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Preface

I Information geometryl provides the mathematical sciences with a new framework
for analysis. This framework is relevant to a wide variety of domains, and it
has already been usefully applied to several of these, providing them with a
new perspective from which to view the structure of the systems which they
investigate. Nevertheless, the development of the field of information geometry
can only be said to have just begun.

Information geometry began as an investigation of the natural differential
geometric structure [possessed by families of probability distributions.| As a
rather simple example, consider the set S of normal distributions with mean
and variance o2

2
p(w;n,a):\/zl—mexp{*(z%f) }

By specifying (i, o) we determine a particular normal distribution, and IM
may be viewed as a 2-dimensional space (manifold) which has (i, o) as a coor-
dinate system. However, this is not a Euclidean space, but rather a Riemannian
space with a metric which naturally follows from the underlying properties of
probability distributions. In particular, when S is a family of normal distribu-
tions, it is a space of egative curvature. The underlying characteristics
of probability distributions lead not only to this Riemannian structure; an in-
vestigation of the structure of probability distributions leads to a new concept
within differential geometry: that of fmutually dual afine connections] In addi-
tion, the structure of dual affine connections naturally arises in the framework
of affine differential geometry, and has begun to attract the attention of math-
ematicians researching differential geometry.

Probability distributions are the fundamental element over which fields such
as statistics, stochastic processes, and information theory are developed. Hence
not only is the natural dualistic differential geometric structure of the space
of probability distributions beautiful, but it must also play a fundamental role
in these information sciences. In fact, considering statistical estimation from a
differential geometric viewpoint has provided statistics with a new analytic tool
which has allowed several previously open problems to be solved; information
geometry has already established itself within the field of statistics. In the fields
of information theory, stochastic processes, and systems, information geometry

vii
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viii PREFACE

is being currently applied to allow the investigation of hitherto unexplored pos-
sibilities.

The utility of information geometry, however, is not limited to these fields. It
has, for example, been productively applied to areas such as statistical physics
and the mathematical theory underlying neural networks. Further, dualistic
differential geometric structure is a general concept not inherently tied to prob-
ability distributions. For example, the interior method for linear programming
may be analyzed from this point of view, and this suggests its relation to com-
pletely integrable dynamical systems. Finally, the investigation of the informa-
tion geometry of quantum systems may lead to even further developments.

This book presents for the first time the entirety of the emersi
information geometry. To do this requires an understanding of at least the
fundamental concepts in differential geometry. Hence the first three chapters

contain an-intreductionto-differential BEOITETY and t1e recently developed the-
ory of dual connections. An attempt has been made to develop the fundamental
framework of differential geometry as concisely and intuitively as possible. It
is hoped that this book may serve generally i i i i

geometry. Although differential geometry is said to be a difficult field to un-
derstand, this is true only of those texts written by mathematicians for other
mathematicians, and it is not the case that the principal ideas in differential
geometry are hard. Nevertheless, this book introduces only the amount of dif-

ferential geometry necessary for the remaining chapters, and endeavors to do so
in a manner which, while consistent with the conventional definitions in mathe-
matical texts, allows the intuition underlying the concepts to be comprehended
most immediately.

On the other hand, a comprehensive treatment of statistics, system theory,
and information theory, among others, from the point of view of information
geometry is for each distinct, relying on properties unique to that particular
theory. It was beyond the scope of this book to include a thorough description
of these fields, and inevitably, many of the relevant topics from these areas are
rather hastily introduced in the latter half of the book. It is hoped that within
these sections the reader will simply gather the flavor of the research being
done, and for a more complete analysis refer to the corresponding papers. To
complement this approach, many topics which are still incomplete and perhaps
consist only of vague ideas have been included.

Nothing would make us happier than if this book could serve as an invitation
for other researches to join in the development of information geometry.

Preface to the English
Edition

Information geometry provides a new method applicable to various areas includ-
ing information sciences and physical sciences. It has emerged from investigat-
ing the geometrical structures of the manifold of probability distributions, and
has applied successfully to statistical inference problems. However, it hz?s bt.aen
proved that information geometry opens a new paradigm useful for elucidation
of information systems, intelligent systems, control systems, physical systems,
mathematical systems, and so on.

There have been remarkable progresses recently in information geometry.
For example, in the field of neurocomputing, a set of neural networks forms a
neuro-manifold. Information geometry has become one of fundamental meth-
ods for analyzing neurocomputing and related areas. Its usefulness has' also
been recognized in multiterminal information theory and portfolio, in non.hn.ear
systems and nonlinear prediction, in mathematical programming, in statistical
inference and information theory of quantum mechanical systems, and so on.
Its mathematical foundations have also shown a remarkable progress.

