa) < pS(palloe) + (1 = p)S(pslloa) . (12.41)
* Monotonicity under partial trace.
S(Tr2p12/|Tr2012) < S(p12llo12) - (12.42)
¢ Monotonicity under CP-maps. For any completely positive map &
S(®plldo) < S(pllo) . (12.43)

Any of these properties imply the other two, and each is equivalent to strong subad-
ditivity of the von Neumann entropy.’ The importance of monotonicity is obvious —
it implies everything that monotonicity under stochastic maps implies for the clas-
sical Kullback-Leibler relative entropy.

It is clear that monotonicity under CP maps implies monotonicity under partial
trace — taking a partial trace is a special case of a CP map. To see the converse, use
the environmental representation of a CP map given in Eq. (10.61); we can always
find a larger Hilbert space in which the CP-map is represented as

p'=®(p) =Tey(Up ® PUY) (12.44)
where P, is a projector onto a pure state of the ancilla. A simple calculation ensures:
S (Tra(Up ® PUN|Tr(Uo ® P,UY) < S (Up ® PU'Us @ PUT)
=S(pQ Pllo ® P) (12.45)

= S(pllo) ,

where we used monotonicity under partial trace, unitary invariance, and the easily
proved additivity property that

S(p1 ® p2lloy @ 02) = S(p1llp2) + S(p2llo2) - (12.46)

To see that monotonicity under partial trace implies strong subadditivity, we intro-
duce a third Hilbert space and consider

S(psllep2 @ 1) < S(pi23llp12 ® 1) . (12.47)

9 Again the history is intricate. Monotonicity of relative entropy was proved from strong subadditivity by Lindblad
(1975). A proof from first principles is due to Uhlmann (1977).
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Now we just apply the definition of relative entropy, and rearrange terms to arrive at
Eq. (12.33). The converse statement, that strong subadditivity implies monotonicity
under partial trace, is true as well. One proof proceeds via the Lieb inequality
(12.14).

The close link between the relative entropy and the von Neumann entropy can
be unearthed as follows: the relative entropy between p and the maximally mixed
state p, is

S(pllpx) = InN —S(p) . (12.48)

This is the quantum analogue of (2.37), and shows that the von Neumann entropy
S(p) is implicit in the definition of the relative entropy. In a sense the link goes the
other way too. Form the one parameter family of states

pp=pp+U0—-p}o, pel0l]. (12.49)
Then define the function
f(p)=S(pp) — pS(p) — (1 = p)S(o) . (12.50)

With elementary manipulations this can be rewritten as

f(p) = pS(pllpp) + A = p)S(ellpy) = pSpllo) = S(ppllo) . (12.51)

From the strict concavity of the von Neumann entropy we conclude that f(p) > 0,
with equality if and only if p = 0, 1. This further implies that the derivative of f
is positive at p = 0. We are now in position to prove that

1
lim = f(p) = S(pllo). (12.52)
r—>0p

This is so because the limit exists (Lindblad, 1973) and because Eqgs. (12.51) imply,
first, that the limit is greater than or equal to S(p||o’), and, second, that it is smaller
than or equal to S(p||o). In this sense the definition of relative entropy is implicit
in the definition of the von Neumann entropy. If we recall Eq. (1.11) for convex
functions — and reverse the sign because f(p) is concave — we can also express the
conclusion as

1
S(pllo) = sup —(S(pp) = pS(p)— (1 - p)S(0)> . (12.53)
p P

The same argument applies in the classical case, and in Section 13.1 we will see
that the symmetric special case f(1/2) deserves attention for its own sake.

For N =2, Cortese (n.d.) found an explicit formula for the relative entropy
between any two mixed states,

2

1 1—1 T, 1+1, T, c080 141
S(oalloy) = =1 ) —1( )— 1 ) 12.54
(Pullp) = 5 n(l_sz o () a2se
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S S

Figure 12.1. (a) Relative entropy between N = 2 mixed states depends on the
lengths of their Bloch vectors and the angle 6 between them. Relative entropies
with respect to the north pole py: (b) S(p||pn) and (c) S(on||p)-

where the states are represented by their Bloch vectors, for example p, = %(‘ﬂ +
T,-0), 7, is the length of a Bloch vector, and 6 is the angle between the two.
See Figure 12.1; the relative entropy with respect to a pure state is shown there.
Note that the data along the polar axis, representing diagonal matrices, coincide
with these plotted at the vertical axis in Figure 2.8(c) and (d) for the classical
case.

Now we would like to argue that the relative entropy, as defined above, is indeed
a quantum analogue of the classical Kullback-Leibler relative entropy. We could
have tried a different way of defining quantum relative entropy, starting from the
observation that there are many probability distributions associated to every density
matrix, in fact one for every POVM {E}. Since we expect relative entropy to serve
as an information divergence, that is to say that it should express ‘how far’ from
each other two states are in the sense of statistical hypothesis testing, this suggests
that we should define a relative entropy by taking the supremum over all possible
POVMs:

Si(pllo) =sup Y _ p; P where p; =TrEip and ¢ = TrEio . (12.55)
E qi

Now it can be shown (Lindblad, 1974) (using monotonicity of relative entropy) that
Si(pllo) = S(pllo) . (12.56)

We can go on to assume that we have several independent and identically distributed
systems that we can make observations on, that is to say that we can make mea-
surements on states of the form ,oN =p®p®---® p (with N identical factors
altogether, and with a similar definition for o). We optimize over all POVMs {£}
on the tensor product Hilbert space, and define

1 Di ~ ~
Swiplloy=sup 2> piln =, pi=TrEip". g =TrEi0™. (1257)
E i 1
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In the large Hilbert space we have many more options for making collective mea-
surements, so this ought to be larger than S;(p||o). Nevertheless we have the bound
(Donald, 1987)

Sn(pllo) = S(pllo) . (12.58)

Even more is true. In the limit when the number of copies of our states go to infinity,
it turns out that

lim Sy = S(pllo). (12.59)
N—oo

This limit can be achieved by projective measurements. We do not intend to prove
these results here, we only quote them in order to inspire some confidence in
Umegaki’s definition of quantum relative entropy. '’

12.4 Other entropies

In the classical case we presented a wide selection of alternative definitions of
entropy, some of which are quite useful. When we apply our rule of thumb — turn
sums into traces — to Section 2.7, we obtain (among others) the quantum Rényi
entropy, labelled by a non-negative parameter ¢,

1 1 al
S,(p) = In[Trp?] = ln[z x;f] . (12.60)

I—q I=q t5
It is a function of the L,-norm of the density matrix, ||p||, = (%Trpq)l/q. It is
non-negative and, in the limit ¢ — 1, it tends to the von Neumann entropy S(p).
The logarithm is used in the definition to ensure additivity for product states:

Sq(p1 ® p2) = S4(p1) + Sq(p2) (12.61)

for any real ¢. This is immediate, given the spectrum of a product state (see Problem
9.4). The quantum Rényi entropies fulfil properties already discussed for their
classical versions. In particular, for any value of the coefficient ¢ the generalized
entropy S, equals zero for pure states, and achieves its maximum In N for the
maximally mixed state p,. In analogy to (2.80), the Rényi entropy is a continuous,
non-increasing function of its parameter ¢.

Some special cases of S, are often encountered. The quantity Trp?2, called the
purity of the quantum state, is frequently used since it is easy to compute. The larger
the purity, the more pure the state (or more precisely, the larger is its Hilbert—Schmidt

10 The final result here is due to Hiai and Petz (1991). And the reader should be warned that our treatment is
somewhat simplified.
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distance from the maximally mixed state). Obviously one has S>(p) = — In[Trp?].
The Hartley entropy Sy is a function of the rank r of p; Sp(p) = Inr. In the other
limiting case the entropy depends on the largest eigenvalue of p; Soo = — In Apax.

For any positive, finite value of g the generalized entropy is a continuous function
of the state p. The Hartley entropy is not continuous at all. The concavity relation
(12.22) holds at least for g € (0, 1], and the quantum Rényi entropies for different
values of ¢ are correlated in the same way as their classical counterparts (see Section
2.7). They are additive for product states, but not subadditive. A weak version of
subadditivity holds (van Dam and Hayden, n.d.):

Sq(p1) — So(p2) = Sg(p12) = Sq(p1) + So(p2) (12.62)

where S, denotes the Hartley entropy — the largest of the Rényi entropies.

The entropies considered so far have been unitarily invariant, and they take
the value zero for any pure state. This is not always an advantage. An interesting
alternative is the Wehrl entropy, that is the classical Boltzmann entropy of the
Husimi function Q(z) = (z|p|z). It is not unitarily invariant because it depends on
the choice of a special set of coherent states |z) (see Sections 6.2 and 7.4). The
Wehrl entropy is important in situations where this set is physically singled out,
say as ‘classical states’. A key property is (Wehrl, 1979):

Wehrl’s inequality. For any state p the Wehrl entropy is bounded from below by
the von Neumann entropy,

Sw(p) = S(p) (12.63)

To prove this it is sufficient to use the continuous version of Peierls’ inequality
(12.11): for any convex function f convexity implies

Trf(p)=/9(z|f(p)|z)dzz z/ﬂ f(<z|,o|z>)dzz=/Q f(Q@)dz.  (12.64)

Setting f(¢) = t Int and reverting the sign of the inequality we get Wehrl’s result.

Rényi—Wehrl entropies can be defined similarly, and the argument applies to them

as well, so that for any ¢ > 0 and any state p the inequality SfW(,o) > S4(p) holds.
For composite systems we can define a Husimi function by

0(z1,22) = (zil{z2lp12lz2)]z1) (12.65)

and analyse its Wehrl entropy (see Problem 12.4). For a pure product state the
Husimi function factorizes and its Wehrl entropy is equal to the sum of the Wehrl
entropies of both subsystems. There are two possible definitions of the marginal
Husimi distribution, and happily they agree, in the sense that

O(z1) = / 0(z1, 22) 22 = (21| Trpialz1) = O(z1) - (12.66)
Q0
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The Wehrl entropy can then be shown to be very well behaved, in particular it
is monotone in the sense that S;, > S;. Like the Shannon entropy, but unlike the
Boltzmann entropy when the latter is defined over arbitrary distributions, the Wehrl
entropy obeys all the inequalities in Table 12.1.

Turning to relative entropy we find many alternatives to Umegaki’s definition.
Many of them reproduce the classical relative entropy (2.25) when their two argu-
ments commute. An example is the Belavkin—Staszewski relative entropy (Belavkin
and Staszewski, 1982)

Sps(pllo) = Tr(p lnpl/za_l,ol/Z). (12.67)

It is monotone, and it can be shown that Sgs(p||o) > S(p||o) (Hiai and Petz, 1991).

The classical relative entropy itself is highly non-unique. We gave a very general
class of monotone classical relative entropies in Eq. (2.74). In the quantum case we
insist on monotonicity under completely positive stochastic maps, but not really on
much else besides. A straightforward attempt to generalize the classical definition
to the quantum case encounters the difficulty that the operator £ is ambiguous in
the non-commutative case. There are various ways of circumventing this difficulty,
and then one can define a large class of monotone relative entropies. Just to be
specific, let us mention a one-parameter family of monotone and jointly convex
relative entropies:

Sa(p,0) = Tr(1 — o @tD2p@=D2)p - —1<a<1.  (12.68)

1 —o?
Umegaki’s definition is recovered in a limiting case. In fact in the limite — —1 we
obtain S(p||o), while we get S(o||p) when « — 1. Many more monotone relative
entropies exist.!!

12.5 Majorization of density matrices

The von Neumann entropy (like the Rényi entropies, but unlike the Wehrl entropy)
provides a measure of the ‘degree of mixing’ of a given quantum state. A more
sophisticated ordering of quantum states, with respect to the degree of mixing,
is provided by the theory of majorization (Section 2.1). In the classical case the
majorization order is really between orbits of probability vectors under permutations
of their components —a fact that is easily missed since in discussing majorization one
tends to represent these orbits with a representative p, whose components appear
in non-increasing order. When we go from probability vectors to density matrices,
majorization will provide an ordering of the orbits under the unitary group. By

11 See Petz (1998) and Lesniewski and Ruskai (1999) for the full story here.
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b

kuzQUE

Figure 12.2. Left: N = 3, and we show majorization in the eigenvalue simplex.
Right: N = 2, and we show two different ways of expressing a given o as a convex
sum of points on the orbit (itself a sphere!) of a majorizing p.

definition the state o is majorized by the state p if and only if the eigenvalue vector
of o is majorized by the eigenvalue vector of p,

c=<p &  Mo)<Ap). (12.69)

This ordering relation between matrices has many advantages; in particular it does
form a lattice.!?

The first key fact to record is that if o < p then o lies in the convex hull of the
unitary orbit to which p belongs. We state this as a theorem:

Theorem 12.3 (Uhlmann’s majorization) If two density matrices of size N are
related by o < p, then there exists a probability vector p and unitary matrices Uy
such that

o= pUpUl. (12.70)
1

Despite its importance, this theorem is easily proved. Suppose o is given in diagonal
form. We can find a unitary matrix U; such that U; ,OUIT is diagonal too; in fact we
can find altogether N'! such unitary matrices since we can permute the eigenvalues.
But now all matrices are diagonal and we are back to the classical case. From the
classical theory we know that the eigenvalue vector of o lies in the convex hull
of the N! different eigenvalue vectors of p. This provides one way of realizing
Eq. (12.70).

There are many ways of realizing o as a convex sum of states on the orbit of p,
as we can see from Figure 12.1. In fact it is known that we can arrange things so
that all components of p; become equal. The related but weaker statement that any
density matrix can be realized as a uniform mixture of pure states is very easy to
prove (Bengtsson and Ericsson, 2003). Let o = diag(A;). For N = 3, say, form a

12 In physics, the subject of this section was begun by Uhlmann (1971); the work by him and his school is
summarized by Alberti and Uhlmann (1982). A more recent survey is due to Ando (1994).
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closed curve of pure state vectors by

einlr 0 0 \/)\_1

Z%t)=| 0 em* 0 Vi |, (12.71)
0 0 em™* VA3

where the n; are integers. Provided that the n; are chosen so that n; — 7 is non-zero
when i # j, itis easy to show that

27

1 _
o= — | drz°Zs0). (12.72)
2w 0

The off-diagonal terms are killed by the integration, so that o is realized by a
mixture of pure states distributed uniformly on the circle. The argument works for
any N. Moreover a finite set of points on the curve will do as well, but we need at
least N points since then we must ensure thatn; — n; # O modulo N. When N > 2
these results are somewhat surprising — it was not obvious that one could find such
a curve consisting only of pure states, since the set of pure states is a small subset
of the outsphere.

Return to Uhlmann’s theorem: in the classical case bistochastic matrices made
their appearance at this point. This is true in the quantum case also; the theorem
explicitly tells us that ¢ can be obtained from p by a bistochastic completely positive
map, of the special kind known from Eq. (10.71) as random external fields. The
converse holds:

Lemma 12.1 (Quantum HLP) There exists a completely positive bistochastic
map transforming p into o if and only if o < p,

bistochastic
—

& o <p. (12.73)

To prove ‘only if’, introduce unitary matrices such that diag(i(o)) =UoU' and
diag(A(p)) = Vp V. Given a bistochastic map such that ®p = o we construct a
new bistochastic map W according to

vX = U[dVixXmut. (12.74)

By construction ¥ (diag(X(p))) = diag(X(a )). Next we introduce a complete set of

projectors P; onto the basis vectors, in the basis we are in. We use them to construct
a matrix whose elements are given by

Bij =TrP,VP; . (12.75)
We recognize that B is a bistochastic matrix, and finally we observe that

Li(o) =TrP; diag(i(o)) =TrPV¥ (Z PjAj(p)) = Z Bijxi(p), (12.76)
j J

J
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where we used linearity in the last step. An appeal to the classical HLP lemma
concludes the proof.

Inspired by the original Horn’s lemma (Section 2.1) one may ask if the word
bistochastic in the quantum HLP lemma might be replaced by unistochastic. This
we do not know. However, a concrete result may be obtained if one allows the size
of ancilla to be large (Horodecki et al., 2003a).

Weak version of quantum Horn’s lemma. If two quantum states of size N satisfy
0’ < p, then there exists a K -unistochastic map transforming p into p’ up to an
arbitrary precision controlled by K.

To prove this one uses the HLP lemma to find a bistochastic matrix B of size N which
relates the spectra, A’ = BA, of the states p’ and p. Then using the Birkhoff theorem
one represents the matrix by a convex sum of permutations, B = an: 1% P
with j < N?> — 2N + 2. The next step consists in setting the size of the ancilla
to M = KN and a decomposition M = Zil:l M,, such that the fractions M,,/M
approximate the weights «,,. The initial state p can be rotated unitarily, so we may
assume it is diagonal and commutes with the target p’. The spectrum of the extended
state p ® 1 consists of N degenerate blocks, each containing M copies of the
same eigenvalue A;. Let us split each block into j groups of M,, elements each
and allow every permutation P, to act M,, times, permuting elements from the
mth group of each block. This procedure determines the unitary matrix U of size
K N? which defines the K -unistochastic operation (see Eq. (10.64)). The partial
trace over an M-dimensional environment produces state p” with the spectrum
A’ = ByA, where B, = f;:l(M,,,/M) P,,. The larger K, the better the matrix B,

approximates B, so one may produce an output state p” arbitrarily close to the target
/

o

An interesting example of a completely positive and bistochastic map is the
operation of coarse graining with respect to a given Hermitian operator H (e.g. a
Hamiltonian). We denote it by ®Z ., and define it by

N N
p — () = Y PipPi=Y_ pilhi)ihil, (12.77)
i=1 i=1

where the P; project onto the eigenvectors |h;) of H (assumed non-degenerate for
simplicity). In more mundane terms, this is the map that deletes all off-diagonal
elements from a density matrix. It obeys Schur—Horn’s theorem:

Theorem 12.4 (Schur-Horn’s) Let p be an Hermitian matrix, X its spectrum, and
D its diagonal elements in a given basis. Then

ho<i. (12.78)
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Figure 12.3. Coarse graining a density matrix.

Conversely, if this equation holds then there exists an Hermitian matrix with spec-
trum A whose diagonal elements are given by p.

We prove this one way. There exists a unitary matrix that diagonalizes the matrix,
SO we can write

pi = pii = Z Uij)\ijkU;j,- = Z Ui P2 (12.79)
Jj.k J

The vector p is obtained by acting on A with a unistochastic, hence bistochastic,
matrix, and the result follows from Horn’s lemma (Section 2.1).!3

The Schur—Horn theorem has weighty consequences. It is clearly of interest
when one tries to quantify decoherence, since the entropy of the coarse grained
density matrix ®Z; will be greater than that of p. It also leads to an interesting
definition of the von Neumann entropy, that again brings out the distinguished
status of the latter. Although we did not bring it up in Section 12.2, we could have
defined the entropy of a density matrix relative to any POVM {E}, as the Shannon
entropy of the probability distribution defined cooperatively by the POVM and the
density matrix. That is, S(p) = S(p), where p; = TrE;p. To make the definition
independent of the POVM, we could then minimize the resulting entropy over all
possible POVMs, so a possible definition that depends only on p itself would be

S(p) = Jin S(p), pi=TrEp. (12.80)

But the entropy defined in this way is equal to the von Neumann entropy. The
Schur-Horn theorem shows this for the special case that we minimize only over
projective measurements, and the argument can be extended to cover the general
case. Note that Wehrl’s inequality (12.63) is really a special case of this observation,
since the Wehrl entropy is the entropy that we get from the POVM defined by the
coherent states.

From a mathematical point of view, the Schur—Horn theorem is much more
interesting than it appears to be at first sight. To begin to see why, we can restate it:
consider the map that takes an Hermitian matrix to its diagonal entries. Then the

13 This part of the theorem is due to Schur (1923). Horn (1954) proved the converse.
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theorem says that the image of the space of Hermitian matrices, under this map, is a
convex polytope whose corners are the V! fixed points of the map. Already it sounds
more interesting! Starting from this example, mathematicians have developed a
theory that deals with maps from connected symplectic manifolds, and conditions
under which the image will be the convex hull of the image of the set of fixed points
of a group acting on the manifold.'#

12.6 Entropy dynamics

What we have not discussed so far is the role of entropy as an arrow of time — which
is how entropy has been regarded ever since the word was coined by Clausius. If
this question is turned into the question how the von Neumann entropy of a state
changes under the action of some quantum operation ® : p — p/, it does have a
clear cut answer. Because of Eq. (12.48), it follows from monotonicity of relative
entropy that a CP map increases the von Neumann entropy of every state if and only
if it is unital (bistochastic), that is if it transforms the maximally mixed state into
itself. For quantum operations that are stochastic, but not bistochastic, this is no
longer true — for such quantum channels the von Neumann entropy may decrease.
Consider for instance the decaying or amplitude damping channel (Section 10.7),
which describes the effect of spontaneous emission on a qubit. It sends any mixed
state towards the pure ground state, for which the entropy is zero. But then this is
not an isolated system, so this would not worry Clausius.

Even for bistochastic maps, when the von Neumann entropy does serve as an
arrow of time, it does not point very accurately to the future (see Figure 12.4).
Relative to any given state, the state space splits into three parts, the ‘future’ F that
consists of all states that can be reached from the given state by bistochastic maps,
the ‘past’ P that consists of all states from which the given state can be reached
by such maps, and a set of incomparable states that we denote by C in the figure.
This is reminiscent of the causal structure in special relativity, where the light cone
divides Minkowski space into the future, the past, and the set of points that cannot
communicate in either direction with a point sitting at the vertex of the light cone.
There is also the obvious difference that the actual shape of the ‘future’ depends
somewhat on the position of the given state, and very much so when its eigenvalues
degenerate. The isoentropy curves of the von Neumann entropy do not do justice
to this picture. To do better one would have to bring in a complete set of Schur
concave functions such as the Rényi entropies (see Figure 2.14).

14 For an overview of this theory, and its connections to symplectic geometry and to interesting problems of linear
algebra, see Knutson (2000). A related problem of finding constraints between spectra of composite systems
and their partial traces was recently solved by Bravyi (2004) and Klyachko (n.d.).
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Figure 12.4. The eigenvalue simplex for N = 3: (a) a Weyl chamber; the shaded
region is accessible from p with bistochastic maps. (b) The shape of the ‘light
cone’ depends on the degeneracy of the spectrum. F denotes Future, P Past, and
C the noncomparable states. (c) Splitting the simplex into Weyl chambers.

Naturally, the majorization order may not be the last word on the future. De-
pending on the physics, it may well be that majorization provides a necessary but
not sufficient condition for singling it out.'

We turn from the future to a more modest subject, namely the entropy of an
operation ®. This can be conveniently defined as the von Neumann entropy of the
state that corresponds to the operation via the Jamiolkowski isomorphism, namely
as

S(¢)ES<%D¢> e [0,InN?]. (12.81)

where Dy is the dynamical matrix defined in Section 10.3. Generalized entropies
may be defined similarly. The entropy of an operation vanishes if D¢ is of rank
one, that is to say if the operation is a unitary transformation. The larger the en-
tropy S of an operation, the more terms enter effectively into the canonical Kraus
form, and the larger are the effects of decoherence in the system. The maximum
is attained for the completely depolarizing channel ®,. The entropy for an oper-
ation of the special form (10.71), that is for random external fields, is bounded
from above by the Shannon entropy S(p). The norm v Tr®®f = ||®||ys may also
be used to characterize the decoherence induced by the map. It varies from unity
for @, (total decoherence) to N for a unitary operation (no decoherence) — see
Table 10.2.

A different way to characterize a quantum operation is to compute the amount of
entropy it creates when acting on an initially pure state. In Section 2.3 we defined
the entropy of a stochastic matrix with respect to a fixed probability distribution.
This definition, and the bound (2.39), has a quantum analogue due to Lindblad

15 For a lovely example from thermodynamics, see Alberti and Uhlmann (1981).
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(1991), and it will lead us to our present goal. Consider a CP map ¢ represented
in the canonical Kraus form p’ = )"'_, A;pA]. Define an operator acting on an
auxiliary r-dimensional space H, by

oij = TrpAlA; . (12.82)

In Problem 10.3 we show that ¢ is a density operator in its own right. The von
Neumann entropy of o depends on p, and equals S(®), as defined above, when
p is the maximally mixed state. Next we define a density matrix in the composite
Hilbert space Hy ® H,,

r r
© =) D ApA;®Ii)jl=Wp W, (12.83)
i=1 j=I

where |i) is an orthonormal basis in H,. The operator W maps a state |¢) in Hy
into Z;:l Ajl¢) ®1j), and the completeness of the Kraus operators implies that
WIW = 1. It follows that S(w) = S(p). Since it is easy to see that Tryw = o
and Tr,w = p, we may use the triangle inequalities (12.28) and (12.32), and some
slight rearrangement, to deduce that

IS(p) — (@) = S(p") = S(o)+ S(p), (12.84)

in exact analogy to the classical bound (2.39). If the intial state is pure, that is
if S(p) = 0, we find that the final state has entropy S(o). For this reason S(o) is
sometimes referred to as the entropy exchange of the operation.

Finally, and in order to give a taste of a subject that we omit, let us define the
capacity of a quantum channel ®. The capacity for a given state is

Ca(p) = max Z piS(®oi]|®p) = min[S(®p) - Z piS@a)] . (12.85)

The quantity that is being optimized will be discussed, under the name Jensen—
Shannon divergence, in Section 13.1. The optimization is performed over all en-
sembles € = {o;; p;} such that p = ), p;0;. It is not an easy one to carry out.
In the next step the channel capacity is defined by optimizing over the set of all
states:

Chol(®) = m/?x[ab(p)] . (12.86)

There is a theorem due to Holevo (1973) which employs these definitions to give
an upper bound on the information carrying capacity of a noisy quantum chan-
nel. Together with the quantum noiseless coding theorem, this result brings quan-
tum information theory up to the level achieved for classical information theory
in Shannon’s classical work (Shannon, 1948). But these matters are beyond the
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scope of our book. Let us just mention that there are many things that are not
known. Notably there is an additivity conjecture stating that Cye (P ® ;) =
Choi(®1) + Choi(P2). In one respect its status is similar to that of strong subad-
ditivity before the latter was proven — it is equivalent to many other outstanding
conjectures. '

Problems

Problem 12.1 Show, for any positive operator A, that

1 1

xB du . (12.87)
A+u A+xB+u

o0
In(A+xB)—InA :/
0

Problem 12.2 Compute the two contour integrals
1 ~1
S(p) = —— f(lnz)Tr(ﬂ -2) d (12.88)
2mi z
and
1 P\ ~!
Solp) = —3— yg(ln z)det(ﬂ - Z> dz, (12.89)

with a contour that encloses all the eigenvalues of p. The second quantity is known
as subentropy (Jozsa, Robb and Wootters, 1994).

Problem 12.3 Prove Donald’s identity (Donald, 1987): for any mixed state p =
>« Prpx and another state o

D e S(oillo) = D pi S(pellp) + S(ollo) . (12.90)
k k

Problem 12.4 Compute the Wehrl entropy for the Husimi function (12.65) of a
two qubit pure state written in its Schmidt decomposition.

Problem 12.5 Prove that Euclidean distances between orbits can be read off from
a picture of the Weyl chamber (i.e. prove Eq. (8.52)).

Problem 12.6 Prove that (det(A + B))]/N > (detA)/N + (detB)'/N, where A
and B are positive matrices of size N.

16 See the review by Amosov, Holevo and Werner (n.d.) and the work by Shor (n.d.).
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Problem 12.7 For any operation ¢ given by its canonical Kraus form (10.55) one
defines its purity Hamiltonian

Q= iiAjA,-@AjAj, (12.91)

i=1 j=1

the trace of which characterizes an average decoherence induced by ® (Zanardi
and Lidar, 2004). Show that Tr2 = || D] |2HS = TrD?, hence it is proportional to the
purity Tr p3 of the state corresponding to @ in the isomorphism (11.22).



13

Distinguishability measures

Niels Bohr supposedly said that if quantum mechanics did not make you
dizzy then you did not understand it. I think that the same can be said
about statistical inference.

Robert D. Cousins

In this chapter we quantify how easy it may be too distinguish probability distri-
butions from each other (a discussion that was started in Chapter 2). The issue is
a very practical one and arises whenever one is called upon to make a decision
based on imperfect data. There is no unique answer because everything depends
on the data — the /;-distance appears if there has been just one sampling of the
distributions, the relative entropy governs the approach to the ‘true’ distribution as
the number of samplings goes to infinity, and so on.

The quantum case is even subtler. A quantum state always stands ready to produce
a large variety of classical probability distributions, depending on the choice of
measurement procedure. It is no longer possible to distinguish pure states from each
other with certainty, unless they are orthogonal. The basic idea behind the quantum
distinguishability measures is the same as that which allowed us, in Section 5.3, to
relate the Fubini—Study metric to the Fisher—Rao metric. We will optimize over all
possible measurements.

13.1 Classical distinguishability measures

If a distance function has an operational significance as a measure of statistical
distinguishability, then we expect it to be monotone (and decreasing) under general
stochastic maps. Coarse graining means that information is being discarded, and
this cannot increase distinguishability. From Cencov’s theorem (Section 2.5) we
know that the Fisher—Rao metric is the only Riemannian metric on the probability
simplex that is monotone under general stochastic maps. But there is another simple
distance measure that does have the desirable property, namely the /,-distance from

323
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TP TG

Figure 13.1. Coarse graining, according to Eq. (13.3), collapses the probability
simplex to an edge. The /;-distance never increases (the hexagon is unchanged),
but the /»-distance sometimes does (the circle grows).

Eq. (1.55). The proof of monotonicity uses the observation that the difference of
two probability vectors can be written in the form

Pi —4qi = Ni+ - N, (13.1)

where N and N~ are two positive vectors with orthogonal support, meaning that
for each component i at least one of N;" and N, is zero. We follow this up with
the triangle inequality, and condition (ii) from Eq. (2.4) that defines a stochastic
matrix 7'

|Tp—Tqlli =IITN* =TN~|ly < |ITNT|li + [ITN" ||y
1 1
— Nt 4+ — N T
i,j L]

1 L
=§Z(Nj +N)
J

=llp—qll .

(13.2)

By contrast, the Euclidean [»-distance is not monotone. To see this, consider a
coarse graining stochastic matrix such as

1 00
T:|:O 1 1:|. (13.3)

Applying this transformation has the effect of collapsing the entire simplex onto one
of its edges. If we draw a picture of this, as in Figure 13.1, it becomes evident why
p = lis the only value of p for which the /,-distance is monotone under this map.
The picture should also make it clear that it is coarse graining maps like (13.3)
that may cause problems with monotonicity — monotonicity under bistochastic
maps, that cause a contraction of the probability simplex towards its centre, is
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much easier to ensure. In fact the flat /,-distance is monotone under bistochastic
maps. Incidentally, it is clear from the picture that the /,-distance succeeds in
being monotone (under general stochastic maps) only because the distance between
probability distributions with orthogonal support is constant (and maximal). This
is a property that the /,-distance shares with the monotone Fisher—Rao distance —
and if a distance is to quantify how easily two probability distributions can be
distinguished, then it must be monotone.

The question remains to what extent, and in what sense, our various monotone no-
tions of distance — the Bhattacharyya and Hellinger distances, and the /;-distance —
have any clear-cut operational significance. For the latter, an answer is known.
Consider two probability distributions P and Q over N events, and mix them, so
that the probability for event i is

ri =mop; + mq; - (13.4)

A possible interpretation here is that Alice sends Bob a message in the form of
an event drawn from one of two possible probability distributions. Bob is igno-
rant of which particular distribution Alice uses, and his ignorance is expressed by
the distribution (7, 771). Having sampled once, Bob is called upon to guess what
distribution was used by Alice. It is clear — and this answer is given stature with
technical terms like ‘Bayes’ decision rule’ — that his best guess, given that event i
occurs, is to guess P if p; > ¢;,and Q if ¢; > p;. (If equality holds the two guesses
are equally good.) Given this strategy, the probability that Bob’s guess is right is

N
Pr(P, Q) = ) max{mpi, 14} (13.5)
i=1

and the probability of error is

N
Pe(P. Q) = ) min{zopi. miqi} - (13.6)
i=1
Now consider the case my = m; = 1/2. Then Bob has no reason to prefer any
distribution in advance. In this situation it is easily shown that Pr — Pg = D, or
equivalently

1 N
Di(P, Q) =2 Ipi—qil =1-2P(P, Q). (13.7)
i=1

that is, the /,-distance grows as the probability of error goes down. In this sense
the /;-distance has a precise meaning, as a measure of how reliably two probability
distributions can be distinguished by means of a single sampling.
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Of course it is not clear why we should restrict ourselves to one sampling; the
probability of error goes down as the number of samplings A increases. There is a
theorem that governs how it does so:

Theorem 13.1 (Chernoff’s) Let PéN)(P, Q) be the probability of error after N
samplings of two probability distributions. Then

ael0,1]

N
N
PP, Q) < (min > q}‘“) . (13.8)
i=1

The bound is approached asymptotically when N goes to infinity.

Unfortunately it is not easy to obtain an analytic expression for the Chernoff bound
(the one that is approached asymptotically), but we do not have to find the minimum
in order to obtain useful upper bounds. The non-minimal bounds are of interest in
themselves. They are related to the relative Rényi entropy

N
L,(P, Q) = liqln[z p?qil_q]. (13.9)
i=1

When g = 1/2 the relative Rényi entropy is symmetric, and it is a monotone func-
tion of the geodesic Bhattacharyya distance Dgp, from Eq. (2.56).

In the limit g — 1, the relative Rényi entropy tends to the usual relative entropy
S(P||Q), which figured in a different calculation of the probability of error in
Section 2.3. The setting there was that we made a choice between the distributions
P and Q, using a large number of samplings, in a situation where it happened to
be the case that the statistics were governed by Q. The probability of erroneously
concluding that the true distribution is P was shown to be

Pe(P, Q) ~ e V5P (13.10)

The asymmetry of the relative entropy reflects the asymmetry of the situation. In
fact, suppose the choice is between a fair coin and a biased coin that only shows
heads. Using Eq. (2.32) we find that

Pr(fair||biased) = e V"®° = 0 and Pg(biased||fair) = e V"2 = 2LN . (13.11)
This is exactly what intuition dictates; the fair coin can produce the frequencies
expected from the biased coin, but not the other way around.

But sometimes we insist on true distance functions. Relative entropy cannot be
turned into a true distance just by symmetrization, because the triangle inequality
will still be violated. However, there is a simple modification that does lead to a
proper distance function. Given two probability distributions P and Q, let us define
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their mean R by

1 1 1 1
R==-P+ - i ==Di+=qi. 13.12
il 2Q @ ri=5pitsa ( )
Then the Jensen—Shannon divergence is defined by
J(P, Q) = 2S5(R) — S(P) — S(Q), (13.13)

where S is the Shannon entropy. An easy calculation shows that this is related to
relative entropy:

N
2p; 2g; )
J(P, _—§ . In +¢;1n = S(P||R) + S(Q||R) .
(P, 0) 2 (p ot a q ot a (P|IR) + S(QIIR)

(13.14)

Interestingly, the function D(P, Q) = +/J(P, Q) is not only symmetric but obeys
the triangle inequality as well, and hence it qualifies as a true distance function —
moreover as a distance function that is consistent with the Fisher—Rao metric.'

The Jensen—Shannon divergence can be generalized to a measure of the diver-
gence between an arbitrary number of M probability distributions P, weighted
by some probability distribution 7 over M events:

M

M
J(Pay, Pay, - Pan) = S ( n,,,P(,,,)> =Y TwS(Pow) - (13.15)
1 m=1

=
It has been used, in this form, in the study of DNA sequences — and in the definition
(12.85) of the capacity of a quantum channel. Its interpretation as a distinguisha-
bility measure emerges when we sample from a statistical mixture of probability
distributions. Given that the Shannon entropy measures the information gained
when sampling a distribution, the Jensen—Shannon divergence measures the aver-
age gain of information about how that mixture was made (that is about 1), since we
subtract that part of the information that concerns the sampling of each individual
distribution in the mixture.

The reader may now have begun to suspect that there are many measures of
distinguishability available, some of them more useful, and some of them easier to
compute, than others. Fortunately there are inequalities that relate different mea-
sures of distinguishability. An example is the Pinsker inequality that relates the
[,-distance to the relative entropy:

2
] N
S(PIQ) = 3 (;m —q,-l) = 2D¥P, Q). (13.16)

! This is a recent result; see Endres and Schindelin (2003). For a survey of the Jensen—Shannon divergence and
its properties, see Lin (1991).
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This is a stronger bound than (2.30) since D; > D,. The proof is quite interesting.
First one uses brute force to establish that

1
2p—q)? < pl 1 - pm—2~ (13.17)
q

l—q
wherever 0 < ¢ < p < 1. This is the Pinsker inequality for N = 2. We are going to
reduce the general case to this. Without loss of generality we assume that p; > g;
for1 <i < K, and p; < g; otherwise. Then we define a stochastic matrix 7 by

|:T11 ... Tix Tigq ... TIN}:[l .. 1.0 ... 0

. (1318
Ty ... T T2K+l ... Ty o ... 0 1 ... 1] ( )

We get two binomial distributions 7 P and T Q, and define

K N K N
P=>_pi= Tipi. q= .qi= Tigi. (13.19)
i=1 i=1 i=1 i=1
It is easy to see that D{(P, Q) = p — ¢q. Using this and Eq. (13.17), we get
2D{(P, Q) < S(TPIITQ) =< S(P||Q). (13.20)

Thus monotonicity of relative entropy was used in the punchline.

The Pinsker inequality is not sharp; it has been improved to?
S(P||Q) > zD2+fD“+£DG+MD8 (13.21)
B R EE RV L/ T '

Relative entropy is unbounded from above. But it can be shown (Lin, 1991) that
2D\(P, Q) = J(P, Q). (13.22)

Hence the /;-distance bounds the Jensen—Shannon divergence from above.

13.2 Quantum distinguishability measures

We now turn to the quantum case. When density matrices rather than probability
distributions are sampled we face new problems, since the probability distribution
P(E, p) that governs the sampling will depend, not only on the density matrix p,
but on the POVM that represents the measurement as well. The probabilities that
we actually have to play with are given by

pi(E, p)=TrEip | (13.23)

where {E;}X | is some POVM. The quantum distinguishability measures will be

defined by varying over all possible POVMs until the classical distinguishability

2 Inequality (13.16) is due to Pinsker (1964), while (13.21) is due to Topsge (2001).
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of the resulting probability distributions is maximal. In this way any classical dis-
tinguishability measure will have a quantum counterpart — except that for some
of them, notably for the Jensen—Shannon divergence, the optimization over all
POVMs is very difficult to carry out, and we will have to fall back on bounds and
inequalities.’

Before we begin, let us define the L ,-norm of an operator A by

1 1/p
IAll, = (ETr|A|”) , (13.24)

where the absolute value of the operator was defined in Eq. (8.12). The factor of
1/2 is included in the definition because it is convenient when we restrict ourselves
to density matrices. In obvious analogy with Section 1.4 we can now define the
L ,-distance between two operators as

D,(A,B) = [[A—B]|,. (13.25)

Like all distances based on a norm, these distances are useful because convex
mixtures will appear as (segments of) metric lines. The factor 1/2 in the definition
ensures that all the L ,-distances coincide when N = 2. For 2 x 2 matrices, an L,
ball looks like an ordinary ball. Although the story becomes more involved when
N > 2, it will always be true that all the L ,-distances coincide for a pair of pure
states, simply because a pair of pure states taken in isolation always span a two-
dimensional Hilbert space. We may also observe that, given two density matrices p
and o, the operator p — o can be diagonalized, and the distance D,(p, o) becomes
the [ ,—distance expressed in terms of the eigenvalues of that operator.

For p = 2 the L ,-distance is Euclidean. It has the virtue of simplicity, and we
have already used it extensively. For p = 1 we have the trace distance*

1 1
Dy(A.B) = STilA~B| = S Di(A. B). (13.26)

It will come as no surprise to learn that the trace distance will play a role similar to
that of the /;-distance in the classical case. It is interesting to get some understanding
of the shape of its unit ball. All L ,-distances can be computed from the eigenvalues
of the operator p — o, and therefore Eq. (1.56) for the radii of its in- and outspheres
can be directly taken over to the quantum case. But there is a difference between
the trace and the /,-distances, and we see it as soon as we look at a set of density
matrices that cannot be diagonalized at the same time (Figure 13.2).

3 The subject of quantum decision theory, which we are entering here, was founded by Helstrom (1976) and
Holevo (1982). A very useful (and more modern) account is due to Fuchs (1996); see also Fuchs and van de
Graaf (1999). Here we give some glimpses only.

4 For convenience we are going to use, in parallel, two symbols, Dy = 2 Dy;.
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Figure 13.2. Some balls of constant radius, as measured by the trace distance,
inside a three-dimensional slice of the space of density matrices (obtained by
rotating the eigenvalue simplex around an axis).

Thus equipped, we take up the task of quantifying the probability of error in
choosing between two density matrices p and o, based on a single measure-
ment. Mathematically, the task is to maximize the /,-distance over all possible
POVMs {E;}, given p and o. Thus our quantum distinguishability measure D is
defined by

D(p,) = max DI(P(E,p), P(E,o)). (13.27)

As the reader may suspect already, the answer is the trace distance. We will carry out
the maximization for projective measurements only — the generalization to arbitrary
POVMs being quite easy — and start with a lemma that contains a key fact about
the trace distance:

Lemma 13.1 (Trace distance) If P is any projector onto a subspace of Hilbert
space then

Dy(p,0) = TrP(p —0) = Di(p,0). (13.28)

Equality holds if and only if P projects onto the support of N, where p — o =
Ny — N_, with Ny and N_ being positive operators of orthogonal support.

To prove this, observe that by construction TrN. = TrN_ (since their difference is
a traceless matrix), so that D, = TrN,. Then

TrP(p — ) = TtP(N, — N_) < TtPN,. < TtN, = Du(p, o). (13.29)

Clearly, equality holds if and only if P = P, where P N_ = 0and P. N, = N,.
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The useful properties of the trace distance now follow suit:
Theorem 13.2 (Helstrom’s) Let p; = TrE;p and q; = TrE;o. Then

Dy(p,0) = mbglx Di(P, Q), (13.30)

where we maximize over all POVMs.
The proof (for projective measurements) begins with the observation that
Tr|Ei(p — o)| = Tr|Ei(Ny — N_)| < TtE;(Ny + N_) =TrEi|p —o| . (13.31)

For every POVM, and the pair of probability distributions derived from it, this
implies that

1 1
Di(P. Q) =3 Y TrlEp =) = 3 Y TeElp—o| = Dulp.0). (13.32)

The inequality is saturated when we choose a POVM that contains one projector
onto the support of N and one projector onto the support of N_. The interpretation
of Dy(p, o) as a quantum distinguishability measure for ‘one shot samplings’ is
thereby established.

Itis important to check that the trace distance is monotone under trace preserving
CP maps p — ®(p). This is not hard to do if we first use our lemma to find a
projector P such that

Du(®(p), ®(0)) = TrP(®(p) — ©(0)) . (13.33)
We decompose p — o as above. Since the map is trace preserving it is true that
Trd(Ny) = Trd(N-). Then
1 1
Dy(p,0) = E(N+ +No)= E(Q(N+) + ®(N-)) = Tre(N,)

(13.34)
= TrPO(Ny) = TrP(P(N4) — ®(N-)) = TrP(P(p) — (o))

— and the monotonicity of the trace distance follows when we take into account
how P was selected. The lemma can also be used to prove a strong convexity result
for the trace distance, namely,

Dy (Z Pipis qu'ai) = Di(P, Q)+ ZpiDLr(pis oi) . (13.35)

We omit the proof (Nielsen and Chuang, 2000). Joint convexity follows if we set
P=0.
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The trace distance sets limits on how much the von Neumann entropy of a given
state may change under a small perturbation. To be precise, we have Fannes’ lemma:

Lemma 13.2 (Fannes’) Let the quantum states p and o act on an N -dimensional
Hilbert space, and be close enough in the sense of the trace metric so that
Dy(p,0) < 1/(2e). Then

[S(p) — S(0)| = 2Du(p,0)In (13.36)

2Dy(p, o)
Again we omit the proof (Fannes, 1973), but we take note of a rather interesting
intermediate step: let the eigenvalues of p and o be r; and s;, respectively, and

assume that they have been arranged in decreasing order (e.g.r; > r, > -+ > ry).
Then

1
Dy(p,0) > EZV" —sil. (13.37)

l

The closeness assumption in Fannes’ lemma has to do with the fact that the function
—x Inx is monotone on the interval (0, 1/e). A weaker bound holds if it is not
fulfilled.

The relative entropy between any two states is bounded by their trace distance
by a quantum analogue of the Pinsker inequality (13.16)

S(pllo) = 2[Du(p, 0)]* . (13.38)

The idea of the proof (Hiai, Ohya and Tsukada, 1981) is similar to that used in the
classical case, that is, one relies on Eq. (13.17) and on the monotonicity of relative
entropy.

What about relative entropy itself? The results of Hiai and Petz (1991), briefly
reported in Section 12.3, can be paraphrased as saying that, in certain well-defined
circumstances, the probability of error when performing measurements on a large
number N of copies of a quantum system is be given by

Ps(p, o) = e NS@llo) | (13.39)

That is to say, this is the smallest achievable probability of erroneously concluding
that the state is p, given that the state in fact is o. Although our account of the
story ends here, the story itself does not. Let us just mention that the step from one
to many samplings turns into a giant leap in quantum mechanics, because the set
of all possible measurements on density operators such as p Q p ® --- ® p will
include sophisticated measurements performed on the whole ensemble, that cannot
be described as measurements on the systems separately.’

5 For further discussion of this interesting point, see Peres and Wootters (1991) and Bennett, DiVincenzo, Mor,
Shor, Smolin and Terhal (1999b).
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13.3 Fidelity and statistical distance

Among the quantum distinguishability measures, we single out the fidelity function
for special attention. It is much used, and it is closely connected to the Bures
geometry of quantum states. It was defined in Section 9.4 as

F(p1, p2) = (Tr \/,0_1;02\/,0_1)2 = (TrlﬁJ/Tzl)

Actually, in Section 9.4 we worked mostly with the root fidelity

VF(p1, p2) = Try/\/pipa/pr - (13.41)

But in some contexts fidelity is the more useful notion. If both states are pure it
equals the transition probability between the states. A little more generally, suppose
that one of the states is pure, p; = |)(¥|. Then p; equals its own square root and
in fact

2
. (13.40)

F(p1, p2) = (¥loal¥) . (13.42)

In this situation fidelity has a direct interpretation as the probability that the state
02 will pass the yes/no test associated to the pure state p;. It serves as a figure of
merit in many statistical estimation problems.

This still does not explain why we use the definition (13.40) of fidelity — for
the quantum noiseless coding theorem we used Eq. (13.42) only, and there are
many expressions that reduce to this equation when one of the states is pure (such
as Trp;pz). The definition not only looks odd, it has obvious drawbacks too: in
order to compute it we have to compute two square roots of positive operators —
that is to say that we must go through the labourious process of diagonalizing a
Hermitian matrix twice. But on further inspection the virtues of fidelity emerge. The
key statement about it is Uhlmann’s theorem (proved in Section 9.4). The theorem
says that F(p;, p2) equals the maximal transition probability between a pair of
purifications of p; and p,. It also enjoys a number of other interesting properties
(Jozsa, 1994):

(1) 0=<F(p1,m) =1;

(2) F(p1, p2) = 1 if and only if p; = p, and F(p;, p2) = 0 if and only if p; and p, have
orthogonal supports;

(3) Symmetry, F(p1, p2) = F(p2, p1);

(4) Concavity, F(p, ap; + (1 —a)p2) = aF(p, p1) + (1 —a)F(p, p2);

(5) Multiplicativity, F(p1 ® 02, 03 ® ps) = F(p1, p3) F(p2. p4) ;

(6) Unitary invariance, F(p;, p2) = F(Up Ut,UpUY);

(7) Monotonicity, F(®(p1), ®(02)) = F(p1, p2), where @ is a trace preserving CP map.

Root fidelity enjoys all these properties too, as well as the stronger property of joint
concavity in its arguments.
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It is interesting to prove property (3) directly. To do so, observe that the trace can
be written in terms of the square roots of the non-zero eigenvalues A, of a positive
operator, as follows:

VF =3 Vu,, where AAT|y,) =dlvn) . A= piypr.  (1343)

But an easy argument shows that the non-zero eigenvalues of AA are the same as
those of ATA:

AATIY) = M) = ATAAT|Y,) = 4,ATIY,) (13.44)

Unless Af|v,) = 0 this shows that any eigenvalue of AAT is an eigenvalue of
A'A. Therefore we can equivalently express the fidelity in terms of the square
roots of the non-zero eigenvalues of ATA, in which case the roles of p; and p, are
interchanged.

Property (7) is a key entry: fidelity is a monotone function. The proof (Barnum,
Caves, Fuchs, Jozsa and Schumacher, 1996) is a simple consequence of Uhlmann’s
theorem (Section 9.4). We can find a purification of our density matrices, such
that F(p1, p2) = |(¥1]|¥2)|>. We can also introduce an environment — a rather
’mathematical’ environment, but useful for our proof — that starts in the pure
state |0), so that the quantum operation is described by a unitary transforma-
tion [¢)|0) — U|¥)|0). Then Uhlmann’s theorem implies that F(P(p;), $(02)) >
(1 [OIUTU [¥2)10)1> = [(¥11(01%2)|0)|* = F(p1, p2). Thus the fidelity is non-
decreasing with respect to any physical operation, including measurement.

Finally, we observe that the fidelity may be defined implicitly (Alberti, 1983) by

Fipi, p) = inf[ Tr(Ap) Tr(A™ )] (13.45)

where the infimum is taken over all invertible positive operators A. There is a
closely related representation of the root fidelity as an infimum over the same set
of operators A (Alberti and Uhlmann, 2000),

1
VE(pr. o) = 3 inf| Tr(Apy) + Tr(A™' )| (13.46)

since after squaring this expression only cross terms contribute to (13.45).

In Section 9.4 we introduced the Bures distance as a function of the fidelity. This
is also a monotone function, and no physical operation can increase it. It follows that
the corresponding metric, the Bures metric, is a monotone metric under stochastic
maps, and may be a candidate for a quantum version of the Fisher—Rao metric.
It is a good candidate.® To see this, let us choose a POVM {E;}. A given density

6 The link between Bures and statistical distance was forged by Helstrom (1976), Holevo (1982), and Braunstein
and Caves (1994). Our version of the argument follows Fuchs and Caves (1995). Actually the precise sense in
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matrix p will respond with the probability distribution P(E, p). For a pair of density
matrices we can define the quantum Bhattacharyya coefficient

B(p,0) = min B(P(E, ), P(E,a)) - mgnZA/—p,»qi , (13.47)

where
pi=TrE;p, ¢; =TrE;o, (13.48)

and the minimization is carried out over all possible POVMs. If we succeed in doing
this, we will obtain a quantum analogue of the Fisher—Rao distance as a function
of B(p, o).

We will assume that both density matrices are invertible. As a preliminary step,
we rewrite p;, using an arbitrary unitary operator U, as

pi="Te (WUVAVENUVAVE) . (13.49)

Then we use the Cauchy—Schwarz inequality (for the Hilbert—Schmidt inner prod-
uct) to set a lower bound:

pigs = Tr (W VBVENU VAVE) ) Tr (o VENWaVED')
(13.50)

2
> (e (WVAVENWVED))
Equality holds if and only if
VoJE = wiUJpVE; (13.51)

for some real number y;. Depending on the choice of U, this equation may or may
not have a solution. Anyway, using the linearity of the trace, it is now easy to see
that

= Tr(U /pv/o) -
(13.52)

Z VPidi = Z |Te(U /PEi/o)| =

Tr (Z UJ,BE,»JE)

The question is: how should we choose U if we wish to obtain a sharp inequality?
We have to make sure that Eq. (13.51) holds, and also that all the terms in (13.52)
are positive. A somewhat tricky argument (Fuchs and Caves, 1995) shows that the

which the Bures metric is the analogue of the classical Fisher—Rao metric is quite subtle (Barndorff-Nielsen and
Gill, 2000).



336 Distinguishability measures

answer is

11
U = \/ﬁpﬁﬁﬁ. (13.53)

This gives Zi Diqi > JF (p, o), where J/F is the root fidelity. The optimal
POVM turns out to be a projective measurement, associated to the Hermitian
observable

1 1
M = ﬁ\/ﬁpﬁﬁ. (13.54)

The end result is that
B(p,0) = rrEnB(P(E, 0), P(E, 0)) =Try/ Vo ps/o = VF(p,o). (13.55)

It follows that the Bures angle distance D = cos™! \/F(p, o) is precisely the
Fisher—-Rao distance, maximized over all the probability distributions that one can
obtain by varying the POVM.

For the case when the two states to be distinguished are pure we have already seen
(in Section 5.3) that the Fubini—Study distance is the answer. These two answers
are consistent. But in the pure state case the optimal measurement is not uniquely
determined, while here it is: we obtained an explicit expression for the observable
that gives optimal distinguishability, namely M. The operator has an ugly look, but
it has a name: it is the geometric mean of the operators o ! and p. As such it was
briefly discussed in Section 12.1, where we observed that the geometric mean is
symmetric in its arguments. From this fact it follows that M (o, p) = M~'(p, o).
Therefore M (o, p) and M(p, o) define the same measurement. The operator M
also turned up in our discussion of geodesics with respect to the Bures metric, in
Eq. (9.57). When N = 2 this fact can be used to determine M in an easy way: draw
the unique geodesic that connects the two states, given that we view the Bloch ball
as a round hemi-3-sphere. This geodesic will meet the boundary of the Bloch ball
in two points, and these points are precisely the eigenstates of M.

We now have a firm link between statistical distance and the Bures metric, but
we are not yet done with it — we will come back to it in Chapter 14. Meanwhile, let
us compare the three distances that we have brought into play (Table 13.1). The first
observation is that the two monotone distances, trace and Bures, have the property
that the distance between states of orthogonal support is maximal:

supp(p) L supp(0) &  Dulp,o)=1 &  Dg(p,0)=~2. (13.56)

This is not true for the Hilbert—Schmidt distance. The second observation concerns
a bound (Fuchs and van de Graaf, 1999) that relates fidelity (and hence the Bures
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Table 13.1. Metrics in the space of quantum states

Metric Bures Hilbert—-Schmidt Trace
Is it Riemannian ? Yes Yes No
Is it monotone ? Yes No Yes

distance) to the trace distance, namely,

1 —VF(p,0) < Du(p,0) < /1—-F(p,0). (13.57)

To prove that the upper bound holds, observe that it becomes an equality for a pair
of pure states (which is easy to check, since we can work in the two-dimensional
Hilbert space spanned by the two pure states). But Uhlmann’s theorem means that
we can find a purification such that F(p, o) = |(¥|¢)|>. In the purifying Hilbert
space the bound is saturated, and taking a partial trace can only decrease the trace
distance (because of its monotonicity), while the fidelity stays constant by definition.
For the lower bound, see Problem 13.2.

The Bures and trace distances are both monotone, and the close relation between
them means that, for many purposes, they can be used interchangeably. There exist
also relations between the Bures and Hilbert—Schmidt distances, but the latter does
not have the same fundamental importance. It is evident, from the way that the Bloch
sphere is deformed by an orthographic projection from the flat Hilbert—Schmidt
Bloch ball to the round Bures hemi-3-sphere, that it may happen that D,(p,, pp) >
Dy (p¢, pa) while Dg(p4, pp) < Dg(pe, pa)- To find a concrete example, place p, =
p. at the north pole, p, on the surface, and p, on the polar axis through the Bloch
ball.

For N =2 we can use the explicit formula (9.48) for the Bures distance to
compare it with the flat Hilbert—Schmidt distance. Since for one-qubit states the
trace and HS distances agree, we arrive in this way at strict bounds between Dg =
Dg(pq, pp) and Dy = Dy(p,, pp) valid for any N = 2 states,

V2—2J/1—=(Dy)? < Dy < 2-2/1-Dy. (13.58)

The lower bound comes from pure states. The upper bound comes from the family of
mixed states situated on an axis through the Bloch ball, and does not hold in higher
dimensions. However, making use of the relation (9.31) between Bures distance
and fidelity we may translate the general bounds (13.57) into

V2=2V/1=(Dy)* < Dp < 2Dy (13.59)
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This upper bound, valid for an arbitary N, is not strict. Figure 13.3 presents Bures
distances plotted as a function of the trace distance for an ensemble of 500 pairs
consisting of a random pure state and a random mixed state distributed according
to the Hilbert—Schmidt measure (see Chapter 14). The upper bound (13.58) is

Distinguishability measures

Figure 13.3. Bures distance plotted against trace distance for random density ma-
trices of size (a) N =2, (b) N = 3 and (c) N = 4. The single dots are randomly
drawn density matrices, the solid lines denote the bounds (13.59), and the dotted
lines the upper bound in (13.58) which holds for N = 2.

represented by a dashed curve, and violated for N > 2.

Problem 13.1 Prove that the flat metric on the classical probability simplex is

Problems

monotone under bistochastic maps.

Problem 13.2 Complete the proof of the inequality (13.57).

Problem 13.3 Derive the inequalities (a): F(o, p) > (Tr\/<7«/,c_))2 and (b):

F(o, p) = Trop. What are the conditions for equality?
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Monotone metrics and measures

Probability theory is a measure theory — with a soul.
Mark Kac

Section 2.6 was devoted to classical ensembles, that is to say ensembles defined
by probability measures on the set of classical probability distributions over N
events. In this chapter quantum ensembles are defined by choosing probability
measures on the set of density matrices of size N. A warning should be issued first:
there is no single, naturally distinguished measure in M), so we have to analyse
several measures, each of them with different physical motivations, advantages and
drawbacks. This is in contrast to the set of pure quantum states, where the Fubini—
Study measure is the only natural choice for a measure that defines ‘random states’.

A simple way to define a probability measure goes through a metric. Hence
we will start this chapter with a review of the metrics defined on the set of mixed
quantum states.

14.1 Monotone metrics

In Section 2.5 we explained how the Fisher metric holds its distinguished position
due to the theorem of Cencov, which states that the Fisher metric is the unique
monotone metric on the probability simplex Ay_;. Now that the latter has been
replaced by the space of quantum states M™) we must look again at the question of
metrics. Since the uniqueness in the classical case came from the behaviour under
stochastic maps, we turn our attention to stochastic quantum maps — the completely
positive, trace preserving maps discussed in Chapter 10. A distance D in the space
of quantum states M®™) is called monotone if it does not grow under the action of
a stochastic map P,

Dmon((bpa CDU) = Dmon(pv U) . (14.1)

339
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If a monotone distance is geodesic the corresponding metric on M®W) is called
monotone. However, in contrast to the classical case it turns out that there exist
infinitely many monotone Riemannian metrics on the space of quantum states.

The appropriate generalization of Cencov’s classical theorem is as follows:'

Theorem 14.1 (Morozova—Cencov-Petz’s) At a point where the density matrix is

diagonal, p = diag(Ay, Lo, ..., Ay), every monotone metric on MM assigns the
length squared
1 N A2 al
IAIP = 7| €D S +23 et hp) Ayl (142)
i=1 ! i<j

to any tangent vector A, where C is an arbitrary constant, the function c(x, y) is
symmetric,

c(x,y)=c(y,x), andobeys c(sx,sy)= s le(x, y), (14.3)

and the function f(t) = ﬁ is operator monotone.

The tangent vector A is a traceless Hermitian matrix; if A is diagonal then the
second term vanishes and the first term gives the familiar Fisher—Rao metric on
the simplex. But the second term is new. And the result falls far short of providing
uniqueness. Any function f(¢) : Ry — R, will be called a Morozova—Chentsov
(MCQ) function, if it fulfils three restrictions:

i) f is operator monotone,
ii) fisselfinversive: f(1/t) = f(t)/t, (14.4)
iii) fh=1.

The meaning of condition (i) was discussed at some length in Section 12.1. Con-
dition (ii) was also encountered there, as the condition for an operator mean to be
symmetric. Here it ensures that the function c(x, y) = 1/[yf(x/y)] satisfies (14.3).
Condition (iii) is a normalization with consequences — it forces us to set C = 1 in
order to avoid a conical singularity at the maximally mixed state, as we will soon
see explicitly in the case N = 2. The metric is now said to be Fisher adjusted. The
Morozova—Cencov—Petz (MCP) theorem can now be rephrased: there is a one-to-
one correspondence between MC functions and monotone Riemannian metrics.
The infinite-dimensional set F of all MC functions is convex; the set of operator
monotone functions itself is convex, and an explicit calculation shows that any

! Here we have merged the theorem by Morozova and Cencov (1990) with a theorem by Petz (1996) that completed
it. See also Petz and Sudar (1996), Lesniewski and Ruskai (1999) and, for a guided tour through the garden of
monotone metrics, Petz (1998).
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3 metric:
f(t) MC functions: Bures
5 maximal - KM
maximal
f(1)=1
1
f(0y=1/2 /
iz
ol
0 1 2 3 4

t

Figure 14.1. Morozova—Chentsov functions f(¢): minimal function for the max-
imal metric (dotted), Kubo—Mori metric (dashed), and maximal function for the
minimal Bures metric (solid line). These metrics are Fisher-adjusted, f(1) = 1.
The Bures metric is also Fubini—Study adjusted, f(0) = 1/2.

convex combination of two self-inversive functions is self-inversive. A monotone
Riemannian metric will be called pure, if the corresponding MC function f is an
extreme point of the convex set . Among all operator monotone functions on
[0, 4+00) which are self inversive and obey f (1) = 1, there exists a minimal and a
maximal function (Kubo and Ando, 1980). In Figure 14.1 we plot three choices:

fan0= L f®=" =2t (149)
The maximal MC function fi,. is a straight line and gives rise to the Bures metric,
while the minimal function f, is a hyperbola. The intermediate case fxy leads to
the Kubo—Mori metric used in quantum statistical mechanics. Our MC functions
correspond to

x + Inx —In 2
emin(t ) = 2 e, y) = Y Y = ———, (14.6)
xX—=y X+y

2xy
so the inverse, 1/c, is equal to the harmonic, logarithmic and arithmetic mean,
respectively. For other interesting choices of f (), see Problem 14.1.
To familiarize ourselves with the frightening expression (14.2) we can take a
look at the case N = 2, the Bloch ball. We set p = %diag(l +r,1—r)and find,
after a minor calculation, that the metric is

1[ dr? 12

2 _
ds 4 1—r2+f(}f;)1+r

d92:| , O<r<l1. (14.7)

Here d2? is the metric on the unit 2-sphere — the second term corresponds to the
second, tangential, term in Eq. (14.2), and we used spherical symmetry to remove



342 Monotone metrics and measures

the restriction to diagonal density matrices. We can now see, given C = 1, that
the condition f(1) = 1 means that the metric is regular at the origin. We also see
that f(0) = 0 means that the area of the boundary is infinite. If f£(0) is finite the
boundary is a round 2-sphere. It will have radius 1/2 if f(0) = 1/2; such a metric
is said to be Fubini—Study adjusted.

Because the Morozova—Chentsov function f appears in the denominator, the
larger the (normalized) function, the smaller the area of a sphere at constant r. So,
slightly confusingly, the metric that uses fi,i, will be called the maximal metric and
the metric using fi.x Will be called the minimal metric.

Let us now go through the geometries corresponding to our three choices of the
function f(¢). If f = fiax then

2
ds, = %[ld_r,,z +r2d92] . (14.8)
This is the metric on a round 3-sphere of radius 1/2; the scalar curvature is Ry,.x =
4 -6 and the boundary of the Bloch ball is a round 2-sphere corresponding to
the equator of the 3-sphere. This is a Fubini—Study adjusted metric. In fact it is the
Bures metric that we have encountered in Chapters 9 and 13. Since it is given by the
maximal function fi,,x(?), it is distinguished by being the minimal Fisher-adjusted,
monotone Riemannian metric. If f = f, then

1 1
dsl%lax = Z |:1 — r2 (dr2 + r2d92)] . (149)
The curvature is everywhere negative and diverges to minus infinity atr = 1. Indeed
the area of the boundary — the space of pure states — is infinite. For the intermediate
choice f = fxm we get

1 dr? r 1+r
dsZy = - —1 ae?| . 14.10
kM 4[1—r2+2n<1—r> ] (14.10)

The curvature is zero at the origin and decreases (very slowly at first) to minus
infinity at the boundary, which again has a diverging area although the divergence
is only logarithmic.