In spite of these developments, there were no expository textbooks covering
the methods and applications of information geometry except for statistical
ones. Although we published a booklet to show the wide scope of information
geometry in 1993, it was unfortunately written in Japanese. It is o.ur great
pleasure to see its English translation. Mr. Daishi Harada has achieved an
excellent work of translation.

In addition to correction of many misprints and errors found in the Japanese
edition, we have made revision and rearrangement throughout the manuscript
to make it as readable as possible. Also we have added several new topics, and
even new sections and a new chapter such as §2.5, §3.2, §3.5, §3.8 and Chapter 7.
The bibliography and the guide to it have largely been extended as vx.rell. These
works were done by the authors after receiving the original translation, and it
is the authors, not the translator, who should be responsible for the English
writing of these parts. '

This is a small booklet, however. We have presented a concise but compre-
hensive introduction to the mathematical foundation of information geometry
in the first three chapters, while the other chapters are devoted to an overview

ix
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X PREFACE TO THE ENGLISH EDITION

of wide areas of applications. Even though we could not show detailed and
comprehensive explanations for many topics, we expect that the readers feel its
flavor and prosperity from the description. It is our pleasure if the book would
play a key role for further developments of information geometry.

Year 2000

Shun-ichi Amari
Hiroshi Nagaoka

Chapter 1

Eleméntary differential
geometry

Differential geometry is a mature field of mathematics and has many introduc-
tory texts; still, it is not an easy field to master. However, in this book we shall

require only the fundamental ideas and methodologies of differential seometrv.
The main theme of modern differential geometry has been to characterize the
global properties of manifolds, and much theory has been developed towards

this end. At this time, the field of information geometry (mostly) requires only
the theory of the(locally characterizable properties of manifolds. |

For information geometry the most important aspects of differential geome-
try are those which allow us to take problems from a variety of fields: statistics,
information theory, and control theory; visualize them geometrically; and from
this develop novel tools with which to extend and advance these fields. In this
chapter we present an introduction to differential geometry from this point of
view.

1.1 Differentiable manifolds

A differentiable manifold is a mathematical concept denoting a generaliza-
tion/abstraction of geometric objects such as smooth curves and surfaces in
an n-dimensional space. Intuitively, a manifold S is a “set with a coordinate
system.” Since S is a set, it has elements. It does not matter what these ele-
ments are (these elements are also called the points of S.) For example, in this
book, we shall introduce manifolds whose points are probability distributions
and also those whose points are linear systems. S must also have a coordinate
system. By this we mean a one-to-one mapping from S (or its subset) to R,
which allows us to specify each point in S using a vector of n real numbers
(this vector is called the coordinates of the corresponding point). We call the
natural number n the dimension of S, and write n = dim S.

We call a coordinate system that has S as its domain a global coordinate

1
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2 1. ELEMENTARY DIFFERENTIAL GEOMETRY
ez
e Rn
N !
\\ !
&= .,(,,)__\
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él
Figure 1.1: A coordinate system for S.

system. In our analysis below, we shall consider only the case where there exists
a global coordinate system. However, in general there are many manifolds
which do not have global coordinate systems. Examples of such a manifold
include the surface of a sphere and the torus (the surface of a donut). These
manifolds have only local coordinate systems. This may be viewed informally
in the following way. Consider an open subset U of §, and suppose that U has
a coordinate system. This provides a local coordinate system for those points
contained in U. For a point not contained in U, consider another open subset V'
containing that point which also has a coordinate system. Repeat this process
until the original set S is covered, so that each point in S is contained in an
open subset which has a coordinate system. Then this collection of open subsets
of S and their corresponding coordinate systems would allow us to express any
point in S using coordinates. However, as mentioned above, in this chapter we
shall consider only the case when there exists a global coordinate system. This
will suffice to prepare us for the later chapters. Indeed, since in this chapter
we principally develop the local theory of manifolds, this assumption does not
typically affect the generality of the analysis.

Let S be a manifold and ¢ : § — R™ be a coordinate system for S. Then
¢ maps each point p in S to n real numbers: o(p) = [£X(p),---,£7(p)] =
[€1,---,€7). These are the coordinates of the point p. Each £* may be viewed as
a function p — £%(p) which maps a point p to its #*" coordinate; we call these n
functions £¢: § — R (i = 1, - -+, n) the coordinate functions.! We shall write
the coordinate system ¢ in ways such as ¢ = [¢1,---,£"] = [£7] (Figure 1.1).

Let 9 = [p%] be another coordinate system for S. Then the same point p € S
has both the coordinates [¢f(p)] = [£f] € R™ with respect to the coordinate
system ¢, and the coordinates [p*(p)] = [p?] € R™ with respect to the coordinate
system 1. The coordinates [p’] may be obtained from [¢] in the following
way. First apply the inverse mapping ¢~ to [¢%]; this gives us a point p in S.
Then apply 9 to this point; this result is [p?]. In other words, we apply the

1We shall use &%, p* to denote both (the variable representing) the 5P coordinate of a point
and & coordmate function, This is sinilar to writing "the function y = y(z)."