Now where does Eq. (14.2) come from? Recall from Section 2.5 that there were
two natural definitions of the (uniquely monotone) Fisher—Rao metric. We can
define it as the Hessian of the relative entropy function, or in terms of expectation
values of score vectors (logarithmic derivatives of the probability distribution). In
the classical case these definitions led to the same metric. But in the quantum case
this is no longer so. The logarithmic derivative of a density matrix is an ambiguous
notion because we have entered a non-commutative probability theory. To see this
let us assume that we are looking at a set of density matrices py parametrized by
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some parameters 8. For simplicity we consider an affine parametrization of M®)
itself,

1 N
Py = ﬁﬂ +Y 04, (14.11)
a=1

where A, are a set of traceless Hermitian matrices, that is to say that they are tangent
vectors of M), Evidently

app = Ay . (14.12)
We may define the logarithmic derivative, that is a quantum score vector L, by
Ay = 109La = L,= p()_lAa . (1413)

In analogy with the classical equation (2.65), we define the squared length of a
tangent vector as

, 1 1 1 1.2
[|A||* = -TrpyLL = -TrAL = —Trp, A~. (14.14)
4 4 4
This defines a metric. If we set p = diag(}, ..., Ay) and perform a pleasant cal-

culation we find that it is exactly the maximal metric, that is the metric (14.2) for
the choice f = fiin.

But other definitions of the logarithmic derivative suggest themselves, such as
the symmetrical logarithmic derivative L, occurring in the equation

1
As=pgolL,= E(IOQLa + Lape) (14.15)

where we found a use for the Jordan product from Section 8.6.2 This equation for
L, was first encountered in Eq. (9.27), and there we claimed that there is a unique
solution if py is invertible. To find it, we first choose a basis where py is diagonal
with eigenvalues A;. The equation for the matrix elements of L, = L becomes

1 1

(where no summation is involved). The solution is immediate:
2

Lij = mA,»_,« . 14.17)
The length squared of the vector A becomes
1 1 AjjAi; 1 AZ |A;;]?
AlP=-TrAL=-) L1 _-_\""i — 14.18
A= 2T 2;Ai+xj 421.: py +;)\i+)\j (14.18)

2 The symmetric logarithmic derivative was first introduced by Helstrom (1976) and Holevo (1982).
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Again a pleasant calculation confirms that this agrees with Eq. (14.2), this time for
the choice f = fiax.

The Kubo—Mori metric is a different kettle of fish.? It arises when we try to
define a metric as the Hessian of the relative entropy. It takes a little effort to do
this explicitly. We need to know that, for any positive operator A,

1 1
xB
A4+u A+xB+u
To prove this is an exercise (namely Problem 12.1). It follows that

1 1
A
ptu ptu

In(A +xB)—lnA:/ du . (14.19)
0

o0
3, In(p + xA)_g = / du . (14.20)
0

With this result in hand it is straightforward to compute
o0
—0,088(p + aAl|lp + BB)ja=p=0 = / TrA(p +u)'B(o +u) 'du. (14.21)
0

This is precisely the expression that defines the Kubo—Mori scalar product
g(A, B)(p), in analogy with the classical equation (2.59). If we evaluate this ex-
pression for a diagonal density matrix p we recover Eq. (14.2), with the function
¢ = cgm given in Eq. (14.6).

The Kubo—Mori metric does have a uniqueness property: it is the only monotone
metric for which the two flat affine connections, mixture and exponential, are mu-
tually dual (Grasseli and Streater, 2001). Therefore it allows us to play a quantum
version of the classical game played in Section 3.2. There is also a conjecture by
Petz (1994), that says that the Kubo—Mori metric is the only metric having the
property that the scalar curvature is monotone, in the sense that if p; < py, thatis if
p1 is majorized by p,, then R(p;) < R(p,) (which is not true for the Bures metric,
as mentioned in Section 9.6). On the other hand the fact that the Kubo—Mori metric
is the Hessian of the relative entropy is not really a uniqueness property, because
it can be shown that every monotone metric is the Hessian of a certain monotone
relative entropy — not Umegaki’s relative entropy, but one of the larger family of
monotone relative entropies* whose existence we hinted at in Section 12.4.

14.2 Product measures and flag manifolds

It will not have escaped the reader that the price of putting a Riemannian geometry
on MW is rather high, in the sense that the monotone metrics that appear are quite
difficult to work with when N > 2. Fortunately the measures that come from our

3 Studies of this metric include those by Ingarden (1981), Balian, Alhassid and Reinhardt (1986) and Petz (1994).
4 Lesniewski and Ruskai (1999) explored this matter in depth; see also JenZova (2004).
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monotone metrics are not that difficult to handle, so that calculations of volumes
and the like are quite doable. The basic trick that we will use is the same as that one
uses in flat space, when the Euclidean measure is decomposed into a product of a
measure on the orbits of the rotation group and a measure in the radial direction
(in other words, when one uses spherical polar coordinates). The set of density
matrices that can be written in the form p = UA U t, for a fixed diagonal matrix
A with strictly positive eigenvalues, is a flag manifold F") = U(N)/[U(D]V (see
Section 8.5). A natural assumption concerning a probability distribution in M®
is to require invariance with respect to unitary rotations, P(0) = P(Wo W7). This
is the case if (a) the choice of eigenvalues and eigenvectors is independent, and (b)
the eigenvectors are drawn according to the Haar measure, dvy (W) = dvg(UW).

Such a product measure,dV = dvgy(U) x du(i), defined on the Cartesian prod-
uct F™ x Ay_q, leads to the probability distribution,

P(p) = Py(FM) x P(X) (14.22)

in which the first factor denotes the natural, unitarily invariant distribution on the
flag manifold FY), induced by the Haar measure on U(N).

We are going to compute the volume of FY) with respect to this measure. Let
us rewrite the complex flag manifold as a Cartesian product of complex projective
spaces,

g _ UM U(N) UN-D  UQ
T WY T UN-D)xUMDUN=2)xU)  UQ) x U(1)
~CP" ! xCP"?2x...xCP!, (14.23)

where >~ means ‘equal, if the volumes are concerned’. This ignores a number of
topological complications, but our previous experience with fibre bundles, say in
Section 4.7, makes it at least plausible that we can proceed like this. (And the result
is correct!) Making use of Eq. (4.87), Vol(CP*) = % /k!, we find for N > 2

N-1 aNIN=1)/2
Vol(F™) = [ ] Vol(CP*) = — , (14.24)
k=1 =N
with
N
En=001120 . (N= D! =]][Tk). (14.25)
k=1

The result for Vol(F) still depends on a free multiplicative factor which sets the
scale, just as the volume of a sphere depends on its radius. In Eq. (14.24) we have
implicitly fixed the scale by the requirement that a closed geodesic on CP* has
circumference 7. In this way we have adjusted the metric with Eq. (3.137), which



346 Monotone metrics and measures

Table 14.1. Volumes of flag manifolds and unitary groups; Ex = ]_[,ivzl (k).

Manifold Dimension Vol[X], a=1/2 Vol'[X], a=1
cpV 2N o =
P = U0, NN = 1) i e
SU(N) N2 _1 2(N—1)/2\/—7r‘”+2‘1:’"’/2 \/ﬁ(h)‘”é?”*”’-

corresponds to the following normalization of the measure on the unitary group
1
ds* = —a Te(U™'dU)* with a = 5 (14.26)

Direct integration over the circle U(1) gives Vol[U(1)] = 2w+/a = /27 This
result combined with (14.24) allows us to write the volume of the unitary group’

N g NW+1D/2
Vol[U(N)] = Vol(F™)(Vol[U()])" =2V *—n—. (14.27)

En
For completeness let us state an analogous results for the special unitary group,
g (N+DN=1)/2

Vol[SUN)| =2W-D2 N — — (14.28)
N

This is again the quotient of the volumes of U(N) and U (1), but it is a different
U(1) than the one above, hence the presence of the stretching factor v/N.

Let us return to the discussion of the product measures (14.22). The second
factor P(X) may in principle be an arbitrary measure on the simplex Ay_;. To
obtain a measure supported on the set of mixed states one may use the Dirichlet
distribution (2.73), for example with the parameter s equal to 1 and 1/2, for the
flat and round measures on the simplex. These measures were called unitary and
orthogonal product measures (Zyczkowski, 1999), respectively, since they repre-
sent the distribution of the squared components of a random complex (real) vector
and are induced by the Haar measures on the unitary (orthogonal) groups. The
unitary product measure P, is induced by the coarse graining map (see Eq. (14.72))
but, as discussed in the following sections of this chapter, other product measures
seem to be better motivated by physical assumptions.

[1]

5 This result was derived by Hua (1963) with the normalization a = 1, for which the volume of the circle becomes
Vol'[U(1)] = 2. Different normalizations give proportional volumes, Vol (X) = (V/2)3mX)Vol(X). For the
reader’s convenience we have collected the results for both normalizations in Table 14.1. For orthogonal groups,
see Problem 14.2. For more details consult (Boya, Sudarshan and Tilma, 2003; Zyczkowski and Sommers, 2003)
and references therein.
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14.3 Hilbert-Schmidt measure

A metric always generates a measure. For Riemannian metrics this was explained
in Section 1.4, but we can also use more exotic metrics like the L ,-metrics defined
in section 13.2. All L ,-metrics, including the trace metric for p = 1, will generate
the same Lebesque measure. Here we concentrate on the p = 2 case, the Hilbert—
Schmidt metric, and when deriving the measure we treat it in the same way that we
would treat any Riemannian metric. The Hilbert—Schmidt metric is defined by the
line element squared,

2 1 2
dsfis = 5 Trl(dp)’] (14.29)

valid for any dimension N.® Making use of the diagonal form p = UA U~! and of
the differentiation rule of Leibnitz, we write

dp = U[dA+U"dUA — AU 'dUTU . (14.30)

Hence (14.29) can be rewritten as

dsig = Z(dk )Y + Z(A — ) UTNdU);12 (14.31)
i<j
Due to the normalization condition Ziz] MA; = 1, the sum of differentials vanishes,
ZZN:I dA; = 0. Thus we may consider the variation of the Nth eigenvalue as a
dependent one, diy = — ZlN:E] dX;, which implies

1 N lel 1 N—-1 2 N—-1
5 > (dr)? = 3 > @) + E(Z dk,-) = ) da; gijda;. (14.32)
i=1 i=1 i=1 ij=1

The corresponding volume element gains a factor 4/detg, where g is the metric
in the (N — 1)-dimensional simplex Ay_; of eigenvalues. From (14.32) one may
read out the explicit form of the metric

1 0 -1

g=3 . +§ N (14.33)

0 1 1 --- 1
It is easy to check that the (N — 1)-dimensional matrix g has one eigenvalue equal
to N/2 and N — 2 eigenvalues equal to 1/2, so that detg = N/2¥~!. Thus the
Hilbert—Schmidt volume element has the product form

N—1 1.N

N

dViss = 257 ]‘[dx ]1@ — ) ‘nRe(U 14U Im(U~'dU) |
J=< J=<

(14.34)

6 As in Chapter 8, a factor 1/2 is included here to ensure that the length of a closed geodesic in CP" equals 7.
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The first factor, depending only on the spectrum X, induces the Hilbert—Schmidt
probability distribution in the simplex of eigenvalues (Braunstein, 1996; Hall,
1998),

N N
Pus) = Cy* 81 =Y ap ] — a0 (14.35)
j=l1 i<k

where the normalization constant
chs — I'(N?) _ T'(N?)
VTN Tork+ 1) EnEan

(14.36)

ensures that the integral over the simplex Ay_; is equal to unity (Zyczkowski and
Sommers, 2001).

Let us now analyse the second factor in (14.34). It arises from the off-diagonal
elements of the invariant metric (14.26) on the unitary group

N N

ds? = —%Tr(U’ldU)z = % Z (UT'dU) ;1 + Z (U dU)* . (14.37)

Jj=1 j<k=1
Hence the Hilbert—-Schmidt measure in the space of density matrices belongs to the
class of product measures (14.22).

Since the diagonal elements of (14.37) do not contribute to the volume element
(14.34), integrating it over the unitary group we obtain the volume of the complex
flag manifold (14.24). To compute the Hilbert—Schmidt volume of the set of mixed
states M@ we need also to integrate (14.34) over the simplex of eigenvalues A y_;.
Normalization (14.35) implies that the latter integral is equal to 1/ CHS. Taking into
account the prefactor /detg = /N/2N~!, present in (14.34), we obtain’

N Vol(F™) aNN=D/2 P(1)...T(N)

(N)) — —
Volis (M) =/ - N1 OIS =N e (1439)

The factor N! in the denominator compensates for the fact that we should really
integrate over only one Weyl chamber in the eigenvalue simplex. In other words,
different permutations of the vector Aof N generically different eigenvalues belong
to the same unitary orbit, so we may restrict the order of the eigenvalues to, say,
A = Ay = -+ - > Ay. Substituting N = 2 it is satisfying to receive that V, = 7/6
— exactly the volume of the Bloch ball of radius 1/2.

The next result V3 = 73/(13 440+/3) allows us to characterize the difference
between the set M@ C R® and the ball B®. The set of mixed states is inscribed

7 This differs from the result in (Zyczkowski and Sommers, 2003) by a factor 2V >=D/2_since in that work the
length of closed geodesic in CP" was set to 2.
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Table 14.2. Scaling properties of convex bodies in RP with volume V, area
A. Radii of the inspheres and outspheres are denoted by r and R.

Body X dim ¢ = § n= R%
Round ball Obp D D D!
Cube Xp D D'/? D3/?
Quantum states MM N%—1 D'/? D32
Cross-polytope oD D D'/2 D32
Simplex Ap D D! D?

into a sphere of radius R3 = /1/3 &~ 0.577, while the maximal ball contained
inside has the radius r3 = R3/2 ~ (0.289. These numbers may be compared with
the volume radius 75 of M@, that is the radius of an 8-ball of the same volume.
Using Eq. (1.22) we find 73 & 0.368. The distance from the centre of M® to its
boundary varies with the direction in R® from r3 to Rj.

The volume V) tends to zero if N — oo, but there is no reason to worry about it.
The same is true for the volume (1.22) of the N-balls, as it is a consequence of the
choice of the units. To get some more information on the properties of the set M®),
let us compute the (hyper)area of its boundary. Although the boundary d M®) is far
from being trivial and contains orbits of different dimensionality, its full measure
is formed of density matrices with exactly one eigenvalue equal to zero (see Sec-
tion 8.5). Hence the hyperarea A of the boundary may be computed by integrating
(14.34) over Ay_s x F®™)_ The result is (Zyczkowski and Sommers, 2003)

aNN=D2 (1) ... T(N +1)
Volys (AIM™N) = /N — 1 .
Olis ) 22727 T(N)T[(N? — 1)

For N = 2 we get m, just the area of the Bloch sphere of radius R, = 1/2.

Knowing the HS volume of the set of mixed states and the area of its boundary,
we may compute their ratio. As in Section 1.2 we fix the scale by multiplying the
ratio with the radius of the outsphere, Ry = /(N — 1)/2N, compare Eq. (8.35).
The result is

(14.39)

HS _ VOle(aM(N))
=Y Nolys (M)

It grows fast with N. We can compare this with the results obtained for balls,
simplices, and cubes — if we remember that the dimension of MMisD = N2 —1.
Then we see that the area/volume ratio for the mixed states scales with the
dimensionality® as 5 ~ D32, just as for D-cubes (1.29): see Table 14.2. Tt is

= (N-DWN*=1). (14.40)

8 The same scaling also describes the set of real density matrices (Zyczkowski and Sommers, 2003).
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remarkable that the area to volume ratio for M) behaves just like that for cubes of
the same dimension. Note that n = DR/r for all the entries, where r is the radius
of the insphere. This means that r vol(d X)/vol(X) = D for all of them. At the end
of Section 1.2, we explained exactly what such a result implies about a convex
body.

14.4 Bures measure

We can repeat the same analysis for the monotone metrics given by the MCP
theorem; they may be much more complicated to deal with than the Hilbert—Schmidt
metric, but they are unitarily invariant, so all of them will lead to product measures
of the form (14.22). To see how this works, we first observe that in a coordinate
system where p is diagonal Eq. (14.30) simplifies to

dpij = dridi; + (A — AU AU, (14.41)
Substituting this into the expression that defines the metric, Eq. (14.2), we obtain
N
ds? =~ [Z +2) i A — xj)2|(U1dU)fj|2} . (14.42)
= i<j

where f is an arbitrary MC function and c(x, y) = 1/[yf(x/y)] enters the definition
(14.2). For c(x, y) = cmax(x, y) = 2/(x + y) this becomes the Bures metric, our
topic in this section:

N 2 2
(dxr) (Ai —Aj) _
dsg = - § 1: + § ’ ﬁKU Lau)y; . (14.43)
1= l<] J

Since Trp = 1 not all dA ; are independent. Eliminating dA we obtain
2

1 SLdr)? 1 Y o1 A=\
Z ; T +3 (;dx_,«) - (14.44)

The metric (14.44) in the (N — 1)-dimensional simplex is of the form g; =
Six/4r; + 1/40N) with determinant detg =1+ A+ -+ Ay)/
AN "X Ay .. An) =4""V/detp, since Trp =1. Thus the volume element
gains a factor /detg = 2!~V (det p)~'/2, so we obtain an expression

=

—1

IIM

B IN-1 ’—detp i J it )Lj + M i Jk jk

(14.45)
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analogous to (14.34). This volume element gives the Bures probability distribution
in the eigenvalue simplex (Hall, 1998; Caves, n.d.),

5( - > 1)»)1—[()»1‘—)%)2

Pg(A1, ..., y) = A Y

(14.46)

The Bures normalization constants® read (Sommers and Zyczkowski, 2003)

2 I'(N?/2) oy T(N?/2)
CB =2V-N =N N _ 7 14.47
N aN2T(1)...T'(N + 1) N2 By ( )
Integrating (14.45) over F¥) x Ay_; we get the Bures volume
21=N Vol(F™M) 1 V2
Volg(M™M)) = = . 14.48
oM = T T 2V T(N2)2) (14.4%)

Observe that the Bures volume of the set of mixed states is equal to the volume
of an (N? — 1)-dimensional hemisphere of radius Rg = 1/2. In a similar way one
computes the Bures volume of the boundary of the set of mixed states (Sommers
and Zyczkowski, 2003)

N (V=12
2N -2 T[(N2 = 1)/2]

We are pleased to realize that for N = 2 the above results describe the Uhlmann
hemisphere of radius Rg = 1/2,

Volg(AMM)y = (14.49)

2
Volg(M®) = V IS R} = §’ Vol (0 M) = Vol(S) R =7 .

(14.50)

Although for N > 2 the Bures geometry is not like that of a hyper-hemisphere (see
Section 9.6), we see that the ratio

B Volg(@M™)) N '(N?/2)

=B Volg(M®™) — /7 T(NZ/2— 1/2)

asymptotically increases linearly with the dimensionality D = N2 — 1, which is
typical for hemispheres.

~D (14.51)

14.5 Induced measures

The measures discussed so far belong to the wide class of S1 measures:

S1 - Metric-related measures. Any metric generates a measure.

9 The constant C? = 2/m was computed by Hall (1998), while C3B = 35/m and C}f = 2!135/72 were found by
Slater (1999a).
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Other families of measures may be defined in an operational manner by spec-
ifying a recipe to generate a density matrix. Consider a pure state |) of a bipar-
tite N x K composite quantum system described in H = Hy ® Hg. It is conve-
nient to work in an arbitrary orthogonal product basis, |i, k) = |i) ® |k), where
li) € Hy and |k) € Hg. The pure state |y) is then represented by a N x K
rectangular complex matrix A with A;; = (i, k|Y). The normalization condition,
I )|> = TrAAT = 1, is the only constraint imposed on this matrix. The corre-
sponding density matrix o = |{)(¥|, acting on the composite Hilbert space H,
is represented in this basis by a matrix labelled by four indices, o/%, = A A%,
Partial tracing with respect to the subspace H gives the reduced density matrix
of size N

p = Trx(o) = AAT, (14.52)

while partial tracing over the first subsystem leads to the reduced density matrix
p = Try(0) = AtA of size K. Now we are prepared to define a family of measures
in the space of mixed states M) labelled by a single parameter — the size K of
the ancilla (Lubkin, 1978; Braunstein, 1996; Hall, 1998).

S2 — Measures P,‘jf‘ff(p) induced by partial trace over an K-dimensional envi-
ronment (14.52) of an ensemble of pure states distributed according to the unique,
unitarily invariant Fubini-Study measure on the space CPX¥~! of pure states of the
composite system.

There is a simple physical motivation for such measures: they can be used if we
do not know anything about the density matrix, apart from the dimensionality K of
the environment. When K = 1 we get the FS measure on the space of pure states.
Since the rank of p is limited by K, the induced measure covers the full set of
MM for K > N. When K < N the measure Py%¢ is supported on the subspace
of density matrices of rank K belonging to the boundary MM,

Since the pure state |1) is drawn according to the FS measure, the induced mea-
sure Py enjoys the product form (14.22). Hence the distribution of the eigenvec-
tors of p is determined by the Haar measure on U (NN), and we need to find the joint
distribution of the eigenvalues in the simplex Ay _;.

In the first step we use the relation (14.52) to write down the distribution of
matrix elements

P(p) /[dA] 8(p — AAH 8(TrAAT — 1), (14.53)

in which the first delta function assures the (semi)positive definiteness, while the
second delta function provides the normalization. Let us assume that K > N, so
that p = AAT is generically positive definite (the Wishart case, since AA1 is called
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a Wishart matrix '°). Thus one can perform the transformation
A= /pA and [dA] = detp® [dA]. (14.54)
Note that [dA] includes alternating factors dA;; and dA;;*. The matrix delta function
may now be written as
8(Vp(1 — AAY)/p) = detp™™ 8(1 — AAT) , (14.55)

where the first factor on the right-hand side is the inverse Jacobian of the corre-
sponding transformation. This implies

P(p) x 6(p)8(Trp — 1) detp®—V, (14.56)

in which the step function ensures that p is positive definite. The joint probability
distribution of eigenvalues is given by (Lubkin, 1978; Lloyd and Pagels, 1988;
Page, 1993; Hall, 1998)

PNREGas o) = Cu 80 =Y ) [[A V[ Jow =207 457
i i i<j
with the normalization constant (Mehta, 1991; Zyczkowski and Sommers, 2001)
I'(KN) _ Ek-nI'(KN)
[1/2 T(K = PN — j + 1) Ex BN+

Cyk = (14.58)
written here for K > N interms of Ey defined in (14.25) extended by a convention
Ep = 1. If the size K of the ancilla equals the size N of the system, the measure
Py§ induced by partial tracing of the pure states in CPY’~! coincides with the
Hilbert—Schmidt measure (14.35),and Cy y = C SS. For instance, the partial trace
of N = 4 random complex pure states induces the uniform measure in the Bloch
ball of N = 2 mixed states.

Integrating out all eigenvalues but one from the joint probability distribution
(14.57) one receives the density of eigenvalues. This task!! was performed by Page
(1993), who derived the distribution

_ (x —a_)ay —x) . _ K K
Py g(x) = T , with ar =1+ N +£2, N (14.59)

valid for K > N > 1. Here x = N stands for the rescaled eigenvalue, so asymp-
totically the rescaled spectrum is supported on the interval [a_, a].

10 1 the opposite, so called anti-Wishart, case (Yu and Zhang, 2002; Janik and Nowak, 2003) the reduced density
matrix p = ATA has N — K zero eigenvalues, but the reduced matrix p’ of size K is positive definite and has
the same positive eigenvalues. The formulae (14.57)—(14.59) hold with both parameters exchanged, N < K.

! Up to an overall normalization factor this problem is equivalent to finding the density of the spectrum of random
Wishart matrices H = AAT studied by Marchenko and Pastur (1967) and later by Sengupta and Mitra (1999).
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A random mixed state may also be obtained as a convex sum of K pure states
from CPV~!. The probability distribution of the weights may be arbitrary, but for
simplicity we will consider the uniform distribution, p; = 1/K. The number of
pure states K, which governs the rank of p, may be treated as a free parameter
labelling the measure

S3 — Mixtures of random pure states obtained as a combination of K independent
random pure states |{"") drawn according to the FS measure,

K
Z rand mnd ) (1460)

The measure Pm”‘t(p) defined in this way has the product form (14.22). For
K < N the measure is supported on a subspace of lower rank included in the
boundary M ™. By construction Pys' = Pie is equivalent to the FS measure
on the manifold of pure states. However, for larger K both ways of generating
mixed states do not coincide.

In general, one may distinguish the symmetric case, P,'V"_i,’i,‘(p), since the number
K = N is the minimal one, which typically gives mixed states of the full rank.
For instance, analysing the position of the barycentre of two independent random
points placed on the surface of the Bloch sphere we infer that Pzn,‘zi’“()» 1, A2) X
8(1 — A1 — A2)|A1 — Az|. In larger dimensions the distributions P}J{ﬂ’{,‘(i) get more
complicated and differ from ngff(i) = Pys (X). The larger number K of the states
in the mixture, the larger the entropy of the resulting mixed state p. In the limit
K — oo it tends to the maximal value In N.

14.6 Random density matrices

The measures that we have discussed allow us to generate random density matrices.
The picture is particularly transparent for N = 2, in which the product form (14.22)
assures the rotational symmetry inside the Bloch ball, and the only thing to settle is
the radial distribution P(r), where the radius r = |A; — 1/2] is equal to the length
of the Bloch vector, r = |T|.

For N = 2 the HS measure (14.35) gives Pys(r) = 24r2 (for r € [0, 1/2]). This
is one possible way of saying that the distribution is uniform inside the Bloch ball.
The Bures measure (14.46) induces the distribution

3272
a1 —4r2
This is the uniform distribution on the Uhlmann hemisphere. Comparing the HS and
Bures measures we realize that the latter is more concentrated on states of high purity

Pg(r) = (14.61)
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Figure 14.2. Distribution of an eigenvalue A of density matrices of size N = 2:
(a) P, (dotted line); P, — ‘cosine distribution’ (dashed line); PZ“_‘;‘ed (solid line)
and Pp — Bures measure (dash—dotted line); (b) measures lef‘}ge induced by partial
tracing; K = 2 (i.e. Pys) (solid line); K = 3 (dashed line); K = 4 (dash—dotted)
line, and K = 5 (dotted line).
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Figure 14.3. Probability distributions in the simplex of eigenvalues for N =3
(a) Bures measure, (b) Hilbert-Schmidt measure equal to P_{fg‘cc; other measures

induced by partial tracing: (c) P53 and (d) P;§e.

(with large ). For N = 2 one has A; + X, = 1, the denominator in (14.46) equals
unity, and the Bures measure coincides with the induced measure Pg(A;, Ay) =
lefg‘“fg()»l, A2). Even though there is no subsystem of the dimensionality K = 3/2
and such an induced measure has no physical interpretation, this relation is useful
to compute some averages over the Bures measure by an analytical continuation in
the parameter K .

Some exemplary radial distributions inside the Bloch ball, sketched in Figure
14.2, include the s = 1 Dirichlet distribution (2.73), generated by the unitary prod-
uct measure, P,(r) = 2, and the s = 1/2 Dirichlet distribution, related to the or-
thogonal product measure, P,(r) = 4/(w+/1 — 4r?). Figure 14.2 also presents a
family of distributions implied by the induced measures (14.57). The larger the
dimension K of the auxiliary space H 3, the more is the induced distribution Py*§
concentrated in the centre of the Bloch ball (Hall, 1998).

A similar effect is shown in Figure 14.3 for N = 3, in which probability dis-
tributions are plotted in the eigenvalue simplex. Again the Bures measure is more
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localized on states of high purity, as compared to the HS measure. Due to the factor
(A — A J-)2 in (14.57) the degeneracies in spectrum are avoided, which is reflected
by a low probability (white colour) along all three bisectrices of the triangle. On
the other hand, the distribution nggce(i) is singular, and located at the edges of
the triangle, which represent density matrices of rank 2. It is equal to lefféce(i)
represented by dashed line in Figure 14.2

In order to characterize the average degree of mixing of random states we
compute the mean moments (Trp*), averaged with respect to the measures intro-
duced in this chapter. Averaging over the Hilbert—Schmidt measure (14.35) gives
the exact results (Lubkin, 1978; Hall, 1998; Zyczkowski and Sommers, 2001)
fork=2,3

5N2+1

= I OEED (14.62)

(Trp*)us and (Trp’)ps

TN+ 1
and an asymptotics for large N

e TA+20 1
4k F(2+k)( + (N))’ (14.63)

Analogous averages with respect to the Bures measure (14.46) read (Sommers and
Zyczkowski, 2004)

(Trpfyus =

5 SNT+1 5. N(U4N?+10)
Tete = s e 2 4 W0 = o ey (1469
and give asymptotically
. 2T[Bk+ 1)/2] 1
k _ 1—k _
To')s = N i o F(2+k)(1 n O(N)). (14.65)

Observe that (Trp?)us < (Trp?)g which shows that among these two measures the
Bures measure is concentrated at the states of higher purity. Allowing the parameter
k tobe real and performing the limitk — 1 we obtain the asymptotics for the average
von Neumann entropy (S) = — limy_,; 3(Trp")/dk,

s — N -4 14.66
(S(p))us = In _§+ (T) (14.66)
and

(S(p))g = NN —In2 + 0(%). (14.67)

For comparison note that the mean entropy of the components of complex random
vectors of size N, or their average Wehrl entropy (7.70) behavesasIn N +y — 1 =
In N — 0.4228.
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The above analysis may be extended for the measures (14.57) induced by partial
tracing. The average purity'? was derived early on by Lubkin (1978):

N+K

—_—. (14.68)
NK +1

(Trp*)y x =

For K = N this reduces to (14.62). An exact formula for the average entropy

&1y N-1 N-1
(SO . = (/‘ZZK+1 )= g =YK D WK )= S
| (14.69)

was conjectured by Page (1993) and later proved in Foong and Kanno (1994),
Sanchez-Ruiz (1995) and Sen (1996). The above formula implies that the average
entropy is close to the maximal value In NV, if the size K of the environment is
sufficiently large. Taking, for instance, K = M N and making use the asymptotic
properties of the digamma function, W(x + 1/2) ~ In(x) (Spanier and Oldham,
1987) we infer'® that (S)y yy ~ In N — 1/2M. Hence a typical pure state of a
N x N system is almost maximally entangled, (compare Eq. (15.25)), while the
probability to find a state with the entropy S smaller by one than the average (S)y n
is exponentially small (Hayden, Leung and Winter, n.d.a).

To wind up this section on random density matrices let us discuss practical meth-
ods to generate them. It is rather simple to draw random mixed states with respect
to the induced measures: as discussed in Chapter 7 we generate K independent
complex random pure state according to the natural measure on N-dimensional
Hilbert space and prepare their mixture (14.60). To draw a random mixed state ac-
cording to Py*(p) we generate a complex random pure state on N K -dimensional
Hilbert space, and then perform the partial trace (14.52) over the K-dimensional
subsystem (Braunstein, 1996; Hall, 1998; Zyczkowski and Sommers, 2001).

Alternatively, to obtain a random state according to this measure we generate a
rectangular, K x N random matrix A with all entries being independent complex
Gaussian numbers, and compute p = AAT/(TrAA"). By definition such a matrix
is normalized and positive definite, while random matrix theory allows one to
show that the joint probability distribution of spectrum coincides with (14.57).
In particular, for K = 1 the density matrices represent random pure states (see
Section 7.6), while for K = N we deal with non-Hermitian square random matrices
characteristic of the Ginibre ensemble (Ginibre, 1965; Mehta, 1991) and obtain the
Hilbert—Schmidt measure (Zyczkowski and Sommers, 2001; Tucci, n.d.a).

12" Average values of the higher moments are computed in (Malacarne, Mandes and Lenzi, 2002). See also problem
14.5.
13 This generalization of (14.66) was derived first by Lubkin (1978).
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To obtain random matrices with respect to unitary (orthogonal) product measures
one needs to generate a random unitary (orthogonal) matrix with respect to the Haar
measure on U(N) (or O(N), respectively) (PoZniak, Zyczkowski and Kus, 1998).
The squared moduli of its components sum to unity and provide the diagonal matrix
A with spectrum of the density matrix. Taking another random unitary matrix W,
one obtains the random state by p = WA W,

Random mixed states according to the Bures measure may easily be generated
in the N = 2 case (Hall, 1998). One picks a point on the Uhlmann hemisphere
at random. When N > 3 we are not aware of any clever technique to get such
random states, apart from the brute force method: generate a random spectrum s
according to the distribution (14.46), for example using the Monte Carlo method,
pick a random unitary matrix W and compute WAWT as in the case discussed
above.

14.7 Random operations

Analysing properties of random density matrices we should also discuss random
operations, for which the Kraus operators A; entering the Kraus form (10.53) are
taken at random, provided the condition (10.54) is fulfilled. There are several rea-
sons to do that; for instance, due to the Jamiolkowski isomorphism (Section 11.3),
measures in the sets of quantum states and quantum maps are closely related. Hence
we should not expect that there exists a unique way to generate random operations.
Indeed, there exist several relevant measures in the space of quantum maps, and we
start our short review with

M1. Random maps induced by random states. Any measure in space M) of
mixed states of increased dimensionality induces by (11.22) a measure in the space
of trace preserving, completely positive maps ® : M®) — MM,

For instance, the HS measure in M® generates in this way a measure supported
on the entire space of one-qubit operations. Another interesting class of random
operations arise considering the environmental representation (10.59). Let us treat
the size k of the environment as a free parameter and assume that the unitary matrix
U is distributed according to the Haar measure on U (kN). This natural assumption
characterizes eigenvectors of the initial state o of the environment, so to specify
a random operation we need to characterize its spectrum. In principle one may
take for this purpose any probability distribution on the simplex A;_;, but we shall
discuss only two extremal cases.

M2. Random operations with pure k-dimensional environment, p’ = ®,(p) =
Tre[U(p ® [v) (vDU ]
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Such a random operation @, is thus specified by a random unitary matrix of size
kN, since the choice of the pure state |[v) = |1) does not influence the measure.
Looking again at (10.61) we see that the Kraus operators representing &, arise as
blocks of size N of the random matrix U,

AD)m=U, with u=Ni-D+m; Im=1,...,N;i=1,...,k.
(14.70)

Due to unitarity of U the set of Kraus operators {A i}le satisfies the completeness
relation (10.54) and defines a quantum operation (10.53). For large dimensionality
N the unitarity constraints become (relatively) weaker and the the non-Hermitian
random matrices A are described by the Ginibre ensemble (Ginibre, 1965; Mehta,
1991): their spectra cover uniformly the disc of radius 1/+/N in the complex plane
of (Zyczkowski and Sommers, 2000).

Note that the random operations @, need not be bistochastic. To get a generic
random operation described by a dynamical matrix of the full rank N2 one needs to
choose the dimension k > N?2. These random operations correspond to a physically
motivated situation, if one knows that the state of an environment of a fixed size is
initially in a pure state, but not more.

M3. Random operations with mixed k-dimensional environment, o' =
Do) =Tr[U(p ® ﬂ/k)UT], where U is a random unitary of size kN .

These random operations are by construction bistochastic. The Haar measure on
U(Nk) generates a definite measure in the space of bistochastic maps parametrized
by the size k of ancilla. The case k = N is equivalent to the unistochastic map
(10.64), while K -unistochastic maps are obtained for k = K N.Random operations
®,, describe the situation in which only the size k of the ancilla is known, and were
called noisy maps in (Horodecki, Horodecki and Oppenheim, 2003a).

M4. Random external fields defined as convex combination of k unitary transfor-
mations (Alicki and Lendi, 1987), o’ = ®rer(p) = Zle Di Vi,ij, where unitary
matrices V; are drawn according to the Haar measure on U (N). Probability vector
p may be drawn with an arbitrary probability distribution on A;_1, but one asumes
often that p; = 1/k. As discussed in Section 10.6, for N > 3 REF’s form a proper
subset of the set of bistochastic maps.

MS. Maps generated by a measure in the space of stochastic matrices. Take a
random stochastic matrix S of size N. Out of its rows construct N diagonal matrices,
E,(C'l) = /Sii 811, and define the set operators, A; = UE®V. Here U and V are
random unitary matrices generated according to the Haar measure on U (N). Since
S is stochastic and satisfies (2.4), the Kraus operators A; fulfil the completeness
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relation (10.54),

N N
S alA Z VIEOUTUEOY — VT[Z E<i>2]v =, (14.71)
i=1

i=1 i=1

=

hence define a quantum operation. In the same way one demonstrates that the
dual condition (10.70) is fulfilled, so the random operation is bistochastic. Instead
of using random stochastic matrices one may also take a concrete matrix S, for
example related to some specific physically interesting map @, and then randomise
it'* by introducing random unitary rotations as in (14.71).

After discussing the methods to generate random maps, let us stress that any
measure in the space of quantum operations CPy induces a measure in the space
of density matrices. Alternatively, random mixed states may be generated by any
individual operation assuming that an initial pure state |v) is drawn according to
the natural Fubini—Study measure.

S4. Operation induced random mixed states defined be a certain operation &,
o = Ule(vinavhlut, (14.72)

where U and V are independent random unitary matrices distributed according to
the Haar measure on U(N).

Hence any CP map ® determines the operation induced measure [ig. In the
trivial case, the identity map, ® = 7, induces the unitarily invariant FS measure on
the space of pure states, (14 = UFs.

It is instructive to study measures induced in the N = 2 case by planar or linear
maps defined in Table 10.4 (see Problem 14.9). The latter case may be generalized
for arbitrary N. As follows from properties of the FS measure (see Eq. (7.66) and
Problem 7.3), the distribution of the diagonal elements of the density matrix |y ) (|
of a random pure state is uniform in the simplex of eigenvalues. In this way we
arrive at an important result: the coarse graining map, Wcg(p) = diag(p), induces
by (14.72) the unitary measure PM(X) = const, uniform in Ay_j.

Allowing operations which reduce the dimensionality of the system, we see that
the measures (14.52) also belong to this class, since they are induced by the operation
of partial trace, ®(p) = Trg p. A more general class of measures is induced via
(14.72) by a family of operations ®, and a concrete probability distribution P(a).
For instance, an interesting measure supported on the subspace of degenerated
states arises by usage of the depolarizing channels, &, = a®, + (1 — a)7, with a
uniform distribution of the noise level, P(a) = 1 fora € [0, 1].

14 Such random maps obtained for § = 1 were used in Alicki, Loziriski, Pakoriski and Zyczkowski (2004) to
describe the influence of measurement in a random basis on the time evolution of quantum baker maps.
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Let us conclude by emphasizing again that there is no single, naturally dis-
tinguished probability measure in the set of quantum states. Guessing at random
what the state may be, we can use any available additional information. For in-
stance, if a mixed state has arisen by the partial tracing over a K-dimensional
environment, the induced measure (14.57) should be used. More generally, if a
mixed state has arisen as an image of an initially pure state under the action of a
known operation @ the operation-related measure (14.72) may be applied. With-
out any prior information whatsoever, it will be legitimate to use the Bures mea-
sure (14.46), related to Jeffreys’ prior, statistical distance, fidelity and quantum
distinguishability.

Problems

Problem 14.1 Show that the following functions f(#) generate monotone
Riemannian metrics: +/7, (t — 1)/Int, 2[(t — 1)/Int]?/(1 + ) (non-informative
metric), 2t%t1/2/(1 4+ 1>*) for o € [0, 1/2] (Petz and Sudér, 1996), "/¢~D/e
(quasi-Bures metric) (Slater, 1999b), and fwy = (/1 + 1)>/4 (Wigner—Yanase
metric) (Gibilisco and Isola, 2003). Is the latter metric pure?

Problem 14.2 Compute the volume of the orthogonal group with res-
pect to the measure (ds)> =—1 Tr(0~'d0)’ analogous to (14.26). Show
that Vol(RPY) = 1VolSY) = zW+D2/T[(N+1)/2] = Vol[O(N)]/
(VOI[O(N — DIVOI[O(D)]);  Vol[O(2)] = 2and Vol(Fjy) = Vol[O(N)]/2"
(Zyczkowski and Sommers, 2003).

Problem 14.3 Show that the volume radius of the set M) of mixed states behaves
for large N as 6*1/4/«/N (Szarek, 2005).

Problem 14.4 Compute the mean von Neumann entropy, of N = 2 random mixed
states averaged over Hilbert—Schmidt, Bures, orthogonal and unitary measures,
respectively.

Problem 14.5 Find the mean moments (Trp?) and (Trp*) averaged over the in-
duced measures (14.57).

Problem 14.6 Calculate the probability distribution of a rescaled eigenvalue x =
N of arandom density matrix of size N > 1 generated according to the Hilbert—
Schmidt measure. What has this distribution in common with a circle?

Problem 14.7 Derive the distribution of fidelity P(F) between two random N-
dimensional complex pure states.
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Problem 14.8 Compute the mean fidelity between two N = 2 independent random
states distributed according to (a) HS measure; (b) Bures measure.

Problem 14.9 Analyse operation induced measures (14.72) defined for N = 2 by
planar or linear channels (for definitions see Table 10.4) and show that they are
isotropic inside the Bloch ball with the radial distributions Py (r) = 4r/~/1 — 4r2
and Py,(r) = 2 = P,(r), respectively, where r € [0, 1/2].
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Quantum entanglement

Entanglement is not one but rather the characteristic trait of quantum
mechanics.
Erwin Schrodinger

15.1 Introducing entanglement

So far, when working in a Hilbert space that is a tensor product of the form H =
Ha @ Hp, we were really interested in only one of the factors; the other factor
played the role of an ancilla describing an environment outside our control. Now
the perspective changes: we are interested in a situation where there are two masters.
The fate of both subsystems are of equal importance, although they may be sitting
in two different laboratories.

The operations performed independently in the two laboratories are described
using operators of the form ®, ® 1 and 1 ® ®p, respectively, but due perhaps to
past history, the global state of the system may not be a product state. In general, it
may be described by an arbitrary density operator p acting on the composite Hilbert
space H.

The peculiarities of this situation were highlighted in 1935 by Einstein, Podolsky
and Rosen (1935). Their basic observation was that if the global state of the system
is chosen suitably then it is possible to change, and to some extent to choose, the
state assignment in laboratory A by performing operations in laboratory B. The
physicists in laboratory A will be unaware of this until they are told, but they can
check in retrospect that the experiments they performed were consistent with the
state assignment arrived at from afar — even though there was an element of choice
in arriving at that state assignment. Einstein’s considered opinion was that ‘on
one supposition we should . .. absolutely hold fast: the real factual situation of the
system S; is independent of what is done with the system S;, which is spatially
separated from the former’ (Einstein, 1949). Then we seem to be forced to the

363
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conclusion that quantum mechanics is an incomplete theory in the sense that its
state assignment does not fully describe the factual situation in laboratory A.

In his reply to Einstein, Podolsky and Rosen (EPR), Schrodinger argued that in
quantum mechanics ‘the best possible knowledge of a whole does not include the
best possible knowledge of all its parts, even though they may be entirely sepa-
rated and therefore virtually capable of being “best possibly known” *.! Schrodinger
introduced the word Verschrdnkung to describe this phenomenon, personally trans-
lated it into English as entanglement, and made some striking observations about
it. The subject then lay dormant for many years.

To make the concept of entanglement concrete, we recall that the state of the
subsystem in laboratory A is given by the partially traced density matrix p4 = Trgp.
This need not be a pure state, even if p itself is pure. In the simplest possible case,
namely when both H 4 and Hp are two dimensional, we find an orthogonal basis
of four states that exhibit this property in an extreme form. This is the Bell basis,
already mentioned in Table 11.1

_ L _ b
V2 V2

The Bell states all have the property that p4 = %‘ﬂ, which means that we know
nothing at all about the state of the subsystems, even though we have maximal
knowledge of the whole. At the opposite extreme we have product states such as
|0)]0) and so on; if the global state of the system is in a product state then p, is a
projector and the two subsystems are in pure states of their own. Such pure product
states are called separable, while all other pure states are entangled.

Now the point is that if a projective measurement is performed in laboratory B,
corresponding to an operator of the form 1 ® & p, then the global state will collapse
to a product state. Indeed, depending on what measurement B chooses to perform,
and depending on its outcome, the state in laboratory A can become any pure state
in the support of p,. (This conclusion was drawn by Schrodinger from his mixture
theorem. He found it ‘repugnant’.) Of course, if the global state was one of the Bell
states to begin with, then the experimenters in laboratory A still labour under the
assumption that their state is p4 = %'ﬂ , and it is clear that any measurement results
in A will be consistent with this state assignment. Nevertheless it would seem as if
the real factual situation in A has been changed from afar.

In the early 1960s John Bell (1964) was able to show that if we hold fast to the
locality assumption then there cannot exist a completion of quantum mechanics
in the sense of EPR; it is the meaning of the expression ‘real factual situation’

[y ) (10)/1) £11)(0)) ™) (10)0) £ [1)[1)) . (15.1)

! Schrisdinger’s ‘general confession’ consisted of a series of three papers (1935a, 1935b, 1936).



15.1 Introducing entanglement 365

that is at stake in entangled systems.? The idea is that if the quantum mechanical
probabilities arise as marginals of a probability distribution over some kind of a
set of real factual situations, then the mere existence of the latter gives rise to
inequalities for the marginal distributions that, as a matter of fact, are disobeyed by
the probabilities predicted by quantum mechanics.

Bell’s work caused much excitement in philosophically oriented circles; it
seemed to put severe limits on the world view offered by physics.? In the early
1990s the emphasis began to shift. Entanglement came to be regarded as a resource
that allows us to do certain otherwise impossible things. An early and influential
example is that of quantum teleportation. Let us dwell on this a little. The task is
to send information that allows a distant receiver to reconstruct the state of a spin
1/2 particle — even if the state is unknown to the sender. But since only a single
copy of the state is available the sender is unable to figure out what the state to be
‘teleported” actually is. So the task appears impossible.* A solution is to prepare a
composite system in the Bell state |¢™), and to share the two entangled subsystems
between sender and receiver. Suppose that the state to be sentis «|0) 4+ 8|1). At the
outset the latter is uncorrelated to the former, so the total (unnormalized) state is

W) = («l0) + B11))(10)10) + [1)]1))
= «[0)]0)]0) + «|0)[1)[1) 4+ BI1)|0)|0) + BI1)|1)I1) .

(15.2)

The sender controls the first two factors of the total Hilbert space, and the receiver
controls the third. By means of a simple manipulation we rewrite this as

V2(w) = [y ) (1) + B10)) + [y ) (al1) — BI0))
+ 17 («l0) + BI1)) + [¢7) («l0) — BI1)) .

The sender now performs a projective measurement in the four-dimensional Hilbert
space at his disposal, such that the state collapses to one of the four Bell states.
If the collapse results in the state |¢™) the teleportation is complete. But the other
cases are equally likely, so the sender must send two classical bits of information to

(15.3)

S}

At this point opinions diverge; some physicists, including notably David Bohm, have not felt obliged to hold
absolutely fast to Einstein’s notion of locality. See Bell (1987) for a sympathetic review of Bohm’s arguments.
Followers of Everett (1957) on the other hand argue that what happened was that the system in A went from
being entangled with the system in B to being entangled with the measurement apparatus in B, with no change
of the real factual situation in A.

For a thorough discussion of the Bell inequalities consult Clauser and Shimony (1978); experimental tests,
notably by Aspect, Dalibard and Roger (1982), show that violation of the Bell inequalities does indeed occur in
the laboratory. (Although loopholes still exist; see Gill (2003).)

To send information that allows us to reconstruct a given state elsewhere is referred to as teleportation in the
science fiction literature, where it is usually assumed to be trivial for the sender to verify what the state to be
sent may be. The idea of teleporting a state that is not known at all is due to Bennett, Brassard, Crépeau, Josza,
Peres and Wootters (1993).

w
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the receiver, informing him of the outcome of the measurement. Depending on the
result the receiver then performs a unitary transformation (such that |0) < |1), if
the outcome was |1/ +)) and the teleportation of the still unknown qubit is complete.’

In the example of teleportation the entangled auxiliary system was used to per-
form a task that is impossible without it. It will be noted also that the entanglement
was used up, in the sense that once the transmission has been achieved no mutual
entanglement between sender and receiver remains. In this sense then entangle-
ment is a resource, just as the equally abstract concept of energy is a resource.
Moreover it has emerged that there are many interesting tasks for which entan-
glement can be used, including quantum cryptography and quantum computing
(Preskill, n.d.; Gruska, 1999; Nielsen and Chuang, 2000; Keyl, 2002).

If entanglement is a resource we naturally want to know how much of it we
have. As we will see it is by no means easy to answer this question, but it is easy to
take a first step in the situation when the global state is a pure one. It is clear that
there is no entanglement in a product state, when the subsystems are in pure states
too and the von Neumann entropy of the partially traced state vanishes. It is also
clear that maximally entangled pure state will lead to a partially traced density
matrix that is a maximally mixed state. For the case of two qubits the von Neumann
entropy then assumes its maximum value In 2, and the amount of entanglement in
such a state is known as an e-bit. States that are neither separable nor maximally
entangled require more thought. Let us write a pure state in its Schmidt form
|W) = cos x |00) + sin x |11}, (see Section 9.2). Performing the partial trace one
obtains

(15.4)

2
pAzTrB|w><\II|=[°°S x 9 }

0 sin? x

The Schmidt angle x € [0, /4] parametrizes the amount of ignorance about the
state of the subsystem, that is to say the amount of entanglement. A good thing
about it is that its value cannot be changed by local unitary transformations of the
form U(2) ® U(2). For the general case, when the Hilbert space has dimension
N x N, we will have to think more, and for the case when the global state is itself
a mixed one much more thought will be required.

At this stage entanglement may appear to be such an abstract notion that the need
to quantify it does not seem to be urgent but then, once upon a time, ‘energy’ must
have seemed a very abstract notion indeed, and now there are thriving industries
whose role is to deliver it in precisely quantified amounts. Perhaps our governments
will eventually have special Departments of Entanglement to deal with these things.

5 This is not a Gedanken experiment only; it was first done in Innsbruck (Bouwmeester, Pan, Mattle, Eibl,
Weinfurter and Zeilinger, 1997) and in Rome (Boschi, Branca, De Martini, Hardy and Popescu, 1998).
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But that is in the far future; here we will concentrate on a geometrical description
of entanglement and how it is to be quantified.

15.2 Two qubit pure states: entanglement illustrated

Our first serious move will be to take a look (literally) at entanglement in the two
qubit case.® Our Hilbert space has four complex dimensions, so the space of pure
states is CP3. We can make a picture of this space along the lines of Section 4.6. So
we draw the positive hyperoctant of a 3-sphere and imagine a 3-torus sitting over
each point, using the coordinates

(2°,2"'.2°, Z°) = (no, nye™, nye™, nze™). (15.5)
The four non-negative real numbers ny, etc. obey
ni4nitni+ni=1. (15.6)

To draw a picture of this set we use a gnomonic projection of the 3-sphere centred at
1
(no,nl,nz,ns)z5(1,1,1,1)- (15.7)

The result is an attractive picture of the hyperoctant, consisting of a tetrahedron
centred at the above point, with geodesics on the 3-sphere appearing as straight
lines in the picture. The 3-torus sitting above each interior point can be pictured as
a rhomboid that is squashed in a position dependent way.

Mathematically, all points in CP? are equal. In physics, points represent states,
and some states are more equal than others. In Chapter 6, this happened because we
singled out a particular subgroup of the unitary group to generate coherent states.
Now it is assumed that the underlying Hilbert space is presented as a product of two
factors in a definite way, and this singles out the orbits of U(N) x U(N) C U(N?)
for special attention. More specifically there is a preferred way of using the entries
I';; of an N x N matrix as homogeneous coordinates. Thus any (normalized) state
vector can be written as

n n

1
Uy = — LiiliYlj) - 15.8
W) WZZ(; S0 (15.8)

i=0 j=
For two qubit entanglement N = n 4+ 1 = 2, and it is agreed that

(2°, 7", 7%, Z*) = (To0, Tot, Tio, T11) - (15.9)

6 Such a geometric approach to the problem was initiated by Brody and Hughston (2001) and developed in Kus§
and Zyczkowski (2001), Mosseri and Dandoloff (2001), Bengtsson et al. (2002) and Lévay (2004).
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Let us first take a look at the separable states. For such states

W) =" @liNb,lj) <« Ty =ab;. (15.10)

i=0 j=0
In terms of coordinates a two qubit case state is separable if and only if
7%z} - 7'7*=0. (15.11)

We recognize this quadric equation from Section 4.3. It defines the Segre embedding
of CP' x CP! into CP3. Thus the separable states form a four real-dimensional
submanifold of the six real-dimensional space of all states. (Had we regarded CP!
as a classical phase space, this submanifold would have been enough to describe
all the states of the composite system.)

What we did not discuss in Chapter 4 is the fact that the Segre embedding is easily
described in the octant picture. Equation (15.11) splits into two real equations:

nonz —nijny = 0 (1512)
vi+v,—v3=0. (15.13)

Hence we can draw the space of separable states as a two-dimensional surface in the
octant, with a two-dimensional surface in the torus that sits above each separable
point in the octant. The surface in the octant has an interesting structure, related to
Figure 4.6. In Eq. (15.10) we can keep the state of one of the subsystems fixed; say
that by/b; is some fixed complex number with modulus k. Then

AR
Z* by

As we vary the state of the other subsystem we sweep out a curve in the octant
that is in fact a geodesic in the hyperoctant (the intersection between the 3-sphere
and two hyperplanes through the origin in the embedding space). In the gnomonic
coordinates that we are using this curve will appear as a straight line, so what we
see when we look at how the separable states sit in the hyperoctant is a surface that
is ruled by two families of straight lines.

There is an interesting relation to the Hopf fibration (see Section 3.5) here. Each
family of straight lines is also a one parameter family of Hopf circles, and there
are two such families because there are two Hopf fibrations, with different twist.
We can use our hyperoctant to represent real projective space RP?, in analogy with
Figure 4.12. The Hopf circles that rule the separable surface are precisely those that
get mapped onto each other when we ‘fold’ the hemisphere into a hyperoctant.
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(01,00)

o0

(L.g0o)

Figure 15.1. The separable states, or the Segre embedding of CP' x CP' in CP3.
Two different perspectives of the tetrahedron are given.

We now turn to the maximally entangled states, for which the reduced density
matrix is the maximally mixed state. Using composite indices we write

1 n
pi = =Tyl = ph=%"p,. (15.16)
= Tl 1=,

see Eq. (10.27). Thus
ph=~1 & D Tyulf =du. (15.17)

Therefore the state is maximally entangled if and only if the matrix I is unitary.
Since an overall factor of this matrix is irrelevant for the state we reach the conclu-
sion that the space of maximally entangled states is SU(N)/Zy. This happens to
be an interesting submanifold of CPY *~1 because it is at once Lagrangian (a sub-
manifold with vanishing symplectic form and half the dimension of the symplectic
embedding space) and minimal (any attempt to move it will increase its volume).

When N = 2 we are looking at SU(2)/Z, = RP3. To see what this space looks
like in the octant picture we observe that

= [_"; f] = 7%= (a B, B a"). (15.18)
In our coordinates this yields three real equations; the space of maximally entangled
states will appear in the picture as a straight line connecting two entangled edges
and passing through the centre of the tetrahedron, while there is a two-dimensional
surface in the tori. The latter is shifted relative to the separable surface in such a way
that the separable and maximally entangled states manage to keep their distance in
the torus also when they meet in the octant (at the centre of the tetrahedron where
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(0.0.1,0)

(0.00.0)

O (1,0,0.0}

Figure 15.2. The maximally entangled states form an RP?, appearing as a straight
line in the octant and a surface in the tori. The location of the Bell states is also
shown.

the torus is large). Our picture thus displays RP? as a one parameter family of
two-dimensional flat tori, degenerating to circles at the ends of the interval. This is
similar to our picture of the 3-sphere, except that this time the lengths of the two
intersecting shortest circles on the tori stay constant while the angle between them
is changing. It is amusing to convince oneself of the validity of this picture, and to
verify that it is really a consequence of the way that the 3-tori are being squashed
as we move around the octant.

As a further illustration we can consider the collapse of a maximally entangled
state, say | ) for definiteness, when a measurement is performed in laboratory
B. The result will be a separable state, and because the global state is maximally
entangled all the possible outcomes will be equally likely. It is easily confirmed that
the possible outcomes form a 2-sphere’s worth of points on the separable surface,
distinguished by the fact that they are all lying on the same distance Dpg = 7 /4 from
the original state. This is the minimal Fubini-Study distance between a separable
and a maximally entangled state. The collapse is illustrated in Figure 15.3.

A set of states of intermediate entanglement, quantified by some given value of
the Schmidt angle yx, is more difficult to draw (although it can be done). For the
extreme cases of zero or one e-bit’s worth of entanglement we found the submani-
folds CP! x CP! and SU(2)/Z,, respectively. There is a simple reason why these
spaces turn up, namely that the amount of entanglement must be left invariant under
locally unitary transformations belonging to the group SU(2) x SU(2). In effect
therefore we are looking for orbits of this group, and what we have found are the two
obvious possibilities. More generally we will get a stratification of CP? into orbits
of SU(2) x SU(2); the problem is rather similar to that discussed in Section 7.2. Of
the exceptional orbits, one is a Kdhler manifold and one (the maximally entangled
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(0.1,0.0) ¥ (0,04.0)

(1,0,0.0)

Figure 15.3. A complete measurement on one of the subsystem will collapse the
Bell state |1 T) to a point on a sphere on the separable surface; it appears as a one
parameter family of circles in our picture. All points on this sphere are equally
likely.

one) is actually a Lagrangian submanifold of CP?, meaning that the symplectic
form vanishes on the latter. A generic orbit will be five real-dimensional and the
set of such orbits will be labelled by the Schmidt angle x, which is also the min-
imal distance from a given orbit to the set of separable states. A generic orbit is
rather difficult to describe however. Topologically it is a non-trivial fibre bundle
with an S? as base space and RP? as fibre.” In the octant picture it appears as a
three-dimensional volume in the octant and a two-dimensional surface in the torus.
And with this observation our tour of the two qubit Hilbert space is at an end.

15.3 Pure states of a bipartite system

Consider a pure state of a composite system |{) € Hyx = Hy ® Hg. The states
related by a local unitary transformation,®

W)y =U®VIy), (15.19)

where U € SU(N)and V € SU(K), are called locally equivalent. Sometimes one
calls them interconvertible states, since they may be reversibly converted by local
transformations one into another (Jonathan and Plenio, 1999a). It is clear that not
all pure states are locally equivalent, since the product group SU(N) x SU(K)
forms only a measure zero subgroup of SU(N K). How far can one go from a state
using local transformations only? In other words, what is the dimensionality and

7 This can be seen in an elegant way using the Hopf fibration of 87 — the space of normalized state vectors — as
st =§7 /S3; Mosseri and Dandoloff (2001) provide the details.

8 Non-local properties of a unitary gate may be quantified by its operator Schmidt decomposition (10.30). A
canonical form of a two qubit gates was provided in Khaneja, Brockett and Glaser (2001), Kraus and Cirac
(2001) and Makhlin (2002), while theory of non-local gates was further developed in Diir and Cirac (2002),
Hammerer, Vidal and Cirac (2002) and Nielsen, Dawson, Dodd, Gilchrist, Mortimer, Osborne, Bremner, Harrow
and Hines (2003).
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topology of the orbit generated by local unitary transformations from a given state
[¥)?

To find an answer we are going to rely on the Schmidt decomposition (9.8). It
consists of not more than N terms, since without loss of generality we have assumed
that K > N. The normalization condition (y/|4) = 1 enforces Z,N: 1 Ai = 1,s0the
Schmidt vector A lives in the (N — 1)-dimensional simplex Ay_;. The Schmidt
rank of a pure state [1/) is the number of non-zero Schmidt coefficients, equal to
the rank of the reduced state. States with maximal Schmidt rank are generic and
occupy the interior of the simplex, while states of a lower rank live on its boundary.

The Schmidt vector gives the spectra of the partially reduced states, ps =
Trp(|Y)(¥]) and pp = Tra(|y) (¥ ]), which differ only by K — N zero eigenval-
ues. The separable states sit at the corners of the simplex. Maximally entangled

states are described by the uniform Schmidt vector, X* ={1/N,...,1/N}, since
the partial trace sends them into the maximally mixed state.
LetA=(,...,0,k1,...,K1,K2, ..., K2y ..., KJ,...,Ky)represent an ordered

Schmidt vector, in which each value «,, occurs m,, times while m is the number of
vanishing coefficients. By definition Z,LO m, = N, while my might equal to zero.
The local orbit Oy generated from |y/) has the structure of a fibre bundle, in which
two quotient spaces

U(N) d U(N)

and ———— (15.20)
U@mg) x U(my) x --- x U(my) U@mo) x U(1)

form the base and the fibre, respectively (Sinolecka, Zyczkowski and Kus, 2002).
In general such a bundle need not be trivial. The dimensionality of the local orbit
may be computed from dimensionalities of the coset spaces,

J
dim(Oyoe) = 2N? — 1 — 2m} — Zmﬁ . (15.21)

n=1
Observe that the base is the set of all unitarily similar mixed states p4 of the
reduced system A, with spectrum A and depends on its degeneracy (see Table 8.1).
The fibre characterizes the manifold of pure states which are projected by the
partial trace to the same density matrix, and depends on the Schmidt rank equal to
N — my. To understand this structure consider first a generic state of the maximal
Schmidt rank, so that my = 0. Acting on |{r) with Uy ® Wy, where both unitary
matrices are diagonal, we see that there exist N redundant phases. Since each
pure state is determined up to an overall phase, the generic orbit has the local

structure

Uw) UM ey, U

<~ wor X vo - Uy’ (1522)
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Figure 15.4. Dimensionality of local orbits generated by a given point of the Weyl
chamber Ay_; — an asymmetric part of the Schmidt simplex Ay_; — for pure
states of N x N problem with N = 2, 3 (compare Table 15.1).

with dimension dim(Q,) = 2N? — N — 1.If some of the coefficients are equal, say
my > 1, then we need to identify all states differing by a block diagonal unitary
rotation with U(m ) in the right lower corner. In the same way one explains the
meaning of the factor U(mg) x U(m) x --- x U(m ) which appears in the first
quotient space of (15.20). If some Schmidt coefficients are equal to zero the action
of the second unitary matrix Uy is trivial in the mo-dimensional subspace — the
second quotient space in (15.20) is U(N)/[U (mg) x U(1)].

For separable states there exists only one non-zero coefficient, A; = 1, so my =
N — 1. This gives the Segre embedding (4.16),

U(N) U(N)

Ouep = X =CP" ' x CPN!, (15.23)
U)x UNN —1) " U(1)x UN — 1)

of dimensionality dim(Osep) = 4(N — 1). For a maximally entangled state one has
A = Ay = 1/N,hence m; = N and m(y = 0. Therefore
_uw) » U(N) U(N) SUN)
TUWN) T U)oU) Zy

, (15.24)

max

with dim(O,,.,) = N? — 1, which equals half the total dimensionality of the space
of pure states.

The set of all orbits foliate CPY ~!, the space of all pure states of the N x N

system. This foliation is singular, since there exist measure zero leaves of various

dimensions and topology. The dimensionalities of all local orbits for N = 2, 3 are
shown in Figure 15.4, and their topologies in Table 15.1.
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Table 15.1. Topological structure of local orbits of the N x N pure states, D;

denotes the dimension of the subspace of the Schmidt simplex Ay _1,

while D, represents the dimension of the local orbit.

N Schm_idt a}:;rril(rifett}rlfc Local structure: D,
coefficients simplex base x fibre

(a, b) line F® x RP3 5

2 (1,0) left edge CP? x CP? 4

(1/2,1/2) right edge U®)/U(1) = RP? 3

(a,b,c) interior of triangle F® x % 14

(a,b,0) base F® [5(?;]2 13

3 (a,b,b) 2 upper sides T X T 12

(1/2,1/2,0) 0 right corner T ¥ [UU(% 11

(1,0,0) 0 left corner CP? x CP? 8

(1/3,1/3,1/3) 0 upper corner U@3)/U(l) 8

Observe that the local orbit defined by (15.19) contains all purifications of all
mixed states acting on ‘H y isospectral with py = Trg | ) (¥ |. Sometimes one mod-
ifies (15.19) imposing additional restrictions, K = N and V = U. Two states ful-
filling this strong local equivalence (SLE) relation, |¢') = U ® U|y) are equal,
up to selection of the reference frame used to describe both subsystems. The basis
is determined by a unitary U. Hence the orbit of the strongly locally equivalent
states — the base in (15.20) — forms a coset space of all states of the form Upy U t
as discussed in Section 8.5. In particular, for any maximally entangled state, there
are no other states satisfying SLE, while for a separable state the orbit of SLE states
forms the complex projective space CPV~! of all pure states of a single subsystem.

The question, if a given pure state |Y) € Hy ® Hg is separable, is easy to
answer: it is enough to compute the partial trace, py = Trx (|¥)(¥|), and to check
if Tr,olzV equals unity. If it is so the reduced state is pure, hence the initial pure state
is separable. In the opposite case the pure state is entangled. The next question is:
to what extent is a given state |y) entangled?

There seems not to be a unique answer to this question. Due to the Schmidt
decomposition (9.8) one obtains the Schmidt vector x of length N (we assume
N < K), and may describe it by entropies analysed in Chapters 2 and 12. For
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instance, the entanglement entropy is defined as the von Neumann entropy of the
reduced state, which is equal to the Shannon entropy of the Schmidt vector,

N
E(1¥) = S(pa)=SA)=—) Ailnk;. (15.25)
i=1

It is equal to zero for separable states and In N for maximally entangled states.
In the similar way to measure entanglement one may also use the Rényi entropies
(2.79) of the reduced state, £, = S,(p04). We shall need a quantity related to E;
called rangle

N

w(¥) = 20 = Trpd) =2(1 = Y 37) =2(1 - expl—Ex(1¥)]) . (15.26)

i=1

whichruns from0to2(N — 1)/N,and its squareroot C = /7, called concurrence.’
Another entropy, Eo = — In Apax, has an elegant geometric interpretation: if the
Schmidt vector is ordered decreasingly and A; = A, denotes its largest component
then |1) ® |1) is the separable pure state closest to |y) (Lockhart and Steiner, 2002).
Thus the Fubini-Study distance of |1/) to the set of separable pure states, D" =
arccos(+/Amax), 18 a function of E,. Although one uses several different Rényi
entropies E,, the entanglement entropy E = E| is distinguished among them just
as the Shannon entropy is singled out by its operational meaning discussed in
Section 2.2.

For the two qubit problem the Schmidt vector has only two components, which
sum to unity, so the entropy E(|y)) € [0, In2] characterizes uniquely the entan-
glement of the pure state |1/). To analyse its geometry it is convenient to select a
three-dimensional section of the space of pure states. The net of the tetrahedron
used for the cover picture is shown in Appendix 3 — it presents entanglement at
the boundary of the simplex defined by four separable states defining the standard
basis. It is defined by Egs. (4.70) and (4.71) and may be obtained by setting all
phases v; in (4.67) to zero. Making use of the freedom of choice of the basis vectors
we have selected four separable states to define a standard basis.

In general, for an N x N system the entropy is bounded, 0 < E < In N, and
to describe the entanglement completely one needs a set of N — 1 independent
quantities. What properties should they fulfil?

Before discussing this issue we need to distinguish certain classes of quantum
operations acting on bipartite systems. Local operations (LO) arise as the tensor

9 Concurrence was initially introduced for two qubits by Hill and Wootters (1997). We adopted here the gen-
eralization of Rungta, BuZek, Caves, Hillery and Milburn (2001) and Mintert, Kus and Buchleitner (2004),
but there are also other ways to generalize this notion for higher dimensions (Uhlmann, 2000; Wong and Chris-
tensen, 2001; Wootters, 2001; Audenaert, Verstraete and Moor, 2001b; Badziag, Deaur, Horodecki, Horodecki
and Horodecki, 2002).
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product of two maps, both satisfying the trace preserving condition (10.54),

[®4® P5l(p) = D (A ®B)p (Al ®B)). (15.27)
J

1

Any operation which might be written in the form

Dup(p) = Y (A ® B) p (Al @ B]), (15.28)

is called separable (SO). Observe that this form is more general than (15.27), even
though the summation goes over one index. The third, important class of maps
is called LOCC. This name stands for local operations and classical communica-
tion and means that all quantum operations, including measurements, are allowed,
provided they are performed locally in each subsystem. Classical communication
allows the two parties to exchange in both ways classical information about their
subsystems, and hence to introduce classical correlations between them. One could
think, all separable operations may be obtained in this way, but this is not true
(Bennett, DiVincenzo, Fuchs, Mor, Rains, Shor, Smolin and Wootters, 1999a), and
we have the proper inclusion relations LO € LOCC C SO.

The concept of local operations leads to the notion of entanglement monotones.
These are the quantities which are invariant under unitary operations and decrease,
on average, under LOCC (Vidal, 2000). The words ‘on average’ refer to the general
case, in which a pure state is transformed by a probabilistic local operation into a
mixture,

p = Y pipi = wp) = Y pinp) - (15.29)

Note that if 1 is a non-decreasing monotone, then —u is a non-increasing monotone.
Thus we may restrict our attention to the non-increasing monotones, which reflect
the key paradigm of any entanglement measure: entanglement cannot increase
under the action of local operations. Construction of entanglement monotones can
be based on the following theorem (Nielsen, 1999):

Theorem 15.1 (Nielsen’s majorization) A given state |y) may be transformed
into |¢) by deterministic LOCC operations if and only if the corresponding vectors
of the Schmidt coefficients satisfy the majorization relation (2.1)

LocC > >

V) —> lp) = Ay < Ay (15.30)
To prove the forward implication we follow the original proof. Assume that party
A performs locally a generalized measurement, which is described by a set of k
Kraus operators A;. By classical communication the result is sent to party B, which
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performs a local action ®;, conditioned on the result i. Hence

k
> 1@ @ (Al (WAl = 1) (6] . (15.31)
i=1
The result is a pure state so each terms in the sum needs to be proportional to the
projector. Tracing out the second subsystem we get

Aipy Al = pips,  i=1,...k, (15.32)

where Zf:l pi = land py = Trg(|¥)(¥|) and py = Trp(|¢)(¢]). Due to the polar
decomposition of A;,/p, we may write

Ai Py =\ Aipy Al Vi = /Dipg Vi (15.33)

with unitary V;. Making use of the completeness relation (10.54) we obtain

k k
py =Py ISPy =Y SOy A APy =Y piV, pe Vi, (15.34)
i=1 i=1

and the last equality follows from (15.33) and its adjoint. Hence we arrived at an
unexpected conclusion: if a local transformation |y) — |¢) is possible, then there
exists a bistochastic operation (10.71), which acts on the partially traced states
with inversed time — it sends p, into py, ! The quantum HLP lemma (Section 12.5)
implies the majorization relation X];, < X¢. The backward implication follows from
an explicit conversion protocol proposed by Nielsen, or alternative versions pre-
sented in Hardy (1999), Jensen and Schack (2001) and Donald, Horodecki and
Rudolph (2002).

The majorization relation (15.30) introduces a partial order into the set of pure
states.!® Hence any pure state |1) allows one to split the Schmidt simplex, repre-
senting the set of all local orbits, into three regions: the set F' (Future) contains
states which can be produced from [i) by LOCC , the set P (Past) of states from
which [1/) may be obtained, and eventually the set C of incomparable states, which
cannot be joined by a local transformation in any direction.!!

This structure resembles the ‘causal structure’ defined by the light cone in special
relativity. See Figure 15.5, and observe the close similarity to Figure 12.4 showing
paths in the simplex of eigenvalues that can be generated by bistochastic operations.
The only difference is the arrow of time: the ‘Past’ for the evolution in the space

10" A similar partial order induced by LOCC into the space of mixed states is analysed in (Hayden, Terhal and
Uhlmann, n.d.b).

I For N > 4 there exists an effect of entanglement catalysis (Jonathan and Plenio, 1999a; Daftuar and Klimesh,
2001; Bandyopadhyay and Roychowdhury, 2002) that allows one to obtain certain incomparable states in the
presence of additional entangled states.
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Figure 15.5. Simplex of Schmidt coefficients A, for 3 x 3 pure states: the cor-
ners represent separable states, centre the maximally entangled state |¢™). Panels
(a)—(c) show ‘Future’ and ‘Past’ zones with respect to LOCC and are analogous
to those in Figure 12.4, but the direction of the arrow of time is reversed.

of density matrices corresponds to the ‘Future’ for the local entanglement transfor-
mations and vice versa. In both cases the set C of incomparable states contains the
same fragments of the simplex Ay_,. In a typical case C occupies regions close to
the boundary of Ay _;, so one may expect the larger dimensionality N, the larger
relative volume of C. This is indeed the case, and in the limit N — oo two generic
pure states of the N x N system (or two generic density matrices of size N) are
incomparable (Clifton, Hepburn and Wuthrich, 2002).

The majorization relation (15.30) provides another justification for the observa-
tion that two pure states are interconvertible (locally equivalent) if and only if the
have the same Schmidt vectors. More importantly, this theorem implies that any
Schur concave function of the Schmidt vector X is an entanglement monotone. In
particular, this crucial property is shared by all Rényi entropies of entanglement
E, (X) including the entanglement entropy (15.25). To ensure a complete descrip-
tion of a pure state of the N x N problem one may choose E1, E», ..., Ey_;.Other
families of entanglement monotones include partial sums of Schmidt coefficients
ordered decreasingly, Mk(X) = Zf;l M with k=1,..., N —1 (Vidal, 2000),
subentropy (Jozsa et al., 1994; Mintert and Zyczkowski, 2004), and symmetric
polynomials in Schmidt coefficients (see Problem 15.2).

Since the maximally entangled state is majorized by all pure states, it cannot
be reached from other states by any deterministic local transformation. Is it at all
possible to create it locally? A possible clue is hidden in the word average contained
in the majorization theorem.

Let us assume we have at our disposal n copies of a generic pure state [). The
majorization theorem does not forbid us to locally create out of them m maximally
entangled states |1/ T), at the expense of the remaining n — m states becoming sep-
arable. Such protocols proposed in Bennett, Bernstein, Popescu and Schumacher
(1996a) and Lo and Popescu (1998) are called entanglement concentration. This
local operation is reversible, and the reverse process of transforming m maximally
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Figure 15.6. Probability of the optimal local conversion of an initial state |i)
(white x) of the 3 x 3 problem into a given pure state represented by a point
in the Schmidt simplex. Initial Schmidt vector Ay is (a) (0.7,0.25, 0.05), (b)

(0.6,0.27,0.03) and (c) (0.8,0.1,0.1). Due to the degeneracy of X in the lat-
ter case there exist only three interconvertible states in A,, represented by (+).

entangled states and n — m separable states into n entangled states is called entan-
glement dilution. The asymptotic ratio m/n < 1 obtained by an optimal concentra-
tion protocol is called distillable entanglement (Bennett et al., 1996a) of the state
|Y) (see Problem 15.3).

Assume now that only one copy of an entangled state |1) is at our disposal. To
generate maximally entangled state locally we may proceed in a probabilistic way:
a local operation produces |y ) with probability p and a separable state otherwise.
Hence we allow a pure state |1/) to be transformed into a mixed state. Consider a
probabilistic scheme to convert a pure state |y/) into a target |¢) with probability
p. Let p. be the maximal number such that the following majorization'? relation
holds,

Ay < Pehg. (15.35)

It is easy to check that the probability p cannot be larger than p,, since the Nielsen
theorem would be violated. The optimal conversion strategy for which p = p. was
explicitly constructed by Vidal (1999). The Schmidt rank cannot increase during
any local conversion scheme (Lo and Popescu, 1998). If the rank of the target
state |¢) is larger than the Schmidt rank of |v), then p, = 0 and the probabilistic
conversion cannot be performed. '3

This situation is illustrated in Figure 15.6, which shows the probability of ac-
cessing different regions of the Schmidt simplex for pure states of a 3 x 3 system
for four different initial states |). The shape of the black figure (p = 1 represents
deterministic transformations) is identical with the set ‘Future’ in Figure 15.5. The

12 1f the sum of both vectors is not equal relation (2.1) is sometimes called submajorization.

13 n such a case one may still perform a faithful conversion (Jonathan and Plenio, 1999b; Vidal, Jonathan and
Nielsen, 2000) transforming the initial state |1/) into a state |¢'), for which its fidelity with the target, |(¢|¢") 12,
is maximal.
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more entangled final state |¢) (closer to the maximally entangled state — black ()
in the centre of the triangle), the smaller probability p of a successful transfor-
mation. Observe that the contour lines (plotted at p = 0.2, 0.4, 0.6 and 0.8) are
constructed from the iso-entropy lines S, for ¢ — 0 and ¢ — oo (compare with
Figure 2.14).

Let us close with an envoi: entanglement of a pure state of any bipartite system
may be fully characterized by its Schmidt decomposition. In particular, all entangle-
ment monotones are functions of the Schmidt coefficients. However, the Schmidt de-
composition cannot be directly applied to the multipartite case (Peres, 1995; Carteret
etal., 2000; Acin, Andrianov, Jané and Tarrach, 2001). These systems are still being
investigated.'* Let us just mention that pure states of three qubits can be entangled
in two inequivalent ways. There exist three-qubit!® pure states (Greenberger, Horne
and Zeilinger, 1989)

1
2

1

GHZ) =
| ) 7

(1000) 4 |111)) and |W) (1001) + (010) + 100))

(15.36)

which cannot be locally converted with a positive probability in any direction (Diir,
Vidal and Cirac, 2000b).

15.4 Mixed states and separability

It is a good time to look again at mixed states: in this section we shall analyse
bipartite density matrices, acting on a composite Hilbert space H = H4 ® Hp of
finite dimensionality d = NK. A state is called a product state, if it has a tensor
product structure, p = p4 ® pp. A mixed state p is called separable, if it can be
represented as a convex sum of product states (Werner, 1989),

M
Psep = Z qj /0}4 ® /)jB , (15.37)
j=l1

where p# acts in H 4 and p? acts in H g, the weights are positive, g; > 0, and sum to
unity, Zfdz 19; = 1. Such a decomposition is not unique. For any separable p, the

14 Several families of local invariants and entanglement monotones were found (Sudbery, 2001; Brun and Cohen,
2001; Gingrich, 2002), properties of local orbits were analysed (Mosseri and Dandoloff, 2001; Bernevig and
Chen, 2003; Miyake, 2003; Lévay, 2004), measures of multipartite entanglement were introduced (Coffman,
Kundu and Wootters, 2000; Bennett, Popescu, Rohrlich, Smolin and Thapliyal, 2001; Wong and Christensen,
2001; Meyer and Wallach, 2002; Brennen, 2003; Heydari and Bjork, 2004) and a link between quantum
mechanical and topological entanglement including knots and braids (Kauffmann and Lomonaco Jr., 2002;
Asoudeh, Karimipour, Memarzadeh and Rezakhani, 2004), rings (O’Connor and Wootters, 2001) and graphs
(Plesch and Buzek, 2003; Hein, Eisert and Briegel, 2004) have been discussed.

A curious reader might be pleased to learn that four qubits can be entangled in nine different ways (Verstraete,
Dahaene, DeMoor and Verschelde, 2002b). What is the number of different ways, one may entangle m qubits?
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smallest number M of terms is called cardinality '° of the state. By definition the set
M s of separable mixed states is convex. Separable states can be constructed locally
using classical communication, and may exhibit classical correlations only.A mixed
state which is not separable, hence may display non-classical correlations, is called
entangled."” It is easy to see that for pure states both definitions are consistent.
Any density matrix p acting on d-dimensional Hilbert space may be represented
as a sum (8.20) over d*> — 1 trace-less generators o; of SU(d). However, analysing
a composite system for which d = N K, it is more advantageous to use the basis of
the product group SU(N) ® SU(K), which leads us to the Fano form (Fano, 1983)

N2—1 N2—1K*-1
P = NKI:ﬂNK_'—ZT 01®ﬂK+ZT ﬂN®O']+Z Z,Bljal®dj:|-
i=1 i=1 j=1

(15.38)

Here 74 and 7% are Bloch vectors of the partially reduced states, while a real
(N? — 1) x (K? — 1) matrix 8 describes the correlation between both subsystems.
If B = O then the state is separable, but the reverse is not true.'® Keeping both Bloch
vectors constant and varying § in such a way to preserve positivity of p we obtain a
(N? — 1)(K? — 1)-dimensional family of bipartite mixed states, which are locally
indistinguishable.

The definition of separability (15.37) is implicit, so it is in general not easy to
see if such a decomposition exists for a given density matrix. Separability criteria
found so far may be divided into two disjoint classes: A) sufficient and necessary, but
not practically usable; and B) easy to use, but only necessary (or only sufficient).
A simple, albeit amazingly powerful criterion was found by Peres (1996), who
analysed the action of partial transposition on an arbitrary separable state,

Py = (T @ Nlpwp) =Y q; () @ pf = 0. (15.39)
J

Thus any separable state has a positive partial transpose (is PPT), so we obtain
directly

B1. PPT criterion. If p™ # 0, the state p is entangled.

16 Due to Carathéodory’s theorem the cardinality is not larger then d” (Horodecki, 1997). In the two-qubit case
it is not larger than d = 4 (Sanpera, Tarrach and Vidal, 1998), while for systems of higher dimensions it is
typically larger than the rank » < d (Lockhart, 2000).

17 The notion of entanglement may also be used in the set-up of classical probability distributions (Tucci, n.d.b),
theory of Lie-algebras or convex sets (Barnum, Knill, Ortiz and Viola, 2003) and may be compared with secret
classical correlations (Collins and Popescu, 2002)

18 Note that for product states M;; = B;; — r r =0, hence the norm ||M||? characterizes to what extent p is
not a product state (Schlienz and Mahler, 1995)
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Is is extremely easy to use: all we need to do is to perform the partial transposition
of the density matrix in question, diagonalize, and check if all eigenvalues are non-
negative. Although partial transpositions were already defined in (10.34), let us
have a look at how both operations act on a block matrix,

_[A B , _ | AT BT n,_|A C
x_[c D] X :[CT o | X = 2 bl (15.40)

Note that X78 = (X7)T, so the spectra of the two operators are the same and
the above criterion may be equivalently formulated with the map 7 = (1 ® T).
Furthermore, partial transposition applied on a density matrix produces the same
spectrum as the transformation of flipping one of both Bloch vectors present in its
Fano form (15.38). Alternatively one may change the signs of all generators o; of
the corresponding group. For instance, flipping the second of the two subsystems
of the same size we obtain

1 N3-1 N3—1 N3—1
p't = ﬁ[‘ﬂzvz + Z o, @ Iy — Z iy ®o; — Z Bijoi ®Uj] ,
i=1 j=1 ij=1
(15.41)
with the same spectrum as p7+. In the two-qubit case, reflection of all three compo-
nents of the Bloch vector, 72 — —7 5, is equivalent to changing the sign of its single
component ‘CyB (partial transpose), followed by the -rotation along the y-axis.

To watch the PPT criterion in action consider the family of generalized Werner
states ' which interpolate between maximally mixed state p, and the maximally
entangled state P, = |¢T) (o],

1

pw(x) = x|V + (1 —x)ﬁ‘ﬂ with x € [0, 1]. (15.42)

One eigenvalue equals [1 4+ (N — 1)x]/N, and the remaining (N — 1) eigenvalues
are degenerate and equal to (1 — x)/N. In the N = 2 case:

T14+x 0 0 2x
10 1-x 0 0

=71 o 0 1-x 0
| 2x 0 0 14+ x|
14+ x 0 0 0 ]
1 0 1—x 2x 0

Ta _ _

PE=3 00 2 1—-x 0 (1543)
L0 0 0 1+4x]

19 For the original Werner states (Werner, 1989) the singlet pure state [ ~) = (|01) — |10))/ﬁ was used instead

of [p+).
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Diagonalization of the partially transposed matrix p4 = p’# gives the spectrum
i{l +x,1+4+x,1+ x, 1 — 3x}. This matrix is positive definite if x < 1/3, hence
Werner states are entangled for x > 1/3. It is interesting to observe that the critical
state p1/3 € dMgep, is localized at the distance ry, = 1/ /24 from the maximally
mixed state p,, so it sits on the insphere, the maximal sphere that one can inscribe
into the set M® of N = 4 mixed states.

As we shall see below the PPT criterion works in both directions only if dim(H) <
6, so there is a need for other separability criteria.’ Before reviewing the most im-
portant of them let us introduce one more notion often used in the physical literature.

An Hermitian operator W is called an entanglement witness for a given entangled
state p if TroW < 0 and Trpw > O for all separable ¢ (Horodecki et al., 1996a;
Terhal, 2000b). For convenience the normalization TrW =1 is assumed.
Horodecki, Horodecki and Horodecki (1996a) proved a useful lemma:

Lemma 15.1 (Witness) For any entangled state p there exists an entanglement
witness W.

In fact this is the Hahn—Banach separation theorem (Section 1.1) in slight disguise.

Itis instructive to realize there is a direct relation with the dual cones construction
discussed in Chapter 11: any witness operator is proportional to a dynamical matrix,
W = D¢ /N, corresponding to a non-completely positive map ®. Since D¢ is
block positive (positive on product states), the condition Tr Wo > 0 holds for all
separable states for which the decomposition (15.37) exists. Conversely, a state p is
separable if Tr Wp > 0 for all block positive W. This is just the definition (11.17)
of a super-positive map W. We arrive, therefore, at a key observation: the set SP
of super-positive maps is isomorphic with the set M of separable states by the
Jamiolkowski isomorphism, p = Dy /N.

An intricate link between positive maps and the separability problem is made
clear in the

Al. Positive maps criterion (Horodecki et al., 1996a). A state p is separable if
and only if p' = (® ® 1)p is positive for all positive maps .

To demonstrate that this condition is necessary, act with an extended map on the
separable state (15.37),

(@@ﬂ)(ijpfc«apf) =Y g ®H®p? = 0. (1544)
J J

Due to positivity of ® the above combination of positive operators is positive. To
prove sufficiency, assume that p’ = (® ® 1)p is positive. Thus Trp’ P > 0 for any

20 For recent analysis of the problem consult also Lewenstein, Bruf, Cirac, Kraus, Ku§, Samsonowicz, Sanpera
and Tarrach (2000a), Horodecki, Horodecki and Horodecki (2000b), BruB, Cirac, Horodecki, Hulpke, Kraus,
Lewenstein and Sanpera (2002), Terhal (2002) and Bruf (2002).
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projector P. Setting P = P, = |¢")(¢™| and making use of the adjoint map we
getTrp(® ® 1)Py = #Trqu> > 0. Since this property holds for all positive maps
®, it implies separability of p due to the witness lemma X.

The positive maps criterion holds also if the map acts on the second subsystem.
However, this criterion is not easy to use: one needs to verify that the required
inequality is satisfied for all positive maps. The situation becomes simple for the
2 x 2 and 2 x 3 systems. In this case any positive map is decomposable due to the
Stgrmer—Woronowicz theorem and may be written as a convex combination of a
CP map and a CcP map, which involves the transposition 7' (see Section 11.1).
Hence, to apply the above criterion we need to perform one check working with
the partial transposition 74 = (T ® 7). In this way we become

B1’. Peres—Horodeccy criterion (Peres, 1996; Horodecki et al., 1996a). A state p
acting on Hy ® H, (or Hy ® H3) composite Hilbert space is separable if and only
if p™ > 0.

In general, the set of bipartite states may be divided into PPT states (positive par-
tial transpose) and NPPT states (not PPT). A map & is related by the Jamiotkowski
isomorphism (11.22) to a PPT state if ® € CP N CcP. Complete co-positivity of
@ implies that T® is completely positive, so (T® ® 1)p > 0 for any state p.
Thus p’ = (® ® 1)p is a PPT state, so such a map may be called PPT inducing *!
PPTM =CP NCcP (see Figure 11.4).

Similarly, a super-positive map @ is related by the isomorphism (11.22) with a
separable state. Hence (® ® 1) acting on the maximally entangled state |¢™") (¢
is separable. It is then not surprising that p’ = (® ® 1)p becomes separable for
an arbitrary state p (Horodecki, Shor and Ruskai, 2003b), which explains why SP
maps are also called entanglement breaking channels. Furthermore, due to the
positive maps criterion (¥ ® 1)p’ > 0 for any positive map W. In this way we have
arrived at the first of three duality conditions equivalent to (11.16)—(11.18),

{®eSP} & V.- deCP forall VeP, (15.45)
{(PeCP} © V- dec(CP forall ¥elP, (15.46)
{eP} & V.- 0eCP forall VeSP. (15.47)

The second condition reflects the fact that a composition of two CP maps is CP,
while the third one is dual to the first.

Due to the Stgrmer and Woronowicz theorem and the Peres—Horodeccy criterion,
all PPT states for 2 x 2 and 2 x 3 problems are separable (hence any PPT-inducing
map is SP) while all NPPT states are entangled. In higher dimensions there exist

21 These maps should not be confused with PPT-preserving maps (Rains, 2001; Eggeling, Vollbrecht, Werner and
Wolf, 2001), which act on bipartite systems and fulfil another property: if pTa > 0 then (¥(p)T4 > 0.
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PPT entangled states (PPTES), and this fact motivates investigation of positive,
non-decomposable maps and other separability criteria.

B2. Range criterion (Horodecki, 1997). If a state p is separable, then there exists a
set of pure product states such that |Vr; ® ¢;) span the range of p and Tg(|V; ® ¢;)
span the range of pT¢.

The action of the partial transposition on a product state gives |/; ® ¢), where
* denotes complex conjugation in the standard basis. This criterion, proved by P.
Horodecki (1997), allowed him to identify the first PPTES in the 2 ® 4 system.
Entanglement of p was detected by showing that none of the product states from
the range of p, if partially conjugated, belong to the range of p’%.

The range criterion allows one to construct PPT entangled states related to
unextendible product basis, (UPB). It is a set of orthogonal product vectors
lu;) € Hy @ Hy, i =1, ...,k < MN, such that there does not exist any prod-
uct vectors orthogonal to all of them (Bennett, DiVincenzo et al., 1999b; Alon and
Lovasz, 2001; DiVincenzo, Mor, Shor, Smolin and Terhal, 2003). We shall recall
an example found in Bennett, DiVincenzo, Mor, Shor, Smolin and Terhal (1999b)
for 3 x 3 system,

1 1 1

lug) = $|0> ®10-1), |uz)= 72I2> ®I1=2), |uz)= \—EIO— I)®12),
1 1

|u4>=ﬁ|1—2)®|0), |u5>=§|0+1+2>®|0+1+2). (15.48)

These five states are mutually orthogonal. However, since they span full three-
dimensional spaces in both subsystems, no product state may be orthogonal to all
of them.

Foragiven UPBlet P = Zle |u;){u;| denote the projector on the space spanned
by these product vectors. Consider the mixed state, uniformly covering the com-
plementary subspace,

1
= — {1 -P). 15.49

p= (=P (15.49)
By construction this subspace does not contain any product vectors, so p is entangled
due to the range criterion. On the other hand, the projectors (Ju; ) (u;|)™® are mutually
orthogonal, so the operator P™5 = 3"~ (|u;) (u;|)™ is a projector. Sois (1 — P)™s,
hence p’% is positive. Thus the state (15.49) is a positive partial transpose entangled
state.??

22 The UPB method was used to construct PPTES in (Bennett et al., 1999b; Bruf and Peres, 2000; DiVincenzo,
Mor, Shor, Smolin and Terhal, 2003; Pittenger, 2003), while not completely positive maps were applied in
(Ha et al., 2003; Benatti, Floreanini and Piani, 2004) for this purpose. Conversely, PPTES were used in
(Terhal, 2000b) to find non-decomposable positive maps.
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B3. Reduction criterion (Cerf, Adami and Gingrich, 1999; Horodecki and
Horodecki, 1999). If a state p is separable then the reduced states pp = Trgp
and pp = Trap satisfy

pa®1—p>0 and 1®pp—p=>0. (15.50)

This statement follows directly from the positive maps criterion with the map
®(0) = (Tro)1 — o applied to the first or the second subsystem. Computing the
dynamical matrix for this map composed with the transposition, ® = &7, we find
that Dy > 0, hence @ is CcP and (trivially) decomposable. Thus the reduction
criterion cannot be stronger23 than the PPT criterion. There exists, however, a good
reason to pay some attention to this criterion: the Horodecki brothers have shown
(Horodecki and Horodecki, 1999) that any state p violating (15.50) is distillable,
that is there exists a LOCC protocol which allows one to extract locally maximally
entangled states out of p or its copies (Bennett, DiVincenzo, Smolin and Wootters,
1996b; Rains, 1999b). Entangled states, which are not distillable are called bound
entangled (Horodecki, Horodecki and Horodecki, 1998; Horodecki, Horodecki and
Horodecki, 1999).

A general question, which mixed state may be distilled,?* is not solved yet (Bruf
et al., 2002). Again the situation is clear for systems with dim(H) < 6: all PPT
states are separable, and all NPPT states are entangled and distillable. For larger
systems there exist PPT entangled states> and all of them are not distillable, hence
bound entangled (Horodecki et al., 1998). Conversely, one could think that all
NPPT entangled states are distillable, but this seems not to be the case (Diir, Cirac,
Lewenstein and Bruf3, 2000a; DiVincenzo, Shor, Smolin, Terhal and Thapliyal,
2000a).

B4. Majorization criterion (Nielsen and Kempe, 2001). If a state p is separable,
then the reduced states pa and pg satisfy the majorization relations

P < pa and P < pPp . (15.51)

In brief, separable states are more disordered globally than locally. To prove this
criterion one needs to find a bistochastic matrix B such that the spectra satisfy
A = Bl (see Problem 15.4). The majorization relation implies that any Schur
convex functions satisfies the inequality (2.8). For Schur concave functions the
direction of the inequality changes. In particular, the entropy criterion follows:

23 This is the case for the generalized reduction criterion proposed in Albeverio, Chen and Fei (2003).

24 Following literature we use two similar terms: entanglement concentration and distillation, for local operations
performed on pure and mixed states, respectively. While the former operations are reversible, the latter are not.

25 Interestingly, there are no bound entangled states of rank one or two (Horodecki, Smolin, Terhal and Thapliyal,
2003c).
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BS. Entropy criterion. If a state p is separable, then the Rényi entropies fulfil
Sa(p) = Sy(pa) and  Sy(p) = Sy(p) for q=0. (15.52)

The entropy criterion was originally formulated for ¢ =1 (Horodecki and
Horodecki, 1994). Then this statement may be equivalently expressed in terms
of the conditional entropy?® S(A|B) = S(pap) — S(p4): for any separable bipar-
tite state S(A|B) is non-negative. Thus negative conditional entropy of a state
pap confirms its entanglement (Horodecki and Horodecki, 1996; Schumacher and
Nielsen, 1996; Cerf and Adami, 1999). The entropy criterion was proved for g = 2
in (Horodecki, Horodecki and Horodecki, 1996b) and later formulated also for the
Havrda—Charvat-Tsallis entropy (2.77) (Abe and Rajagopal, 2001; Tsallis, Lloyd
and Baranger, 2001; Rajagopal and Rendell, 2002; Rossignoli and Canosa, 2002).
Its combination with the entropic uncertainty relations of Maassen and Uffink
(1988) provides yet another interesting family of separability criteria (Giihne and
Lewenstein, 2004). However, it is worth emphasizing that in general the spectral
properties do not determine separability — there exist pairs of isospectral states, one
of which is separable, the other not (compare with Problem 15.5).

A2. Contraction criterion. A bipartite state p is separable if and only if any

extended trace preserving positive map act as a (weak) contraction in sense of the
trace norm,

ol = 11T ® P)pllte < llpll = Trp = 1. (15.53)

This criterion was formulated in (Horodecki, Horodecki and Horodecki, n.d.b)
basing on earlier papers (Rudolph, 2003a; Chen and Wu, 2003). To prove it notice
that the sufficiency follows from the positive map criterion: since Trp’ = 1, hence
[1o'|ITe < 1implies that o’ > 0. To show the converse consider a normalized product

state p = pA @ p”. Any trace preserving positive map ® acts as isometry in sense
of the trace norm, and the same is true for the extended map,

1ol = ||(1 ® @)™ ® p®)||, = 101 - 12Dl = 1. (15.54)

Since the trace norm is convex, ||A + B||r: < ||Al|r: + || Bl|1:, any separable state
fulfils

(e (Xawt©rh)||, = Yale!© o)l = Ya=1.

(15.55)
which ends the proof. X

26 The opposite quantity, —S(A|B), is called coherent quantum information (Schumacher and Nielsen, 1996) and
plays an important role in quantum communication (Horodecki, Horodecki, Horodecki and Oppenheim, 2005).
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Several particular cases of this criterion could be useful. Note that the cele-
brated PPT criterion B1 follows directly, if the transposition 7 is selected as a
trace preserving map @, since the norm condition, || o™ ||, < 1, implies positivity,
T4 > 0. Moreover, one may formulate an analogous criterion for global maps V¥,
which act as contractions on any bipartite product states, ||V (o4 ® pp)llr < 1. As

a representative example let us mention

B6. Reshuffling criterion.?’ If a bipartite state p is separable then reshuffling
(10.33) does not increase its trace norm,

o®lme < llplle=1. (15.56)

We shall start the proof considering an arbitrary product state, o4 ® og. By con-
struction its Schmidt decomposition consists of one term only. This implies

o4 ® o) It = 21loall2 - lloglla = \/Trog |/ Trop < 1. (15.57)

Since the reshuffling transformation is linear, (A + B)R = AR + BX_ and the trace
norm is convex, any separable state satisfies

[(Catr@am) || = Yale! @o i < Ya=1. (1559

which completes the reasoning. X

In the simplest case of two qubits, the latter criterion is weaker than the PPT:
examples of NPPT states, the entanglement of which is not detected by reshuffling,
were provided by Rudolph (2003b). However, for some larger dimensional prob-
lems the reshuffling criterion becomes useful, since it is capable of detecting PPT
entangled states, for which ||o®||1; > 1 (Chen and Wu, 2003).

The problem of which separability criterion?® is the strongest, and what the
implication chains among them are, remains a subject of a vivid research (Vollbrecht
and Wolf, 2002; Albeverio et al., 2003; Chen and Wu, 2004; Batle, Plastino, Casas
and Plastino, 2004). In general, the separability problem is ‘hard’, since it is known
that it belongs to the NP complexity class (Gurvits, 2003). Due to this intriguing
mathematical result it is not surprising that all operationally feasible analytic criteria
provide partial solutions only. On the other hand, one should appreciate practical

27 Called also realignment criterion (Chen and Wu, 2003) or computable cross-norm criterion (Rudolph, 2003b).
It is related to the earlier minimal cross-norm criterion of Rudolph (2003a), which provides a necessary and
sufficient condition for separability, but is in general not practical to use.

28 There exists several other separability criteria, not discussed here. Let us mention applications of the range
criterion for 2 x N systems (Diir et al., 2000a), checks for low rank density matrices (Horodecki, Lewenstein,
Vidal and Cirac, 2000c), reduction of the dimensionality of the problem (Woerdeman, 2004), relation between
purity of a state and its maximal projection on a pure states (Lewenstein et al., 2000a), or criterion obtained by
expanding a mixed state in the Fourier basis (Pittenger and Rubin, 2000).
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methods constructed to decide separability numerically. Iterative algorithms based
on an extension of the PPT criterion for higher dimensional spaces (Doherty, Parillo
and Spedalieri, 2002; Doherty et al., 2004) or non-convex optimization (Eisert,
Hyllus, Guhne and Curty, 2004) are able to detect the entanglement in a finite
number of steps. Another algorithm provides an explicit decomposition into pure
product states (Hulpke and Bruf3, 2005), confirming that the given mixed state p is
separable. A combination of these two approaches terminates after a finite time ¢
and gives an inconclusive answer only if p belongs to the e-vicinity of the boundary
of the set of separable states. By increasing the computation time ¢ one may make
the width € of the ‘no man’s land’ arbitrarily small.

15.5 Geometry of the set of separable states

Equipped with a broad spectrum of separability criteria, we may try to describe the
structure of the set M of the separable states. This task becomes easier for the
two-qubit system, for which positive partial transpose implies separability. Hence
the set of N = 4 separable states arises as an intersection of the entire body of
mixed states with its reflection induced by partial transpose,

MP = MD 0 Ty(MP), (15.59)

(see Figure 11.2(b)). This observation suggests that the set of separable states
has a positive volume. The maximally mixed state is invariant with respect to
partial transpose, p, = ,O*TB and occupies the centre of the body M®_ 1t is thus
natural to ask, what is the radius of the separable ball centred at p,? The answer is
very appealing in the simplest, Euclidean geometry: the entire maximal 15-D ball
inscribed in M® is separable (Zyczkowski, Horodecki, Sanpera and Lewenstein,
1998). Working with the distance D, defined in Eq. (8.3), its radius reads ri, =
1//24.

The separable ball is sketched in two- or three-dimensional cross sections of
M® in Figure 15.7. To prove its separability?® we shall invoke

Theorem 15.2 (Mehta’s) (Mehta, 1989). Let A be a Hermitian matrix of size D
and let o = TrA/vTrA2 If a > /D — 1 then A is positive.

Its proof begins with an observation that both traces are basis independent, so we
may work in the eigenbasis of A. Let (x|, ... xp) denote the spectrum of A. Assume
first that one eigenvalue, say x|, is negative. Making use of the right-hand side of the
standard estimation between the /;- and /;-norms (with prefactor 1) of an N-vector,

29 An explicit separability decomposition (15.37) for any state inside the ball was provided in (Braunstein, Caves,
Jozsa, Linden, Popescu and Schack, 1999).
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Figure 15.7. Maximal ball inscribed inside the 15-D body M® of mixed states is
separable: (a) 3-D cross section containing four Bell states, (b) 2-D cross section
defined by two Bell states and p, with the maximal separable triangle of pseudo-
pure states.

[|All2 < ||A]l1 < N||All|2, we infer

TrA = XD:xi < XD:x,» <VD-— 1(XD:x3)1/2 < VD= IVTrAZ.  (15.60)
i=1 i=2

i=2

This implies that « < +/D — 1. Hence if the opposite is true and « > /D — 1 then
none of the eigenvalues x; could be negative, so A > 0. X

The partial transpose preserves the trace and the HS norm of any state, |[p"?||3 =
[0l |§ = % Trp?. Taking for A a partially transposed density matrix p”# we see that
a? = 1/Trp?. Let us apply the Mehta lemma to an arbitrary mixed state ofa N x N
bipartite system, for which the dimension D = N 2

1/Trp? > N>—1 = p is PPT. (15.61)

Since the purity condition Trp? = 1/(D — 1) characterizes the insphere of M?),
we conclude that for any bipartite® system the entire maximal ball inscribed inside
the set of mixed states consists of PPT states only. This property implies separability
for 2 x 2 systems. Separability of the maximal ball for higher dimensions was
established by Gurvits and Barnum (2002), who later estimated the radius of the
separable ball for multipartite systems (Gurvits and Barnum, 2003, 2004).

For any N x N system the volume of the maximal separable ball, Bjsf_l may
be compared with the Euclidean volume (14.38) of MW "), The ratio
VolBYY_ ) (N2=1)/2 p(N*=N*)/2 [ (N4
NI x (V) (15.62)

Vol(MPN) ™ T[(N4 + 1)/2] N¥* (N2 — V=02 TV T k)

30 The same is true for multipartite systems (Kendon, Zyczkowski and Munro, 2002).
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decreases fast with N, which suggests that for higher-dimensional systems the
separable states are not typical. The actual probability p to find a separable
mixed state is positive for any finite N and depends on the measure used
(Zyczkowski, 1999; Slater, 1999b; Slater, 2005). However, in the limit N — oo the
set of separable states is nowhere dense (Clifton and Halvorson, 2000), so the prob-
ability p computed with respect to an arbitrary non-singular measure tends to zero.

Another method of exploring the vicinity of the maximally mixed state consists
in studying pseudo-pure states

1
pe =0 =) +e€ld)dl, (15.63)

which are relevant for experiments with nuclear magnetic resonance (NMR) for
€ < 1. The set M, is then defined as the convex hull of all e-pseudo pure states.
It forms a smaller copy of the entire set of mixed states of the same shape and is
centred at p, = 1/N2.

For instance, since the cross section of the set M® shown in Figure 15.7(b) is
a triangle, so is the set M., — a dashed triangle located inside the dark rhombus
of separable states. The rhombus is obtained as a cross section of the separable
octahedron,’! which arises as a common part of the tetrahedron of density matrices
spanned by four Bell states and its reflection representing their partial transposition
(Horodecki and Horodecki, 1996; Aravind, 1997). Anidentical octahedron of super-
positive maps will be formed by intersecting the tetrahedrons of CP and CcP one-
qubit unital maps shown in Figure 11.3(a) and (b).

Making use of the radius (15.61) of the separable ball we obtain that the states
M, of a N x N bipartite’? system are separable for ¢ < €. = 1/(N? — 1).

Usually one considers states separable with respect to a given decomposition
of the composed Hilbert space, Hy2: = Ha @ Hp. A state p may be separable
with respect to a given decomposition and entangled with respect to another one.
Consider for instance, two decompositions of Hg: H, ® H3 and Hz ® H, which
describe different physical problems. There exist states separable with respect to
the former decomposition and entangled with respect to the latter one. On the other
hand one may ask, which states are separable with respect to all possible splittings

31 Properties of a separable octangula obtained for other 3-D cross sections of M were analysed in Ericsson
(2002). Several 2-D cross sections plotted in Jakébczyk and Siennicki (2001) and Verstraete, Dahaene and
DeMoor (2002a) provide further insight into the geometry of the problem.

32 Bounds for €, in multipartite systems were obtained in Braunstein et al. (1999), Deuar, Munro and Nemoto
(2000), Pittenger and Rubin (2002), Gurvits and Barnum (2003), Szarek (2005) and Gurvits and Barnum
(2004). The size of the separable ball is large enough that to generate a genuinely entangled pseudo-pure
state in an NMR experiment one would need to deal with at least 34 qubits (Gurvits and Barnum, 2004).
Although, to date, experimentalist have gained full control over 7-10 qubits and work with separable states
only, the NMR quantum computing does fine (Cory, Fahmy and Havel, 1997; Chuang, Gershenfeld, Kubinec
and Leung, 1998; Laflamme, Cory, Negrevergne and Viola, 2002).
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of the composed system into subsystems A and B. This is the case if p' = Up U'
is separable for any global unitary U, and states possessing this property are called
absolutely separable (Ku$ and Zyczkowski, 2001).

All states belonging to the maximal ball inscribed into the set of mixed states
for a bipartite problem are not only separable but also absolutely separable. In the
two-qubit case the set of absolutely separable states is larger than the maximal
ball: As conjectured in Ishizaka and Hiroshima (2000) and proved in Verstraete,
Audenaert and DeMoor (2001a) it contains any mixed state p for which

CM()_C') = X1 — X3 —2Jxx4 <0, (15.64)

where X = {x; > x, > x3 > x4} denotes the ordered spectrum of p. The problem,
whether there exist absolutely separable states outside the maximal ball was solved
for 2 x 3 case (Hildebrand, n.d.), but it remains open in higher dimensions. Numer-
ical investigations suggest that in such a case the set M g of separable states, located
in central parts of M, is covered by a shell of bound entangled states. However this
shell is not perfect, in the sense that the set of NPPT entangled states (occupying
certain ‘corners’ of M) has a common border with the set of separable states.

Some insight into the geometry of the problem may be gained by studying the
manifold ¥ of mixed products states. To verify whether a given state p belongs to
one computes the partial traces and checks if p4 ® pp is equal to p. This is the case,
for example, for the maximally mixed state, p, € X. All states tangent to X at p,
are separable, while the normal subspace contains the maximally entangled states.
Furthermore, for any bipartite systems the maximally mixed state p, is the product
state closest to any maximally entangled state (with respect to the HS distance)
(Lockhart, Steiner and Gerlach, 2002).

Let us return to characterization of the boundary of the set of separable states for
a bipartite system. For any entangled state o, one may define the separable state
Osep € 0 Mg, which is closest to o, With respect to a given metric. In general it is
not easy to find the closest separable state, even in the two qubit case, for which
the 14-dim boundary of the set ./\/l(;) may be characterized explicitly,

(peaMP) = deto=0 or detp™ =0. (15.65)

Alternatively, for any entangled state one defines the best separable approxima-
tion (BSA)

Pent = A,Osep + (1 - A)pb, (1566)

where the separable state p,., and the state p, are chosen in such a way that
the positive weight A € [0, 1] is maximal. Uniqueness of such a decomposition

3 Also called Lewenstein—Sanpera decomposition (Lewenstein and Sanpera, 1998).
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A

a) optimal decomposition of p,, b) entanglement witnesses

Figure 15.8. (a) Best separable approximation of entangled state p; (b) a wit-
ness Wy detects entanglement in a subset of entanglement states; W; — optimal
decomposable witness; W, — optimal non-decomposable witness.

a) minimal distance d;, to M

D

¢) robustness R=(1-a)/a

b) maximal fidelityF,, to M

max

Figure 15.9. (a) Minimal distance D, to the closest separable state. (b) Maximal
fidelity to a maximally entangled state. (c) Robustness, i.e. the minimal ratio of
the distance to set M by its width.

was proved in Lewenstein and Sanpera (1998) for two qubits, and in Karnas and
Lewenstein (2001) for any bipartite system. In the two-qubit problem the state pj, is
pure, and is maximally entangled for any full rank state p (Karnas and Lewenstein,
2001). An explicit form of the decomposition (15.66) was found in Wellens and Ku$§
(2001) for a generic two-qubit state and in Akhtarshenas and Jafarizadeh (2004)
for some particular cases in higher dimensions. Note the key difference in both
approaches: looking for the separable state closest to p we probe the boundary
BM(SN) of the set of separable states only, while looking for its best separable
approximation we must also take into account the boundary of the entire set of
density matrices; compare Figure 15.8(a) and Figure 15.9(a).

The structure of the set of separable states may also be analysed with use of the
entanglement witnesses (Pittenger and Rubin, 2003), already defined in the previous
section. Any witness W, being a non-positive operator, may be represented as a
point located far outside the set M of density matrices, in its image with respect
to an extended positive map, (®p ® 1), or as a line perpendicular to the axis OW
(see Figure 11.6), which crosses M. The states outside this line satisfy TroW < 0,
hence their entanglement is detected by W. A witness W is called finer than W
if every entangled state detected by W, is also detected by W;. A witness W, is
called optimal if the corresponding map belongs to the boundary of the set of
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positive operators, so the line representing W, touches the boundary of the set
M of separable states. A witness related to a generic non-CP map ®p € P may
be optimized by sending it toward the boundary of P (Lewenstein, Kraus, Cirac
and Horodecki, 2000b). If a positive map ®p is decomposable, the corresponding
witness, W = Dg,, /N is called decomposable. Any decomposable witness cannot
detect PPT bound entangled states (see Figure 15.8(b)).

One might argue that in general a witness W = D¢,/ N is theoretically less useful
than the corresponding map &, since the criterion TroW < 0 is not as powerful as
NWEpERYR = (® ® 1)p > 0; see Eq. (11.24). However, a non-CP map & cannot
be realized in nature, while an observable W may be measured. Suitable witness
operators were actually used to detect quantum entanglement experimentally in bi-
partite (Barbieri, Martini, Nepi, Mataloni, D’ Ariano and Macciavello, 2003; Giihne
et al., 2003) and multipartite systems (Bourennane, Eibl, Kurtsiefer, Weinfurter,
Guehne, Hyllus, Bruf3, Lewenstein and Sanpera, 2004). Furthermore, the Bell in-
equalities may be viewed as a kind of separability criterion, related to a particular
entanglement witness (Terhal, 2000a; Horodecki et al., 2000b; Hyllus, Giihne,
BruB and Lewenstein, 2005) so evidence of their violation™* for certain states
(Aspect et al., 1982) might be regarded as an experimental detection of quantum
entanglement.

15.6 Entanglement measures

We have already learned that the degree of entanglement of any pure state of a
N x K system may be characterized by the entanglement entropy (15.25) or any
other Schur concave function f of the Schmidt vector . The problem of quantifying
entanglement for mixed states becomes complicated (Vedral, Plenio, Rippin and
Knight, 1997; Donald et al., 2002; Horodecki, 2001).

Let us first discuss the properties that any potential measure E(p) should satisfy.
Even in this respect experts seem not to share exactly the same opinions (Bennett
et al., 1996b; Popescu and Rohrlich, 1997; Vedral and Plenio, 1998; Vidal, 2000;
Horodecki, Horodecki and Horodecki, 2000a). There are three basic axioms,

(E1) Discriminance. E(p) = 0 if and only if p is separable.

(E2) Monotonicity (15.29) under probabilistic LOCC.

(E3) Convexity, E(ap + (1 —a)o) < aE(p) + (1 —a)E(0), witha € [0, 1].
Then there are certain additional requirements,

34 A state violating the Bell or, in particular, the CHSH inequalities (Clauser, Horne, Shimony and Holt, 1969;
Clauser and Shimony, 1978) needs to be entangled (Werner, 1989). The converse is not true: any pure entangled
state violates CHSH inequalities (Gisin, 1991; Popescu and Rohrlich, 1992), but this is not always the case for
a mixed entangled state (Werner, 1989).
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(E4) Asymptotic continuity.’ Let p,, and o,, denote sequences of states acting
on m copies of the composite Hilbert space, (Hy @ Hg)®™.

E(pm) — E(on) _

If  1im ||pmw — 0mlli =0 then lim =0, (15.67)
m—0o0

m—00 min NK
(ES) Additivity. E(p ® ) = E(p) + E(o) forany p, o € Myk.
(E6) Normalization. E(|y~)(y~|) = 1.
(E7) Computability. There exists an efficient method to compute E for any p.
There are also alternative forms of properties (E1)—(ES).
(Ela) Weak discriminance. If p is separable then E(p) = 0.
(E2a) Monotonicity under deterministic LOCC, E(p) > E[®occ(p)].
(E3a) Pure states convexity. E(p) < Y, piE(¢;) where p =", pildi){(¢il.
(E4a) Continuity. If||o — ol||; — Othen |E(p) — E(c)| — O.
(E5a) Extensivity. E(p®") = nE(p).
(ESb) Subadditivity. E(p ® o) < E(p) + E(0).
(ES5c) Superadditivity. E(o ® 0) > E(p)+ E(0).

The above list of postulates deserves a few comments. The rather natural ‘if
and only if’ condition in (E1) is very strong: it cannot be satisfied by any measure
quantifying the distillable entanglement, due to the existence of bound entangled
states. Hence one often requires the weaker property (Ela) instead.

Monotonicity (E2) under probabilistic transformations is stronger than mono-
tonicity (E2a) under deterministic LOCC. Since local unitary operations are re-
versible, the latter property implies
(E2b) Invariance with respect to local unitary operations,

E(p)=EUs@UppUl U} . (15.68)

Convexity property (E3) guarantees that one cannot increase entanglement by mix-
ing.3® Following Vidal (2000), we will call any quantity satisfying (E2) and (E3) an
entanglement monotone.>” These fundamental postulates reflect the key idea that
quantum entanglement cannot be created locally. Or in more economical terms: it
is not possible to get any entanglement for free — one needs to invest resources for
certain global operations.

The postulate that any two neighbouring states should be characterized by similar
entanglement is made precise in (E4). Let us recall here the Fannes continuity
lemma (13.36), which estimates the difference between von Neumann entropies

35 We follow Horodecki (2001) here; slightly different fomulations of this property are used in Horodecki et al.
(2000a) and in Donald et al. (2002).

36 Note that entropy is a concave function of its argument: mixing of pure states increases their von Neumann
entropy, but it decreases their entanglement.

37 Some authors require also continuity (E4a).
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of two neighbouring mixed states. Similar bounds may also be obtained for any
other Rényi entropy with g > 0, but then the bounds for S, are weaker then for
Sy. Although S, are continuous for g > 0, in the asymptotic limit n — 0o only S
remains a continuous function of the state p®". In the same way the asymptotic
continuity distinguishes the entanglement entropy based on S; from other entropy
measures related to the generalized entropies S, (Vidal, 2000; Donald et al., 2002).

Additivity (ES) is a most welcome property of an optimal entanglement measure.
For certain measures one can show sub- or super-additivity; additivity requires both
of them. Unfortunately this is extremely difficult to prove for two arbitrary density
matrices, so some authors suggest to require extensivity (ESa). Even this property
is not easy to demonstrate. However, for any measure £ one may consider the
quantity

1
Er(p) = lim —E(p®"). (15.69)
n—>oo n

If such a limit exists, then the regularized measure Eg defined in this way satisfies
(E5a) by construction. The normalization property (E6), useful to compare different
quantities, can be achieved by a trivial rescaling.

The complete wish list (E1)-(E7) is very demanding, so it is not surprising that
instead of one ideal measure of entanglement fulfilling all required properties, the
literature contains a plethora of measures (Vedral and Plenio, 1998; Horodecki,
2001; BruB, 2002), each of them satisfying some axioms only. The pragmatic
wish (E7) is an especially tough one, since we have learned that even the problem
of deciding the separability is a ‘hard one’ (Gurvits, 2003; Gurvits, 2004), the
quantifying of entanglement cannot be easier. Instead of waiting for the discovery
of a single, universal measure of entanglement, we have thus no choice but to review
some approaches to the problem. In the spirit of this book we commence with

I. Geometric measures
The distance from an analysed state p to the set M of separable states satisfies

(E1) by construction (see Figure 15.9(a)). However, it is not simple to find the
separable state o closest to p with respect to a certain metric, necessary to define
D.(p) = D.(p, o). There are several distances to choose from, for instance

G1. Bures distance (Vedral and Plenio, 1998) Dg(p) = ming e, De(p, 0),

G2. Trace distance (Eisert, Audenaert and Plenio, 2003) Dr(p) = mingea;
Dr(p, o),

G3. Hilbert-Schmidt distance (Witte and Trucks, 1999) Dys(p) = minge
Dys(p, o).
The Bures and the trace metrics are monotone (see Sections 13.2 and 14.1), which
directly implies (E2a), while Dy fulfils also the stronger property (E2) (Vedral and
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Plenio, 1998). Since the HS metric is not monotone (Ozawa, 2001) it is not at all
clear, whether the minimal Hilbert—Schmidt distance is an entanglement monotone
(Verstraete et al., 2002a). Since the diameter of the set of mixed states with respect
to the above distances is finite, all distance measures cannot satisfy even the partial
additivity (E3a).

Although quantum relative entropy is not exactly a distance, but rather a contrast
function, it may also be used to characterize entanglement.

G4. Relative entropy of entanglement (Vedral et al., 1997) Dg(p) =
ming e vz S(Pll0).

In view of the discussion in Chapter 13 this measure has an appealing interpre-
tation as distinguishability of p from the closest separable state. For pure states
it coincides with the entanglement entropy, Dg(|¢)) = E1(|¢)) (Vedral and Ple-
nio, 1998). Analytical formulae for Dy are known in certain cases only (Vedral
et al., 1997; Vollbrecht and Werner, 2001; Ishizaka, 2003), but it may be efficiently
computed numerically (Reh4¢ek and Hradil, 2003). This measure of entanglement
is convex (due to double convexity of relative entropy) and continuous (Donald and
Horodecki, 1999), but not additive (Vollbrecht and Werner, 2001). It is thus use-
ful to study the regularized quantity, lim, ., Dg(0®")/n. This limit exists due to
subadditivity of relative entropy and has been computed in some cases (Audenaert,
Eisert, Jané, Plenio, Virmani and Moor, 2001a; Audenaert, Moor, Vollbrecht and
Werner, 2002).

GS5. Reversed relative entropy of entanglement Dzr(p) = ming e, S(0||p).

This quantity with exchanged arguments is not so interesting per se, but its
modification D, — the minimal entropy with respect to the set M, of separable
states o’ locally identical to p, {p’ € M, : p/, = pa and p} = pp}, provides a
distinctive example of an entanglement measure,® which satisfies the additivity
condition (E3) (Eisert et al., 2003).

G6. Robustness (Vidal and Tarrach, 1999). R(p) measures the endurance of entan-
glement by quantifying the minimal amount of mixing with separable states needed
to wipe out the entanglement,

1
R(p) = min (min sipt=—no

7)) e Mg) . 15.70
pi €M \ 520 1+ s(p +sp) € S) ¢ )

As shown if Figure 15.9(c) the robustness R may be interpreted as a minimal
ratio of the HS distance 1 — a = s/(1 + s) of p to the set Mg of separable states

to the width a = 1/(1 + s) of this set. This construction does not depend on the

38 A similar measure based on modified relative entropy was introduced by Partovi (2004).



398 Quantum entanglement

boundary of the entire set M, in contrast with the best separable approximation.
Robustness is known to be convex and monotone, but is not additive (Vidal and
Tarrach, 1999). Robustness for two-qubit states diagonal in the Bell basis was found
in Akhtarshenas and Jafarizadeh (2003), while a generalization of this quantity was
proposed in Steiner (2003).

G7. Maximal fidelity F,, with respect to the set M,,x of maximally entangled
states (Bennett et al., 1996b), F,,(p) = maxge ., F (o, |¢)(@]).

Strictly speaking the maximal fidelity cannot be considered as a measure of
entanglement, since it does not satisfy even weak discriminance (Ela). However,
it provides a convenient way to characterize, to what extent p may approximate
a maximally entangled state required for various tasks of quantum information
processing, so in the two-qubit case it is called the maximal singlet fraction. Invoking
(9.31) we see that F,, is a function of the minimal Bures distance from p to the
set Mpax. An explicit formula for the maximal fidelity for a two-qubit state was
derived in Badziag, Horodecki, Horodecki and Horodecki (2000), while relations
to other entanglement measures were analysed in Verstraete and Verschelde (2002).

1I1. Extensions of pure-state measures
Another class of mixed-states entanglement measures can be derived from quan-
tities characterizing entanglement of pure states. There exist at least two different
ways of proceeding. The convex roof construction (Uhlmann, 1998; Uhlmann, 2003)
defines E(p) as the minimal average quantity (E(¢)) taken on pure states forming
p. The most important measure is induced by the entanglement entropy (15.25).
P1. Entanglement of Formation (EoF) (Bennett et al., 1996b)

M

zmmzqg;mmwm, (15.71)
where the minimization®® is performed over an ensemble of all possible decompo-
sitions

M M
E =Api 19N - p =) pilg)(di] with p; >0, Y pi=1. (1572)
i=1 i=1

The ensemble £ for which the minimum (15.71) is realized is called optimal.
Several optimal ensembles might exist and the minimal ensemble length M is
called the cardinality of the state p. If the state is separable then Er(p) = 0, and

3 In the two-qubit case the entangled state used for BSA (15.66) is pure, pp = |¢p)(¢s]|, the weight A is a
monotone (Eisert and Briegel, 2001), so the quantity (1 — A)E/(¢) works as a measure of entanglement
(Lewenstein and Sanpera, 1998; Wellens and Kus, 2001).

40 A dual quantity defined by maximization over &, is called entanglement of assistance (DiVincenzo, Fuchs,
Mabuchi, Smolin, Thapliyal and Uhlmann, 1999), and both of them are related to relative entropy of entangle-
ment of an extended system (Henderson and Vedral, 2000).
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the cardinality coincides with the minimal length of the decomposition (15.37). Due
to Carathéodory’s theorem the cardinality of p € M™X does not exceed the squared
rank of the state, 7> < N2K? (Uhlmann, 1998). In the two-qubit case it is sufficient
to take M = 4 (Wootters, 1998), and this length is necessary for some states of rank
r = 3 (Audenaert et al., 2001b). In higher dimensions there exists states for which
M > NK > r (DiVincenzo, Terhal and Thapliyal, 2000b).

Entanglement of formation enjoys several appealing properties: it may be inter-
preted as the minimal pure-states entanglement required to build up the mixed state.
It satisfies by construction the discriminance property (E1) and is convex and mono-
tone (Bennett et al., 1996b). EoF is known to be continuous (Nielsen, 2000), and
for pure states it is by construction equal to the entanglement entropy E;(|¢)).
To be consistent with normalization (E6) one often uses a rescaled quantity,
El,=Ep/In2.

Two other properties are still to be desired, if EoF is to be an ideal entanglement
measure: we do not know, whether EoF is additive,*! and EoF is not easy to
evaluate.*? Explicit analytical formulae were derived for the two-qubit system
(Wootters, 1998), and a certain class of symmetric states in higher dimensions
(Terhal and Vollbrecht, 2000; Vollbrecht and Werner, 2001), while for the 2 x K
systems at least lower bounds are known (Chen, Liang, Li and Huang, 2002;
Lozinski, Buchleitner, Zyczkowski and Wellens, 2003; Gerjuoy, 2003).

P2. Generalized Entanglement of Formation (GEoF)

M
E,(p) = rrgan; E (1)) . (15.73)

i=1

where E,(|¢)) = S,[Trz(|¢){(¢])] stands for the Rényi entropy of entanglement.
Note that an optimal ensemble for a certain value of ¢ needs not to provide the
minimum for ¢’ # q. GEOF is asymptotically continuous only in the limit ¢ — 1
for which it coincides with EoF. In the very same way, the convex roof construction
can be applied to extend any pure states entanglement measure for mixed states.
In fact, several measures introduced so far are related to GEoF. For instance, the
convex roof extended negativity (Lee, Chi, Oh and Kim, 2003) and concurrence
of formation (Wootters, 2001; Rungta and Caves, 2003; Mintert et al., 2004) are
related to £/, and E, respectively.

41 Additivity of EoF has been demonstrated in special cases only, if one of the states is a product state (Benatti
and Narnhofer, 2001), is separable (Vollbrecht and Werner, 2001) or if it is supported on a specific subspace
(Vidal, Diir and Cirac, 2002). At least we can be sure that EoF satisfies subadditivity (E5b), since the tensor
product of the optimal decompositions of p and o provides an upper bound for E(p ® o).

42 EoF may by computed numerically by minimization over the space of unitary matrices U(M). A search for
the optimal ensemble can be based on simulated annealing (Zyczkowski, 1999), on a faster conjugate—gradient
method (Audenaert et al., 2001b), or on minimizing the conditional mutual information (Tucci, n.d.c).
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There is another way to make use of pure state entanglement measures. In analogy
to the fidelity between two mixed states, equal to the maximal overlap between their
purifications, one may also purify p by a pure state |/) € (Hy ® Hg)®?. Based
on the entropy of entanglement (15.25) one defines

P3. Entanglement of purification (Terhal, Horodecki, Leung and DiVincenzo,
2002; Bouda and Buzek, 2002)

Ep(p) = Ei(19)) (15.74)

min
|¢): p=Trgn(I®){(¢])

but any other measure of pure states entanglement might be used instead.

The entanglement of purification is continuous and monotone under strictly local
operations (not under LOCC). It is not convex, but more importantly, it does not
satisfy even the weak discriminance (Ela). In fact E p measures correlations *> be-
tween both subsystems, and is positive for any non-product, separable mixed state
(Bouda and Buzek, 2002). Hence entanglement of purification is not an entangle-
ment measure, but it happens to be helpful to estimate a variant of the entanglement
cost (Terhal et al., 2002). To obtain a reasonable measure one needs to allow for an
arbitrary extension of the system size, as assumed by defining

P4. Squashed entanglement (Christandl and Winter, 2004)

Es(e*”) = inf %[Sw”) +8(0"F) = S(p") = S("*H)] . (15.75)
where the infimum is taken over all extensions p4ZZ of an unbounded size such
that Tre(pA8F) = pAB. Here pA¥ stands for Trg(pA8) while pf = Tr p(pA5F).

Squashed entanglement** is convex, monotone and vanishes for every separable
state. If pA% is pure then p48E = pf ® pA8, hence Eg = [S(p*) + S(p?)]/2 =
S(p*) and the squashed entanglement reduces to the entropy of entanglement E. It
is characterized by asymptotic continuity (Alicki and Fannes, 2004), and additivity
(E5), which is a consequence of the strong subadditivity of the von Neumann
entropy. Thus Eg would be a perfect measure of entanglement, if we only knew
how to compute it!

II1. Operational measures
Entanglement may also be quantified in an abstract manner by considering the
minimal resources required to generate a given state or the maximal entanglement
yield. These measures are defined implicitly, since one deals with an infinite set of
copies of the state analysed and assumes an optimization over all possible LOCC
protocols.

43 To quantify them one may use of the operator Schmidt decomposition (10.31) of p.
44 Minimized quantity is proportional to quantum conditional mutual information of pA8£ (Tucci, n.d.c) and its
name refers to ‘squashing out’ the classical correlations.
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O1. Entanglement cost (Bennett et al., 1996b; Rains, 1999a) Ec(p) = lim,_, oo %,
where m is the number of singlets |/ ~) needed to produce locally n copies of the
analysed state p.

Entanglement cost has been calculated for instance for states supported on a
subspace such that tracing out one of the parties forms an entanglement breaking
channel (super-separable map) (Vidal et al., 2002). Moreover, entanglement cost
was shown (Hayden, Horodecki and Terhal, 2001) to be equal to the regularized
entanglement of formation, Ec(p) = lim,_, o, Er(p®")/n. Thus, if we knew that
EoF is additive, the notions of entanglement cost and entanglement of formation
would coincide.

02. Distillable entanglement (Bennett et al., 1996b; Rains, 1999a). Ep(p) =
lim,,, o0 %, where m is the maximal number of singlets | ~) obtained out of n
copies of the state p by an optimal LOCC conversion protocol.

Distillable entanglement is a measure of a fundamental importance, since it tells
us how much entanglement one may extract out of the state analysed and use, for
example for the cryptographic purposes. It is rather difficult to compute, but there
exist analytical bounds due to Rains (1999b) and Rains (2001), and an explicit
optimization formula was found (Devetak and Winter, 2005). E is not likely to be
convex (Shor, Smolin and Terhal, 2001), although it satisfies the weaker condition
(E3a) (Donald et al., 2002).

IV. Algebraic measures

If a partial transpose of a state p is not positive then p is entangled due to the
PPT criterion B1. The partial transpose preserves the trace, so if p™ > 0 then
[loT4 ||t = Trp™ = 1. Hence we can use the trace norm to characterize the degree,
to which the positivity of p7# is violated.

N1. Negativity (Zyczkowski et al., 1998; Eisert and Plenio, 1999), N7(p) =
o™l — 1.

Negativity is easy to compute, convex (partial transpose is linear and the trace
norm is convex) and monotone (Eisert, n.d.; Vidal and Werner, 2002). It is not addi-
tive, but this drawback may be cured by defining the log - negativity,® In||p"*||1;.
However, the major deficiency of the negativity is its failure to satisfy (E1) — by
construction N7(p) cannot detect PPT bound entangled states. In the two-qubit
case the spectrum of o’ contains at most a single negative eigenvalue (Sanpera
etal., 1998), so N7 = max{0, —2Anin} = N7. This observation explains the name
on the one hand, and on the other provides a geometric interpretation: A.(p) mea-
sures the minimal relative weight of the maximally mixed state p, which needs

45 This is additive but is not convex. The log—negativity was used by Rains (2001) to obtain bounds on distillable
entanglement.
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to be mixed with p to produce a separable mixture (Verstraete et al., 2002a). In
higher dimensions several eigenvalues of the partially transposed state may be neg-
ative, so in general N7 # N7, and the latter quantity is proportional to complete
co-positivity (11.1) of a map & associated with the state p.

Negativity is not the only application of the trace norm (Vidal and Werner, 2002).
Building on the positive maps criterion A1 for separability one might analyse anal-
ogous quantities for any (not completely) positive map, No(0) = [|(® ® Dollt —
1. Furthermore, one may consider another quantity related to the reshuffling crite-
rion B6.

N2. Reshuffling negativity (Chen and Wu, 2002; Rudolph, 2003b). Nz(p) =
oI — 1.

This quantity is convex due to linearity of reshuffling and non-increasing under
local measurements, but may increase under partial trace (Rudolph, 2003b). For
certain bound entangled states Ak is positive; unfortunately not for all of them.
A similar quantity with the minimal cross-norm || - ||, was studied by Rudolph
(2001), who showed that V, (o) = ||pl|,, — 1 is convex and monotone under local
operations. However, ||pR||1; is easily computable from the definition (10.33), in
contrast to ||p]],.

We end this short tour through the vast garden of entanglement measures*®

by studying how they behave for pure states. Entanglement of formation and pu-
rification coincide by construction with the entanglement entropy E;. So is the
case for both operational measures, since conversion of n copies of an analysed
pure state into m maximally entangled states is reversible. The negativities are
easy to compute. For any pure state |¢) € Hy ® Hy written in the Schmidt form
(9.8), the non-zero entries of the density matrix py of size N 2 are equal to \/A;A;,
i,j=1,..., N.Thereshuffled matrix pg becomes diagonal, while partially trans-
posed matrix p‘? has a block structure: it consists of N Schmidt components A; at
the diagonal which sum to unity and N(N — 1)/2 off-diagonal blocks of size 2,
one for each pair of different indices (i, j). Eigenvalues of each block are =,/ ;,
so both traces norms are equal to the sum of all entries. Hence both negativities
coincide for pure states,

N N
Ni(py) = Nilpy) = 3 hiky =1 =(3 3 /m) =1 == =1, (1576)

ij=1
and vary from O for separable states to N — 1 for maximally entangled states. Also
maximal fidelity and robustness for pure states become related, F' = exp(E,2)/N

46 There also exist attempts to quantify entanglement by the dynamical properties of a state and the speed
of decoherence (Blanchard, Jakébezyk and Olkiewicz, 2001) or the secure key distillation rate (Horodecki
etal., n.d.a; Devetak and Winter, 2005) and several others. For multipartite systems the problem gets even more
demanding (Coffman et al., 2000; Eisert and Briegel, 2001; Wei and Goldbart, 2003; Partovi, 2004).
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Table 15.2. Properties of entanglement measures: discriminance E1, monotonicity
E2, convexity E3, asymptotic continuity E4, additivity E5, extensivity E5a,
computability E7: explicit closed formula C, optimization over a finite
space F or an infinite space I; Rényi parameter q for pure states.

Entanglement measure El E2 E3 E4 E5 E5a E7 q
G1 Bures distance Dpg Y Y Y N N N F 2
G2 Trace distance Dry, Y Y Y N N N F

G3 HS distance Dys Y ? ? N N N F

G4 Relative entropy Dg Y Y Y Y N ? F 1
G5’ Reversed RE, Dy ? Y Y Y Y Y F 1
G6 Robustness R Y Y Y N N N F 1/2
P1 Entangl. of formation Er Y Y Y Y ? ? C/F 1
P2 Generalized EoF, E, Y Y ? N ? ? F q
P4 Squashed entangl. Eg ? Y Y Y Y Y I 1
01 Entangl. cost E¢ ? Y Y Y Y | 1
02 Distillable entangl. Ep N Y N(?) Y Y I 1
N1 Negativity Ny N Y Y N N N C 1/2
N2 Reshuffling negativity Nx N N Y N N N C 1/2

and R = N7 = exp(E;,2) — 1 (Vidal and Tarrach, 1999). On the other hand, the
minimal Bures distance to the closest separable (mixed) state (Vedral and Plenio,
1998) becomes a function of the Rényi entropy of order two,

Dp(py) = (2-2) 3} =2 - 2e-B2/2, (15.77)
i=1
and is equal to concurrence (15.26), while the Bures distance to the closest separable
pure state D5"(|¢)) = [2(1 — /T = Apax)]'/? is a function of Eso = — In Apax.
The Rényi parameters g characterizing behaviour of the discussed measures of
entanglement for pure states are collected in Table 15.2.

Knowing that a given state p can be locally transformed into p’ implies that
E(p) > E(p’) for any measure E, but the converse is not true. Two Rényi entropies
of entanglement of different (positive) orders generate different order in the space
of pure states. By continuity this is also the case for mixed states, and the relation

Es(p1) < Ea(p2) & Ep(p1) < Ep(p2) (15.78)

does not hold. For a certain pair of mixed states it is thus likely that one state is
more entangled with respect to a given measure, while the other one, with respect
to another measure of entanglement (Eisert and Plenio, 1999). If two measures E 4
and Ep coincide for pure states they are identical or they do not generate the same
order in the set of mixed states (Virmani and Plenio, 2000). Hence entanglement of
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formation and distillable entanglement do not induce the same order. On the other
hand, several entanglement measures are correlated and knowing E 4 one may try
to find lower and upper bounds for E.

The set of entanglement measures shrinks, if one imposes even some of the
desired properties (E1)-(E7). The asymptotic continuity (E4) is particularly re-
strictive. For instance, among generalized Rényi entropies it is satisfied only by
the entropy of entanglement E; (Vidal, 2000). If a measure E satisfies addi-
tionally monotonicity (E2a) under deterministic LOCC and extensivity (ESa),
it is bounded by the distillable entanglement and entanglement cost (Horodecki
et al., 2000a; Horodecki, 2001),

Ep(p) = E(p) = Ec(p). (15.79)

Interestingly, the two first measures introduced in the pioneering paper by Bennett
et al. (1996b) occurred to be the extreme entanglement measures. For pure states
both of them coincide, and we arrive at a kind of uniqueness theorem: Any mono-
tone, extensive and asymptotically continuous entanglement measure coincides
for pure states with the entropy of formation E (Popescu and Rohrlich, 1997; Vi-
dal,2000; Donald et al., 2002). This conclusion concerning pure states entanglement
of bipartite systems may also be reached by an abstract, thermodynamic approach
(Vedral and Kashefi, 2002).

Let us try to recapitulate the similarities and differences between four classes of
entanglement measures. For a geometric measure or an extension of a pure states
measure it is not simple to check, which of the desired properties are satisfied.
Furthermore, to evaluate it for a typical mixed state one needs to perform a cum-
bersome optimization scheme. One should not expect the remarkable analytical
result of Wootters (1998) for entanglement of formation in the 2 x 2 system, to
be extended for the general N x N problem, since even stating the separability is
known to be an algorithmically complex task (Gurvits, 2003).

Operational measures are attractive, especially from the point of view of infor-
mation science, and extensivity and monotonicity are direct consequence of their
definitions. However, they are extremely hard to compute. In contrast, algebraic
measures are easy to calculate, but they fail to detect entanglement for all non-
separable states. Summarizing, several different measures of entanglement are thus
likely to be still used in future.

15.7 Two-qubit mixed states

Before discussing the entanglement of two-qubit mixed states let us recapitulate,
in what sense the case N = 2 differs from N > 3.
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A) algebraic properties
i) SU(N) x SU(N) is homomorphic to SO(N?) for N = 2 only,
ii) SUN) = SO(N? — 1) for N = 2 only,
iii) All positive maps ® : M® — M are decomposable for N = 2 only,
B) N-level mono-partite systems
iv) Boundary 3 M® consists of pure states only,
v) For any state p; € MM also its antipode p_; = 2p, — pz forms a state and there
exists a universal NOT operation for N = 2 only.
vi) M® ¢ R¥~! forms a ball for N = 2 only,
C) N x N composite systems
vii) For any pure state |[{) € Hy ® Hy there exist N — 1 independent Schmidt coef-
ficients A;. For N = 2 there exists only one independent coefficient A, hence all
entanglement measures are equivalent.
viii) The maximally entangled states form the manifold SU(N)/Zy, which is equivalent
to the real projective space RPY*~! only for N = 2.
ix) All PPT states of a N x N system are separable for N = 2 only.
x) For any two-qubit mixed state its optimal decomposition consists of pure states
of equal concurrence. Thus entanglement of formation becomes a function of
concurrence of formation for 2 x 2 systems.

These features demonstrate why entanglement of two-qubit systems is special
(Vollbrecht and Werner, 2000). Several of these issues are closely related. We have
already learned that decomposability iii) is a consequence of ii) and implies the
separability ix). We shall see now, how a group-theoretic fact i) allows one to to
derive a closed formula for EoF of a two-qubit system. We are going to follow the
seminal paper of Wootters (1998), who built on Bennett et al. (1996b) and Hill and
Wootters (1997).

Consider first a two-qubit pure state |). Due to its normalization the Schmidt
components — eigenvalues of the matrix I'I'f — satisfy 11; 4+ u, = 1. The tangle of
|1), defined in (15.26), reads

T=C? =21 —pf —p3) =4 (1 — ) = 4 pa (15.80)
and implies that concurrence is proportional to the determinant of (15.8),

C =2 |yl =2 |detl] . (15.81)

Inverting this relation we find the entropy of entanglement E as a function of
concurrence

1
E=3S(u,1—p) where pu; = E(l —-V1-C?) (15.82)

and S stands for the Shannon entropy function, — ), i; In ;.
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Let us represent |y) in a particular basis consisting of four Bell states
) = [a1l9") + asile™) + asily ) + asly )] (15.83)
1
V2

Calculating the determinant in Eq. (15.81) we find that

[(@1 +ia2)100) + (ias + an|01) + (ias — an[10) + (@ —ia|11)]

4
Cly) = >« (15.84)
k=1

If all its coefficients of |) in the basis (15.84) are real then C(|¢p)) = 1 and the
state is maximally entangled. This property holds also if we act on [¢) with an
orthogonal gate O € SO(4) and justifies referring to (15.84) as the magic basis
(Bennett et al., 1996b). Any two-qubit unitary gate, which is represented in it by
a real SO(4) matrix corresponds to a local operation*’ and its action does not
influence entanglement. This is how the property i) enters the game.

To appreciate another feature of the magic basis consider the transformation
) — |¥) = (oy ® oy)|*),in which complex conjugation is taken in the standard
basis, {|00), |01), [10), |11)}. It represents flipping of both spins of the system. If a
state is expressed in the magic basis this transformation is realized just by complex
conjugation. Expression (15.84) implies then

CUo) = Yl (15.85)

Spin flipping of mixed states is also realized by complex conjugation, if p
is expressed in magic basis. Working in standard basis this transformation
reads

p = b= (0,@0,)p" 0, ®0y). (15.86)

In the Fano form (15.38) flipping corresponds to reversing the signs of both Bloch
vectors,

1 3 3 3
p= Z[ﬂ4 — Z‘[iAOi ® 1y — erﬂz Qo; + Z Bijoi ®o'j] . (15.87)
i=1 j=1 ij=1
Root fidelity between p and p is given by the trace of the positive matrix

VF = [ J/opJp - (15.88)

47 A gate represented by an orthogonal matrix with detO = —1, corresponds to SWAP of both qubits. It does not
influence the entanglement but is non-local (Vollbrecht and Werner, 2000).
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Let us denote by A; the decreasingly ordered eigenvalues of +/F, (singular values
of /p+/P). The concurrence of a two-qubit mixed state is now defined by

C(p) = max{O, )\1 — )\,2 — )\.3 — )\4} . (1589)

The number of of positive eigenvalues cannot be greater then rank r of p. For a
pure state the above definition is thus consistent with C = |(y/|v/)| and expression
(15.84).

Consider a generic mixed state of full rank given by its eigendecomposition
p= Z?:I |w;){(w;|. The eigenstates are subnormalized in a sense that [lw;)]? is
equal to the ith eigenvalue d;. The flipped states |®;) are also eigenstates of p.
Defining a symmetric matrix W;; = (w;|®;) we see that the spectra of pp and
WW* coincide. Let U be a unitary matrix diagonalizing the Hermitian matrix
WWwH,

Other decompositions of p may be obtained by the Schrodinger’s mixture theo-
rem (8.40). In particular, the unitary matrix U defined above gives a decomposition
into four states |x;) =), U 7lw;). They fulfil

(xi|%;) = UWU); = X855 (15.90)

Since W is symmetric, an appropriate choice of phases of eigenvectors forming U
assures that the diagonal elements of UWUT are equal to the square roots of the
eigenvalues of WW*, which coincide with the eigenvalues 2; of ~/F.

We are going to show that a state is separable if C = 0. Hence A} < Ap + A3 + A4
and it is possible to find four phases 7; such that

4
D e =0 (15.91)

In other words such a chain of four links of length X; may be closed to form a
polygon,*® as sketched in Figure 15.10(a), in which the phase 7, is set to zero.
Phases 7, allow us to write four other pure states

1
lz1) = 2( e x1) + €™ |xa) + € [x3) + €™ x4))

1, . .
IZz>=5(e‘”‘|x1>+e‘”2|xz> e |x3) — e™|xy) (15.92)

1, . ‘ A
lz3) = E(e"“ ber) — €2 |x2) + €™ [x3) — "))

1, . . . .
|z4) = 5(emlpcl) — e |xy) — e |x3) —i—em4|X4>) .

48 This reasoning holds also if some ; are equal to zero and the polygon reduces, for example, to a triangle.
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Figure 15.10. Concurrence polygon: (a) quadrangle for a separable state, (b) line
for an entangled state with concurrence C.

On the one hand they form a decomposition of the state analysed, p = ), |x;) {x;| =
> i lzi){zil. On the other hand, due to Eqs. (15.90) and (15.91) (z;|Z;) = 0 for
i =1, ...,4, hence each pure state |z;) of the decomposition is separable and so is
p.

Consider now a mixed state p for which C > 0 since A; is so large that the
chain cannot be closed (see Figure 15.10(b)). Making use of the pure states |x;)
constructed before we introduce a set of four states

[yr) = lx1),  |y2) =ilx2),  |y3) =ilx3),  |ya) =ilxs) . (15.93)

and a symmetric matrix ¥;; = (y;|y;), the relative phases of which are chosen in
such a way that relation (15.90) implies

4
TrY =) (ilfj) =mM—Aa—rs—ks = C(p). (15.94)
i=1
The states (15.93) are subnormalized, hence the above expression represents an
average of a real quantity, the absolute value of which coincides with the con-
currence (15.85). Using Schrodinger’s theorem again one may find yet another
decomposition, |z;) = Y, Vlj ly;j), such that every state has the same concurrence,
C(lzi)) = C(p) fori =1, ..., 4. To do so define a symmetric matrix Z;; = (z;|Z;)
and observe that TrZ = Tr(VY VT). This trace does not change if V is real and
VT = v~ follows. Hence one may find such an orthogonal V that all over-
laps are equal to concurrence, Z;; = C(p), and produce the final decomposition
p =2 lzi)zl.
The above decomposition is optimal for the concurrence of formation (Wootters,
1998),

M m
Crle) = min3 S piCA) = mind_IVYVhal. (15.95)

where the minimum over ensembles £, may be replaced by a minimum over
m x n rectangular matrices V, containing n orthogonal vectors of size m < 4°
(Uhlmann, 1998). The function relating Er and concurrence is convex, hence the
decomposition into pure states of equal concurrence is also optimal for entropy of
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formation. Thus E of any two-qubit state p is given by the function (15.82) of
concurrence of formation Cr equal to C(p), and defined by (15.89).%

While the algebraic fact i) was used to calculate concurrence, the existence of a
general formula for maximal fidelity hinges on property ii). Let us write the state
p in its Fano form (15.38) and analyse invariants of local unitary transformations
U, ® U,.Duetotherelation SU(2) &~ S O(3) this transformation may be interpreted
as an independent rotation of both Bloch vectors, 74 — 0,74 and 7% — 0,75.
Hence the real correlation matrix 8;; = Tr(po; ® o) may be brought into diagonal
form K = 0,B0]. The diagonal elements may admit negative values since we
have restricted orthogonal matrices to fulfil detO; = +1. Hence |K;;| = «;, where
k; stand for singular values of 8. Let us order them decreasingly. By construction
they are invariant with respect to local unitaries,’® and govern the maximal fidelity
with respect to maximally entangled states (Badziag et al., 2000),

Fou(p) = %[1 + k1 + k2 — Sign[det(B)] «3] - (15.96)

It is instructive to compute explicit formulae for above entanglement measures
for several families of two-qubit states. The concurrence of a Werner state (15.42)
is equal to the negativity,

0 it x<1/3

BGx—1)/2 if x>1/3" (15.97)

C(pw(x)) = Nr(pw(x)) = {
its entanglement of formation is given by (15.82), while F,,, = 3x — 1)/4.
Another interesting family of states arises as a convex combination of a Bell
state with an orthogonal separable state (Horodecki et al., 2000b)

on(a) = aly )Y~ | + (1 —a)|00)(00] . (15.98)

Concurrence of such a state is by construction equal to its parameter, C = a,
while the negativity reads N7 = /(1 — a)?> + a®> + a — 1. The relative entangle-
ment of entropy reads (Vedral and Plenio, 1998) Ex = (a — 2)In(1 —a/2) +
(1 — a)In(1 — a). We will use also a mixture of Bell states,

opb) = by YW+ A =b) [y ) (YT, (15.99)
for which by construction F,, = max{b, 1 — b} and C = Ny = 2F,, — 1.

49 A streamlined proof of this fact was provided in (Audenaert et al., 2001b), while the analogous problem for
two rebits was solved in Caves, Fuchs and Rungta (2001a).

30 Two-qubit density matrix is specified by 15 parameters, the local unitaries are characterized by six variables, so
there exist nine functionally independent local invariants. However, two states are locally equivalent if they share
additional nine discrete invariants which determine signs of «;, riA and riB (Makhlin, 2002). A classification
of mixed states based on degeneracy and signature of K was worked out in Grassl et al. (1998), Englert and
Metwally (2001) and Ku$ and Zyczkowski (2001).
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b)

0 0.5 1 0 0.5 1
2 G

Figure 15.11. Bounds between entanglement measures for two-qubits: (a) negativ-
ity versus concurrence (15.100), (b) maximal fidelity versus concurrence (15.101),
(c) relative entropy of entanglement versus entanglement of formation (15.103).
Labels represent families of extremal states while dots denote averages taken with
respect to the HS measure in M®.

Entanglement measures are correlated: they vanish for separable states and coin-
cide for maximally entangled states. For two-qubit systems several explicit bounds
are known. Concurrence forms an upper bound for negativity (Eisert and Ple-
nio, 1999; Zyczkowski, 1999). This statement was proved in Verstraete, Audenaert,
Dehaene and DeMoor (2001b), where it was shown that these measures coincide
if the eigenvector of p’* corresponding to the negative eigenvalue is maximally
entangled. The lower bound

C>Nr > JA-CP+C*+C-1 (15.100)

is achieved (Verstraete et al., 2001b) for states (15.98).
Analogous tight bounds between maximal fidelity and concurrence or negativity
were established in Verstraete and Verschelde (2002),

1+C (1+C)/4 if C<1/3
5 > Fy, > { C it C=1/3" (15.101)
11 / ' V32
1+2NT R + 8<NT +/5N? +4NT> if Nr< \/53 . (15.102)

2N7 (Nt + 1) — Ny if Np>¥5=

Upper bound for fidelity is realized for the family (15.99) or for any other state for
which C = N7.

Relative entropy of entanglement is bounded from above by Er. Numerical
investigations suggest (Verstraete et al., 2001b) that the lower bound is achieved
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1 b)

05 1
S

Figure 15.12. Upper bounds for measures of entanglement as a function of mixed-
ness for two-qubits: (a) negativity and (b) concurrence versus participation ratio
R = 1/(Trp?); (c) entanglement of formation versus von Neumann entropy. Shad-
ing shows entire accessible region while dots denote the average taken with respect
to the HS measure in M®. For pure states it coincides with the average over FS
measure.

for the family of (15.98), which implies
Ep > Eg > [(c —2)In(1 = C/2) + (1 — C)In(1 — C)] . (15.103)

Here C2 = 1 — (2141 — 1)?and u; = S™'(Er) denotes the larger of two pre-images
of the entropy function (15.82). Similar bounds between relative entropy of entan-
glement, and concurrence or negativity were studied in Miranowicz and Grudka
(2004).

Making use of the analytical formulae for entanglement measures we may try to
explore the interior of the 15-dim set of mixed states. In general, the less pure a state
is, the less it is entangled: If R = 1/[Trp?] > 3 we enter the separable ball and all
entanglement measures vanish. Also movements along an global orbit p — Up U
generically changes entanglement. For a given spectrum X the largest concurrence
C*, which may be achieved on such an orbit is given by Eq. (15.64) (Ishizaka and
Hiroshima, 2000; Verstraete et al., 2001a). Hence the problem of finding maximally
entangled mixed states of two qubits does not have a unique solution: it depends on
the measure of mixedness and the measure of entanglement used. Both quantities
may be characterized, for example, by a Rényi entropy (or its function), and for
each choice of the pair of parameters ¢, g» one may find an extremal family of
mixed states (Wei, Nemoto, Goldbart, Kwiat, Munro and Verstraete, 2003).

Figure 15.12 presents average entanglement plotted as a function of measures
of mixedness computed with respect to HS measure. For a fixed purity Trp? the
Werner states (15.42) produce the maximal negativity A'7. On the other hand,
concurrence C becomes maximal for the following states (Munro, James, White
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Figure 15.13. Entanglement of formation of generalized Werner states (15.105)
in polar coordinates. White set represents separable states.

and Kwiat, 2001)

a 0 0 y/2
| 0 1-2a O a=1/3 if y<2/3
pu(y) = 0 0 0 , where {a:y/Z it y>2/3
v/2 0 0 a

(15.104)
Here y € [0, 1] and C(p) = y while Trp? = 1/3 + y?/2 in the former case and
Trp? = 1 — 2y(1 — y) in the latter. A family of states o providing the upper bound
of Er as a function of von Neumann entropy (see the line in Figure 15.12(c))
was found in Wei et al. (2003). Note that HS measure restricted to pure states
coincides with Fubini—Study measure. Hence at § = 0 the average pure states
entropy of entanglement reads (E;)y = 1/3, while for R = 1 we obtain (C)y =
(N1)y = 3m/16 ~ 0.59 (see Section 14.6 and Problem 15.9).
To close this section let us show, in Figure 15.13, entanglement of formation for
an illustrative class of two-qubit states

1 g g
px. D) = x(1a) (Y5 + (1 = x)p. with [Yg) = E(smimn +cos 110)).
(15.105)
For x = 1 the pure state is separable for ¥ = 0, 7 and maximally entangled (x) for

¥ = m/2,3m /2. The dashed horizontal line represents the Werner states. The set
M of separable states contains the maximal ball and touches the set of pure states
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in two points. A distance E of p from the set Mg may be interpreted as a measure
of entanglement.

We have come to the end of our tour across the space of two qubit mixed states.
Since all the properties i)-x) break down for higher N, the geometry of quantum
entanglement gets correspondingly more complex. Already for the system of two
qutrits the bound entangled states appear, while the multipartite problems contain
non-equivalent forms of quantum entanglement.

Problems

Problem 15.1 Show that for any bipartite pure state |y/) the transformed states
) = (Vi1 ® D|Y)and |¢) = (T ® V2T)|1//) are equivalent up to the basis selection.
Here both unitary matrices are equal,’! V, = V;. Loosely speaking, instead of doing
something to the first subsystem, one can undo it in the second one.

Problem 15.2 Prove that the totally symmetric polynomials of the Schmidt vector,
= Zi# Aikj, o = Zi##k AiAjAg OF fly—1 = AjAz... Ay are entanglement
monotones (Barnum and Linden, 2001; Sinolgcka et al., 2002). (See also (Gour,
2004) in which entanglement measures based on (u,,)!/™ are introduced.)

Problem 15.3 Show that the distillable entanglement, (the optimal asymptotic
efficiency m/n of an entanglement concentration protocol transforming locally n
copies of an arbitrary pure state |1) into m maximally entangled states |¢™) of the
N x N system), is equal to the entanglement entropy E(|y)) (Bennettetal., 1996a).

Problem 15.4 Show that separability implies the majorization relation (15.51).

Problem 15.5 Consider the following N = 4 mixed states

1000 100 0

1lo1 10 0000
=310 11 0l° ==3lo0 0 0 o (15.106)

0000 000 2

Show that o7, is separable, while o is entangled (Nielsen and Kempe, 2001), even
though both states are globally and locally isospectral (their partial traces have
identical spectra).

Problem 15.6 Let us call p locally diagonalizable if it can be brought to the diag-
onal form p = UAU by a local unitary matrix U = U, ® Up. Are all separable
states locally diagonalizable?

31 Relaxing this constraint one may find such V; and V5 that |¢’) is exactly equal to |¢). This symmetry is called
environment-assisted invariance (Zurek, 2003), in short envariance.
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Problem 15.7 Show that if the smallest eigenvalue of a density matrix p of size
N? is larger than %[(N 2 —2)/(N? — 1)], the state p is separable (Pittenger and
Rubin, 2002).

Problem 15.8 Show that the norm of the correlation matrix of the Fano
form (15.38) satisfies an inequality: Tr(887) =2 ||,8||% <[KN(KN —-1)—
2K ||74|> — 2N||78]|*1/4. Is this bound sufficient to guarantee positivity of p?

Problem 15.9 Consider a random pure state of a 2 x 2 system written in its
Schmidt form |W) = cos x|00) + sin x|11) with x € [0, w/4]. Show that the FS
measure on the space CP? induces the probability distributions for the Schmidt
angle (Zyczkowski and Sommers, 2001)

P(x) =3cos(2x)sin(4yx) and P(C)=3Cy1—-C? (15.107)

where the concurrence is equal C = sin(2x). Find the mean angle and mean con-
currence. For which angle x,, is the volume of the local orbit maximal?






Epilogue

After going through the chapter on entanglement you will have reached the end of
our book. As the subtitle suggests, its aim was literally to present an introduction
to the subject of quantum entanglement.

We have left untouched several important aspects of quantum entanglement,
including multipartite systems, infinite-dimensional systems and continuous vari-
ables. Moreover, we believe that some key ideas presented in the book might be
extended much further then we have managed to do. For instance the maps—states
duality, illustrated in Chapter 11, might be used to find relations between capacities
of quantum channels and measures of entanglement of the corresponding states of
an extended system.

In the book we have consistently used a geometric approach to highlight simi-
larities and differences between the classical and quantum spaces of states. What is
the knowledge gained by studying the book good for? We hope it will contribute to
a better understanding of quantum mechanics. We hope also that it will provide a
solid foundation for a new, emerging field of science — the theory of quantum infor-
mation processing. Quantum entanglement plays a decisive role in all branches of
the field including quantum cryptography, quantum error correction and quantum
computing.

In trying to describe the intricate geometry of the space of quantum states, we
have deliberately restricted ourselves to discussing the statics of quantum theory.
We have presented the arena, in which quantum information can be processed.
We have not attempted to inject any concrete dynamics into our arena, but hope
that readers equipped with some knowledge of its properties may introduce into it
spectacular action.

In a sense we have characterized all the peculiarities of football fields of various
sizes, without even specifying the rules of the game. Having at your disposal a
huge flat grassy field, you can play soccer, cricket, American football, rugby or
Australian football, according to your mood and wishes.

415
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In a similar way you can play different games in the multi-dimensional arena of
quantum states. It stays there right at the centre of the beautiful Platonic world of
quantum theory, accessible to all of us.

Its rich structure provides a real challenge especially for young researchers. We
wish you a good game in fine company! Good luck!



Appendix 1

Basic notions of differential geometry

This appendix explains things that are explained in every book on differential
geometry.! It is included to make our book self contained.

Al.1 Differential forms

One-forms were defined in Section 1.4. The exterior product of one-forms is defined
by

do' Ade/ = —do/ Ado’. (Al.1)

The result is called a two-form. The exterior product is assumed to be linear over
the real numbers so these two-forms can be used as a basis in which to expand any
anti-symmetric covariant tensor with two indices. Continuing in the same way we
can define three-forms and so on, up to and including n-forms if the dimension of
the manifold is n. We can think of the exterior product of two one-forms as an area
element spanned by the two one-forms. Then, given an m-dimensional submanifold,
we can integrate an m-form over that submanifold. A further interesting definition
is the exterior derivative of an m-form w, which is an (m + 1)-form defined by

do = 3, w;, i, dx" Ao Adx (A1.2)

Here w;, ;, is an anti-symmetric tensor of the appropriate rank. The definition is a
generalization of the familiar ‘curl’ in vector analysis. If dw = 0 the form is said
to be closed. If w = d6 (where 6 is a form of rank one less than that of w) then w is
exact. An exact form is closed because d> = 0; the converse holds on topologically
trivial spaces such as R”. An example of a closed 2-form is the field strength tensor
in classical electrodynamics. An analogue of Stokes’ theorem holds; if M is a

! Such as Schrodinger (1950) or Murray and Rice (1993).
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subspace and 0 M its boundary then
f do = / w. (A1.3)
M am

A1l.2 Riemannian curvature

Given a metric tensor g;; we can define the Levi—Civita connection by

1
Lyt = 28 @igim + 0jgim — Ingiy) - (AL4)

It is not a tensor. In fact its transformation law contains an inhomogeneous term.
Given a scalar field f its gradient 9; f is a covariant vector, but given a contravariant
(say) vector V' the expression 9; V' does not transform as a tensor. Instead we use
the connection to define its covariant derivative as

V;Vi= 9;Vi+T,VE. (AL.5)

This does transform like a tensor although the individual terms on the right-hand
side do not. The covariant derivative of a covariant vector is then defined so that
Vi(U; Vi) = 0;(U; V1), which transforms like a vector since U; VJ is a scalar. An
analogous argument determines the covariant derivative of an arbitrary tensor. As
an example,

VnT* = 0uT, +Tpn T, =T, T, =T, T, (A1.6)

mn “ij

Both the logic and the pattern should be clear. One can check that
Vigik = 0. (AL1.7)

In fact this is how the metric compatible affine connection (A1.4) was defined.
Parallel transport of vectors using this connection conserves lengths and scalar
products.

With the metric compatible affine connection in hand we can write down a
differential equation for a curve x’(c) whose solution, given suitable initial data
x(0) and x7(0), is the unique geodesic starting from that point in that direction.
This geodesic equation is

PVl = 4T i =0, (A1.8)

(As usual the dot signifies differentiation with respect to o.)
The Riemann tensor is defined by the equation

(ViV; = V;VV* = —R,fV!. (A1.9)
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This four index tensor plays a central role in Riemannian geometry, but we will have
to refer elsewhere for its properties (Schrodinger, 1950; Murray and Rice, 1993).
Let us just record the slightly frightening explicit expression

R = ;T =T} + T, T, =T, xT;/". (A1.10)

im ~ jl

Perhaps it becomes slightly less frightening if we lower one index using the metric;
using square brackets to denote anti-symmetry in the indices, one can show that

Riji = Rujiknn = Ryniijy - (Al.11)

Suppose now that we have a two-dimensional plane in the tangent space at some
point, spanned by the tangent vectors m' and n'. Then we can define the sectional
curvature associated to that 2-plane ,
m”n“Riikl m“‘n”
K= ——75—". (Al1.12)
men

The point is that the Riemann tensor acts like a matrix on the space of 2-planes.
Using index contraction we can define the Ricci tensor

Rij = Ryf. (A1.13)

Because of the index symmetries of the Riemann tensor the Ricci tensor turns out
to be a symmetric tensor, R;; = Rj;. The curvature scalar is

R = g"R;; . (Al1.14)

In two-dimensional spaces the Riemann tensor can be reconstructed from the cur-
vature scalar R. (There is only one sectional curvature to worry about.) Moreover
the sign of R has a simple interpretation: if R > 0 nearby geodesics that start out
parallel tend to attract each other, while they diverge if R < 0. In three dimensions
the Riemann tensor can be reconstructed from the Ricci tensor, while in four di-
mensions and higher this is no longer possible; the full Riemann tensor is needed
in higher dimensions because one can choose many independent two-dimensional
tangent planes along which to measure sectional curvatures.

Space is flat if and only if the Riemann tensor vanishes. In flat space parallel
transport of vectors between two points is independent of the path, and it is possible
to find a coordinate system in which the affine connection vanishes.

A1.3 A key fact about mappings

A key fact about tensors is that they behave well under (reasonable) maps. How they
behave depends on whether they have their indices upstairs or downstairs. Suppose
we have a map M — M’ between two manifolds M and M’. We assume that the
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dimension of the image of M is equal to the dimension of M, but the dimension of
M’ may be larger, in which case we have an embedding rather than a one-to-one
map. Anyway we can describe the map using coordinates as x' — x’ = x”'(x).
Then we have the following theorem:

Theorem. A covariant tensor on M’ defines a covariant tensor on M. A contravari-
ant tensor on M defines a contravariant tensor on the image of M in M'.

The proof is simple, given that we know the functions x'(x):
Vi(x) = %V-/(x/(x)) Vi) = aii/Vi(x(x/)) (A1.15)
BT ax ! ’ T 9xi ' '

If the map is not one-to-one the functions x’(x’") are defined only on the image of
M, so the theorem is as general as it can get.
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Basic notions of group theory

This appendix lists a number of formulae that are explained in every book on group
theory.! Some conventions can be chosen at will, which is why this list is essential.

A2.1 Lie groups and Lie algebras

Lie groups are groups containing a continuously infinite number of elements with
the amazing property that they can to a large extent be understood through an
analysis of the tangent space at the unit element of the group. This tangent space is
known as the Lie algebra of the group. We will deal only with the classical groups
SU(N), SO(N) and Sp(N) and in fact mostly with the special unitary groups
SU(N). These are all, in the technical sense, simple and compact groups and have
in many respects analogous properties. The unitary group U(N) is not simple, but
can be understood in terms of its simple subgroups U(1) and SU(N).

After complexification, the Lie algebra of a compact simple group can be brought
to the standard Cartan form

[Hi,Hj1=0, [H,E]=00E,, (A2.1)
[Ey, Egl = NogEoip, [Eoq, E_o]l =o'H;, (A2.2)

where «; is a member of the set of positive root vectors and Nog = 0if o; + B; is not
aroot vector. The H;, 1 <i < r span the maximal commuting Cartan subalgebra.
Their number r is the rank of the group, equal to N — 1 for SU(N).

The Lie bracket [A, B] is a peculiar kind of product on a vector space. Once a
matrix representation is chosen it is also meaningful to consider the usual product
AB,and set [A, B] = AB — BA.

! Such as Gilmore (1974) or Fuchs and Schweigert (2003).
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A2.2 SU_2)

The generators of SU(2) in the fundamental representation are precisely the Pauli
matrices ¢ = {oy, 0y, 0},

0 1 0 —i 1 0
ax=|:] O]’ Uy=|:i 0], UZ=|:O _1]. (A2.3)

They form an orthonormal basis in the Lie algebra. There is one unitary repre-
sentation of SU(2) in every dimension N = n + 1 = 2j + 1. Then the generators
are

0 Jn 0 0
v 0 V2 =1) 0
Je=510 V2m=T 0 V3 =2) - (A2.4)
0 0 V3 —2) 0
T 0 —Jn 0 0
S|V 0 —2( = 1) 0
=50 Vau-T 0 -3 =2) ---| (A25)
0 0 V3 =2) 0
"m0 0 - i 0 0
11 on-20 ---|_[O j—=1 0 .-
=310 0 n-4-|T|0 "0 j-2 .. (A26)

A crucial choice here is that J, and J; are real while Jy is imaginary. To get to the
Cartan form, set H = J; and E4 = J, £1iJ,.

A2.3 SUNN)

SU(N) is an (N? — 1)-dimensional group and in the defining representation the
Lie algebra consists of N> — 1 traceless Hermitian N by N matrices, labelled by
theindexi, 1 <i < N: —1.A complete orthonormal set of generators obey

2 .
0i0j = ﬁfsij +dijk ox +ifiji ok, (A2.7)

where f;j, is totally anti-symmetric in its indices and d; j is totally symmetric and
traceless (d;;x = 0). For the commutator and the anti-commutator respectively, this
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means that
loi, 0;] = 2i fijk ok, {0i,0;} = %8ij+2dijk0k . (A2.8)
The generators are Hermitian matrices and obey
Trojo; =24;;, Trojojo = 2d;ji + 2i fiji (A2.9)

(the first equation here is orthonormality of the generators) as well as the complete-
ness relation

2
(0) 2P =28085 — Naﬁag : (A2.10)

The above normalization is implied by the case N = 2, since the Pauli matrices
(A2.3) are normalized just like this. In this case d;jx = 0, while the group constants
form the anti-symmetric tensor, fijx = €;jk.

The following identities are true for any N:
fijmfmkn+fjkmfmin+fkimfmjn =0 (Azll)
dijmfmkn + djkmfmin + dkimfmjn =0 (A2]2)

2
fijm fmkn = N(Sikajn - (Singjk) + dikmdmjn - djkmdmin (A213)

fimnfjmn = N(Sij dimndjmn = —Sij . (A2]4)

Scanning this list one realizes that some identities are ‘missing’. These identities
exist, but they depend on N. For further information consult the literature
(Macfarlane, Sudbery and Weisz, 1968; Sudbery, 1990).

A2.4 Homomorphisms between low-dimensional groups

We sometimes makes use of the following isomorphisms between Lie algebras:

SUQR) = SO@3), (A2.15)
S0@) = SO3) x SO(3) = SUQR) x SU(Q2), (A2.16)
SU@) = SO(6). (A2.17)

Globally these are 2 — 1 homomorphisms between the corresponding groups; for
explanations see (especially) Section 3.7.
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Geometry: do it yourself

In this appendix we provide some additional exercises of a more practical nature.

Exercise 3.1 — Real projective space. Cut out a disc of radius r. Prepare a narrow
strip of length v 7 and glue it into a Mobius strip. The total length of the boundary of
a strip is equal to the circumference of the disc so you may try to glue them together.!
When you are finished, you can contemplate a fine model of a real projective space,
RP2.

Exercise 3.2 — Hypersphere S* may be obtained by identifying points on the sur-
faces of two identical 3-balls as discussed in Section 3.1. To experience further
features of the hypersphere get some playdough and prepare two cylinders of dif-
ferent colours with their length more than three times larger than their diameter.
Form two linked tori as shown in Figure A3.2.

Start gluing them together along their boundaries. After this procedure is com-
pleted, you will be in position to astonish your colleagues by presenting them a
genuine Heegard decomposition of a hypersphere.

Exercise 3.3 — Mixed states. Make a ball out of playdough. Glue a string to its
surface along the shape of the stitching of a tennis ball (see Figure A3.3). Obtain a
convex hull by cutting out the redundant dough with a knife. How much of a ball
is taken away?

Convince yourself that the convex hull of a one-dimensional string located at
S? forms a considerable part of the ball B3. In a similar way M® — the convex
hull of four-dimensional manifold CP? consisting of N = 3 pure states placed at
S7 contains a non-negligible part of B® (see Section 14.3).

Exercise 3.4 — Entangled pure states. Magnify Figure A3.4 and cut out the net
of the cover tetrahedron. It represents the entanglement of formation of the pure

! If you happen to work in three-dimensions this simple task gets difficult.
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Figure A3.1. A narrow Mobius strip glued with a circle produces RP?.

Figure A3.2. Heegard decomposition of a 3-sphere.
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Figure A3.3. Imagine a convex hull of the one-dimensional stitching of the tennis ball.
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00>

[00>
Figure A3.4. Net of the tetrahedron representing entanglement for pure states of
two qubits: maximally entangled states plotted in black.

|00>

100> NeommoolZZ At 00>

Figure A3.5. Sew with a coloured thread inside a transparent tetrahedron to get
the ruled surface consisting of separable pure states of two qubits.
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states of two qubits for a cross section of CP? defined in Eqs. (4.70) and (4.71) by
setting all phases v; in (4.67) to zero.

Glue it together to get the entanglement tetrahedron with four product states in
four corners. Enjoy the symmetry of the object and study the contours of the states
of equal entanglement.

Exercise 3.5 — Separable pure states. Prepare a net of a regular tetrahedron from
transparency according to the blueprint shown in Figure A3.5. Make holes with
a needle along two opposite edges as shown in the picture. Thread a needle with
a (red) thread and start sewing it through your model. Only after this job is done
glue the tetrahedron together.? If you pull out the loose thread and get the object
sketched in Figure 15.1, you can contemplate how a fragment of the subspace of
separable states forms a ruled surface embedded inside the tetrahedron.

2 Our experience shows that sewing after the tetrahedron is glued together is much more difficult.



Appendix 4

Hints and answers to the exercises

Problem 1.1. A counterexample is easily provided by drawing figures in two dimensions.

Problem 1.2. One way is to construct the simplex. If we put its centre at the origin the N =n + 1
points can be placed at

C =rn, —=ry, o, —pen, —Fn )

( R, —ry, oy =y, —rn )

C 0, Ry ooy —Tuoy, —Fa )

( o 0, , 0, R, )
This helps.
Problem 2.1. (001)

Here is a plot of the structural entropy.
The maximum S, — §; ~ 0.223 66 is at-
tained for p ~ (0.806, 0.097, 0.097) and
its two other permutations. They are vis-
ible at the contour plot provided as three
dark hills.

{100) (010)

Problem 2.2. The N = 3 case shows the idea. We have X - (y —2) = x1(y; — 21) + %2(02 — 22) +

B —n) =@ - -zt -tz -2ttty - -2 -
z3) > 0 because of the conditions stated.

Problem 2.3. (a) Leta,b € [0,1]anda’ = 1 — a, b’ = 1 — b and define

’

a a 0 1 0 0 a ab adb
B=T\Tr=|d a 0|0 b b |=|d ab ab |. (A4.1)
0 0 1[0 & b 0 b

428
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B is a bistochastic matrix. It is also orthostochastic since B;; = (O;; )2, where

Ja Nab —Ja'b
0= |Ja —Vab ab |. (A4.2)
0 Vb Vb

Problem 2.4. We know that X is a (non-unique) convex combination of permutation matrices acting
on y; this defines a bistochastic matrix according to Birkhoff’s theorem.

Problem 2.5. One obtains two important cases of the Dirichlet distribution (2.73): the round measure
(s = 1/2) for real and flat measure (s = 1) for complex Gaussian random numbers (Zyczkowski and
Sommers, 2001). Compare also Problem 7.3.

Problem 2.7. For ¢ < 2. To see this, study the second derivative in the vicinity of p = 1.

Problem 3.1. You will obtain

x! _ 2 N X0_4—r2
X 14 X0 T 442

4 \* . .
= ds2=<4 )dx’dx’. (A4.3)

+r?

Problem 3.2. The angles are obtained by intersecting, respectively, the plane and the sphere with two
intersecting planes. The angles will be equal if and only if both the plane and the sphere meet the
line of intersection of the two planes at the same angle. But this will happen if and only if the line of
intersection forms a chord of the great circle.

Problem 3.3. You can try a calculation to see whether the natural map (x, y) — (x, 2y) between
the tori is analytic (it is not). Or you can observe that the tori inherit natural flat metrics from
the complex plane. On each torus there will be a pair of special closed geodesics that intersect
each other, namely what used to be straight lines along the x- and y-directions on the plane. Their
circumferences are equal on one of the tori, and differ by a factor of two on the other. But analytic,
hence conformal, transformations do not change the ratio of two lengths, and it follows that no such
analytic transformation between the tori can exist.

Problem 3.4. As an intermediate step you must prove
Qg + QMo + Q49,90 = 0. (Ad.4)

Problem 3.5. A hyperplane through the origin in embedding space meets the 3-sphere in a 2-sphere
given in stereographic coordinates by

aX'=0 = 2ax+2my+2az+1-r7=0

(where we assumed that the fourth component of the vector equals one). A geodesic is the intersection
of two such spheres; choose them to have their centres at (a, 0, 0) and (by, b,, 0) again without loss
of generality. If you also demand r? = 1 (the equator) you get three equations with the solutions
(x,y,2)=1(0,0,£1).

Problem 3.6. The key point is that two Hopf circles with the opposite twist meet twice. Only one
half of the circumference of a Hopf circle is needed to label the members of the family of circles that
twist in the other way. (Draw the torus as a flat square to see this.)
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B ==

Figure A4.1. Left: the Mobius strip as a vector bundle, with a global section (i.e.
an embedding of the circle in the bundle). Right: the principal bundle, with fibres
equal to the group {=£}.

Problem 3.7. For 7 = —¢ we get
. 0
X+1Y:cos§ = Y=0& X>0 = y=0& x>0. (A4.5)

With the exception of one point this maps S? onto a half plane. The other two sections provide maps
onto a hemisphere and a unit disc, respectively. In all three cases it is geometrically evident that we
are selecting one point from each geodesics, except for a single one for which there is no prescription.

Problem 3.8. The group acting on the fibres is the discrete group with two elements, the unit element
and the element that turns the fibre upside down. Figure A4.1 tells the rest.

Problem 4.1. Consider the case of three points and put one at the origin, one at (1, 0). The location of
the third point can be anywhere. That gives an R?. This coordinatization of the space of triplets fails
if the first two points coincide. That case evidently corresponds to one additional point ‘at infinity’,
so we have a natural one-to-one correspondence between the space of triplets and a plane + the
point at infinity, that is CP'. Consider the case of four points: if the first two points are distinct we
proceed as above; the two remaining points can be coordinatized by R? x R? = C2. If the first two
points coincide we have only a triplet of points do deal with. This is a CP' according to what was
just shown. But C? plus a CP! ‘at infinity’ is a CP?. And so on. This is useful in archaeology if
we use the Fubini—Study metric to give a measure. Then we can answer questions like ‘given n + 2
stones, what is the probability that there are k triplets of stones lying (to a given precision) on straight
lines?’.

Problem 4.2. A Klein bottle; a bottle without an inside (or outside). It takes a four-dimensional being
to make one that does not intersect itself.

Problem 4.3. Integrate the Fubini—Study 2-form 2 over the embedded CP'; this gives fcpl Q =the
area = m, since Q2 induces the usual Fubini-Study 2-form on CP'. But if CP! could be shrunk to
a point then this calculation could be done within a single coordinate patch, and there could be no
obstruction to the calculation [i.p 2 = fopi dw = fa(@P' ,@ = 0, where we used Stokes’ theorem and
the fact that CP' has no boundary. This is a contradiction. Alternatively one can stare at the line at
infinity in the octant picture of CP? and convince oneself that any attempt to move it will increase its
area.

Problem 5.1. The two pure states divide a great circle into two segments. If one of the eigenstates of
A lies on the shortest of these segments, the answer is Dppae = 04 + 0/2, otherwise it is Dy = 0/2
(independent of A).

Problem 6.1. From (6.9) the Q-function of a Fock state is Q),(z) = Izlz"e"""Z/n! and from
(6.47) we must have f dzzQ‘,,)Pm = §,1. The solution is the moderately singular distribution
Py = ¢8.9:67(2).
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Problem 6.2. Using spherical polars in phase space (and the integral representation of the gamma
function) one finds Sy (|n)) = 1+n +1Inn! —nW(n + 1), where W is the digamma function defined
in Eq. (7.52).

Problem 7.1. It is given by Dgs = arccos v/ QOmax, SO it can be obtained by taking the maximum of Q
in Eq. (7.23).

Problem 7.2. Wehrl entropy and participation number for pure states of N = 2-5 read

N J m Sw(l¥)) R(¥)
2 1/2 +1/2 1/2=0.5 11
3 1 +1 2/3 ~ 0.667 12
3 1 0 5/3—1In2~0.974 23
4 3/2 +3/2 3/4=0.75 13
4 3/2 +1/2 9/4 —In3 ~ 1.151 24
4 3/2 [¥a) 21/8 —In4 ~ 1.239 3%
5 2 +2 4/5=0.8 21
5 2 +1 79/30 — In4 ~ 1.247 35
5 2 0 47/15 — In6 ~ 1.342 31
5 3/2 [Vier.) 165/45 —In9 ~ 1.492 41

Problem 7.3. For qubits, the uniform distribution of points at the Bloch sphere according to the measure
sin 6dfd¢ leads to the uniform distribution of the component y; = cos 6 in the interval [—1, 1]. For
larger n write components of a random vector using auxiliary random variables & = (sin ¥;)%,
distributed uniformly in [0, 1]. If n = 2 one has ¥ = (cos? ¥, sin® ¥, cos? ¥, sin” ¥, sin® ;) = (1 —

21/2, 21/2(1 — &), 521/251). This vector is distributed uniformly in the triangle y; € [0, 1] and y, €
[0, 1 — y], while y3 =1 — y; — y,. The same reasoning performed for arbitrary n allows one to

obtain the desired result (Zyczkowski, 1999).

Problem 8.2. (a) yes; (b) no. Any permutation is represented by an orthogonal matrix, and multipli-
cation by any unitary matrix does not change the singular values.

Problem 8.3. (a) absolute values of real eigenvalues; (b) equal to unity; (c) absolute values of complex
eigenvalues.

Problem 8.4. In fact an even stronger property is true. Directly from the definition of the singular
values it follows that sv(A) = sv(UAV), for arbitrary unitary U and V. However, the special case
V = U~ is often useful in calculations.

Problem 8.5. This is the Cauchy—Schwarz inequality for the scalar product in Hilbert—Schmidt space.
Problem 8.6. We know that (| P|y) > O for all vectors. Let |y) be a basis vector.

Problem 8.7. We can bring an arbitrary vector t;0; into the Cartan subalgebra, Ut,o;Ut = A; H;.

Generically that is the best we can do, so the number of non-zero elements will equal the dimension
of the Cartan subalgebra, thatis N — 1.
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Problem 8.8. Definition (8.30) applied to the Pauli matrices gives

AVc29) — s20cy) A0 cRp) + sP0cRY)  —sQR)c(p + ¥)
0= 295Q2y) — 2052d) 20c(2) +20c2Y) QD)5 +v) | . (A4.6)
sQ2)c(y — @) —s2D)s(¥ — @) c(29)

where ¢ = cos, s = sin. This is the Cayley parametrization of the group SO(3) and describes the
rotation with respect to the axis 2 = (sin ¢ sin ¥, sin ¥ cos ¥, cos ¥ sin ¢, ) by an angle ¢ such that
cos(t/2) = cos ¥ cos ¢.

Problem 9.4. The spectrum consists of the MN numbers «; 8;, wherei = 1,...,Mand j =i,..., N
(say).

Problem 9.6. Use the Schwarz inequality, |Tr(AB)|?> < Tr(AA") x Tr(B B), and replace A by Ap'/?
and B by Bp'/?, respectively (Mehta, 1989).

Problem 10.1. It is enough to consider a pure POVM, so that E; = |¢;)(¢;|. The vectors have com-
ponents ¢F, ¢ =1,..., N,i =1, ..., k. Let these components be the elements of an N x k matrix.
The completeness relation Zf:l (E;)z = 85 implies that the rows of this matrix are orthonormal. We
can always add an additional set of k — N rows to the matrix, so that it becomes unitary. The columns
of the new matrix form an orthonormal basis in a k dimensional Hilbert space, and there is an obvious

projection of its vectors down to the original Hilbert space.

Problem 10.2. Let a = diag(A) and ¢ = diag(C) be diagonals of complex matrices. Show that
ABCT = (ac’) o B and use it with A = A; and C = A‘T foralli =1,..., k.

Problem 10.3. To prove positivity, take an arbitrary vector V' and define A = V' A;. Then Vio;; V/ =
TrpAA' is positive because the trace of two positive operators is always positive. For the final part
see (10.56).

Problem 10.5. The phase flip channel.

Problem 10.6. The dynamical matrix Dy is represented by Dw = Pwudyy. Writing down the elements

of the image 6’ = ®,(0) = D®o = (p ® 1y)*o in the standard basis we obtain the desired result,
a)’nu = D'ﬁ"jdnv = )oanrU = Pmp-

Problem 11.1. Write both matrices in their eigen representations, A = Y, a;|e;){(e;| and B =
3", bilBiY{B:]. Perform decompositions AX =Y, q;a® ® @ and BF =Y, b;f” @ B¥ as in
(10.58), multiply them and reshuffle again to establish positivity of (A®¥ B®)X. For a different set-
ting see Havel (2003).

Problem 11.2. (a) The spectrum d consists of N(N + 1)/2 elements equal to +1 and N(N — 1)/2
elements equal to —1, so its sum (the trace of D) is equal to N, as required. (b) This canonical form
contains one negative term and three positive terms; due to the triple degeneracy the choice of the
positive terms is not unique.
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Problem 11.3. Using the nonhomogeneous form of (10.36) write down the dynamical matrix D and
show that some of its eigenvalues are negative. To study the co-positivity analyse the spectrum of D
(equal to the spectrum of D).

Problem 11.4. & = Y=o, + 1T

Problem 11.5. The spectrum d of Dy reads (a — 3,a,a,b,b, b, c,c,c). Hence cp(V) = min(a —
3,b,c) and the map is CP if @ > 3 and b, ¢ > 0. The spectrum of D;;A is threefold degenerated
and contains {a — 1, A, , A_},where A1 = (b + ¢ £ /(b — ¢)* 4+ 4)/2. Therefore ccp(¥) = min(a —
1, A_) and the map is CcP if a > 1 and bc > 1. Note that these results are consistent with (11.9) and
(11.10).

Problem 12.1. Open with the observation that

4o du
In(A B)=In(A B — _ A4.7
n(A+xB)=In(A+xB + ug) fo AT BT ( )

Use the fact that A 4 u is invertible for any positive u to rewrite the right-hand side as

1 o 1 1 1
In(A In (1 B) — — B d
n( +u0)+n< +A+u0x) /0 [A—i—u A+ux A+xB+u:| "

Now do the integral over the first term, collect terms, expand the remaining logarithm, and finally let
Uy —> OQ.

Problem 12.2. The eigenvalues of (1 — p/z)~! are z/(z — A;). With p diagonalized and the contour
chosen suitably, the first integral equals the von Neumann entropy and the second is the subentropy,

N .
So(p) = — Z(]‘[ . i y )A[ A . (A4.8)

i=1 i#j

Problem 12.3.
Z PeS(pillo) = Z Pi(TrpeIn pp — TrpeIno)
k k
= Z Pi(Trpe In py — Trp Ino + Trpg In p — Trpi In p) (A4.9)
k

= Zpk(Trpk Inpy —TrprInp)+Trplnp — Trplno = Zka(pka) + S(pllo) .
X X

Problem 12.4. Write the Husimi function using the Schmidt decomposition |W) = /A;|11) +
/22]22). Integration over the Cartesian product of two spheres gives

(1 =1Ink)  A3(1—Inky)

Sy (W) =
w(¥) A — s r— A

(A4.10)

Up to an additive constant this result is equal to the Wehrl entropy of one qubit mixed state obtained
by partial trace (Mintert and Zyczkowski, 2004) or to the subentropy (A4.8) of this state.
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Problem 12.5. It is enough to show that Trd,d, > TrWd, Wid,, where W = VTU 1% unitary. We
can write this as an inequality for scalar products between vectors: dl dz > (Bdl) dz where B is
unistochastic. Problem 2.2 shows that this is true.

Problem 12.6. Work in a basis where A + B is diagonal. Note that (det(A + B))I/N = ]_[i(A;; +
B)'N >T], AI/N +TI1 BI/N For our purposes the second step is the more interesting: from the
Schur-Horn theorem and the Schur concavity of the elementary symmetric functions it follows that
[1; Aii = detA (and similarly for B).

Problem 12.7. It is sufficient to compute TrL L using the following representation of the super-
operator, L = Y ;_ | A; ® A}

Problem 13.1. We want to show that ||x||*> > || Bx||?, so we must show that 1 — BT B is a positive
operator. This follows from the Frobenius—Perron theorem.

Problem 13.2. We know that there is a POVM such that v/F = > /Pigi, with probabilities given
in Eq. (13.48). Then

21 =VF) = 3 WP = V@l < ) IWB = VB + ]

=Y Ipi — il <2Dwlp.0). (A4.11)

where Helstrom’s theorem was used in the last step.

Problem 13.3. (a) This follows if we set U = 1 in the argument that led to the quantum Bhattacharyya
coefficient. Equality holds if [p, o] = 0.

(b) Equality holds if one of the states is pure. The inequality follows from this because of concavity.
Incidentally, Uhlmann has proved but not published that F'(o, p) > Trop + V2,/ (Trop)? — Tropop,
with equality for N = 2.

Problem 14.1. No, since fwy = (fmax + fecom)/2, Where feeom = /1 is related to the geometric mean,

l/cgcom(xv )’) = \/X_y

Problem 14.2.

Table A4.1. Volumes of orthogonal groups and real flag manifolds

Manifold Dimension Vol[X], a=1/2 Vol'[X], a=1
N (N+1)/2 N/2 (N+1)/2
RP N F{(ZN+1)/2] 2 JZN+1)/2
(N)_ O(N) N(N+1)/4 /4 N(N+1)/4
R OO NN - 1)/2 8 Oy M On
O(N) N(N - 1)/2 pREA N QNN+ Zh
N1 gNW+D/4 N(NL3)/d—1 gNNV+/4
SO(N) NN —-1)/2 2 ”T 2IN(N+3)/ ”O—N

where @y =[], ['(k/2).
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Problem 14.4. Integrating over respective distributions we obtain (S(p))us = 1/3, (S(p))p =2 —
7In2/6, (S(p))o =2 —1In2 and (S(p)), = In2/2.

Problem 14.5. The averages read

_(K+NP+KN+1 (Tep") _ (K4 N)[(K+ N)*+3KN +5]
T (KN+ D(KN+2)’ PINK= KN+ (KN +2(KN +3)

(Tro’) vk . (A4.12)

and are consistent with results of Malacarne et al. (2002).

1 /4
Pus(x) = E‘/E —1 (A4.13)

is a special case of Eq. (14.59) for K = N. In the rescaled variables, y = /x, this distribution is
equivalent to the quarter-circle law, P(y) = /4 — y?/7.

Problem 14.6. The result

Problem 14.7. Fidelity between pure states is equal to the squared component of |¢) expanded in a
basis containing |v). Hence its probability reads Py(F) = (N — 1)- (1 — F)¥~2 (see Section 7.6 on
random pure states).

Problem 14.8. Average fidelities, (F)ys = 1/2 + 972/512 ~ 0.6735 and (F) = 1/2 + 8/(97%) ~
0.590 exceed the average over two random pure states, (F)gs = 1/2 (Zyczkowski and Sommers,
2005).

Problem 15.1. It is enough to observe that |¢) = (V| ® V})|¢’). To find envariance one uses
the Schmidt decomposition, |y) = >, /Aclex) ® | fi) and selects Vi = Y, e |e;)(ex] and V, =
> e % f;) ( fi| with arbitrary phases a; (Zurek, 2003).

Problem 15.3. The Schmidt vector of the state |¢,)®™" consists of N™ components each equal to
N~ The state consisting of n copies of the initial state [/) may be, for large n, approximated by
K =exp[nE(|¥))] terms in the Schmidt decomposition described by the vector x. Choosing m ~
n[E(|Y))]/In N we see that {N~™, ..., N7} < {A, ..., Ag}. Thus Nielsen’s majorization theorem
implies that such a conversion may be done (Nielsen, 1999). Asymptotically the reverse transformation
is also possible (Bennett et al. 1996a), so for any pure statethe distillable entanglement is just equal
to entanglement entropy, Ep(|Y)) = E(|¥)).

Problem 15.4. Write a separable state in its eigenbasis, p = Zj Aj|W;)(¥;| and in its decom-
position into pure product states, p =Y, pi|¢{*) (97| @ |pf)(¢F|. Write also the partial trace
pa =Y., pild?) (@A in its eigenbasis, pa = Y, Ai|k)(k|. Apply Schrodinger’s mixture theorem
(8.39) twice, substituting /p;1¢?) = 3, Vi /ALIK) into /A, 10;) = 3, Uji /Pilé)|9F), where
U and V are unitary. Multiply the result by its adjoint and obtain A; = Y, BjA{ making use
of the orthonormality, (k|k’) = & . Showing that B is bistochastic implies (15.51) due to HLP
lemma.

Problem 15.6. Obviously not. A simple dimension counting will do. Consider N x N problem for
which the set of separable states has N* — 1 dimensions, while the set of localy diagonalizable states
forms its (3N? — 3)-dimensional subset. Note that it contains the set of all product mixed states of
dimensionality 2N? — 2.
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Problem 15.8. This inequality follows from condition Trp? < 1. It is not sufficient for positivity,
but may be accompanied by additional inequalities involving higher traces Tro¥, with k = 3,4, ...
(Kimura, 2003; Schirmer, Zhang and Leahy, 2004).

Problem 15.9. Partial trace induces the HS measure (14.35) with A; = cos? x. Changes of variables
provide the required distributions, while integrations give the expectation values (x)cps = 1/3 and

(C)cps = 3m/16. The distribution P(x) achieves maximum at y,, = arccos[,/ 12+ 1/\/6], while

it is most likely to find a two-qubit random pure state with concurrence C,, = 1/+/2.
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