1.1. DIFFERENTIABLE MANIFOLDS 3

T 0 p=¢()

|

Figure 1.2: Coordinate transformation.

transformation on R™ given by
Yo g & = ol 0" (1.1)

This is called the coordinate transformation from ¢ = [¢] to 9 = [p?] (Figure
1.2).

To consider S as a manifold means that one is interested in investigating
those properties of S which are invariant under coordinate transformations. In

particular, differential geometry analyzes the geometry of objects using differ-
ential operators with respect to a variety of functions on S, and it would be
problematic if these operators depended fundamentally on the choice of coordi-
nates. Hence it is necessary to restrict the coordinate systems to those which

In order to properly formalize the concepts described above, let us now
formally define manifolds for which there exists a global coordinate system.

Let S be a set. If there existscoordinate systems A for S which
satisfies the conditions (i) and (i) below, we call § (more properly, (S,.4)) an

n-dimensional C*° differentiable manifold, or more simply, a manifold.

(i) Each element ¢ of A is a one-to-one mapping from S to some open subset
of R™.

(i) For all ¢ € A, given any one-to-one mapping 3 from S to R", the following
holds:

pEA < op lisa O™ diffeomorphism.
—~—— -

Here, by a C* diffeomorphism we mean that 9o ~! and its inverse pop~!
are both C* (infinitely many times differentiable). From these conditions, and
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4 1. ELEMENTARY DIFFERENTIAL GEOMETRY

given the coordinate transformation described in Equatmn (1. l), it follows that
we may take the partial derivative of the function p* = p HEL, -+ €™) with
respect to its variable arguments as many times as needed, and that the same
holds for ¢% = £%(pt, - -+, p*). In this book, the condition C* is used a number
of times, but in fact it is usually not necessary; it would suffice for the relevant
functions to be differentiable some appropriate number of times. Intuitively,
[then, we may consider C* to simply mean “sufficiently smooth”. |

Let S be a manifold and ¢ be a coordinate system for S. Let U be a subset
of $. If the image @(U) is an open subset of R™, then we say that U is an open
subset of . From condition (ii) above, we see that this property is invariant over
the choice of coordinate system . This allows us to consider S as a topological
space. For any non-empty open subset U of S, we may restrict ¢, the coordinate
system of S, to obtain ¢|y (the mapping U — R™ obtained by restricting the
domain of ¢ to U), which may be taken as a coordinate system for U. Hence
we see that U is a manifold whose dimension is the same as that of S.

l Let f : .S — R be a function on a manifold S’.I Then if we select a coordinate
system ¢ = [£%] for S, this function may be rewritten as a function of the
coordinates; i.e., letting [¢] denote the coordinates of the point p, we have
flp) = F(€,.-- &™), wheri f = f oo~ 1.|Note that f is a real-valued function
whose doma.m is ¢(S), an open subset of R™. Now suppose that f F(et, .-, &™)
is partially differentiable at each point in ¢(S). Then the partial derivative
% F(et, -+, &™) is also a function on ¢(S). By transforming the domain back

to S, we may define the partial derivatives of f to be 5{; o -;Eé op:S - R

We write (a—éfy) to denote the value of this function at point p (the partial
P

derivative at point p). .

When f = fop~!is C®, in other words when f(£2,---,£™) can be partially
differentiated with respect to its variables an unbounded number of times, we
call f a C function on S. This definition does not depend on the choice of
coordinate system . The partial derivatives B‘L of a C* function f are also
C® functlons ‘We may similarly define the hlgher-order partial derivatives, e.g.

55‘%%%; = 5% 3—5§ These will also be C*®. As with the case of C* functions on

n i — 8
R", 5orks = o2 5k holds.

Let us denote the class of O™ functions on § by F(S), or simply F. For
all f and g in F and a real number ¢, we define the sum f + g as (f + g)(p) =
f(p)+g(p), the scaling cf as (cf)(p) = cf(p), and the product f-g as (f-g)(p) =
f(p) - 9(p); these functions are also members of F.

Let [¢%] and [p7] be two coordinate systems. Sinqe the cogrdinate functions
&t and p7 are clearly C, the partial derivatives —5—5—,- and ;3-%; are well defined,
and they satisfy

8¢t 97 8’ 8¢ _
Z 6/}7 85" Z 653 ap k: (12)

where 6% is 1 if k = 4, and 0 otherwise (the Kronecker delta). In addition, for

1.2. TANGENT VECTORS AND TANGENT SPACES 5

any C* function f, we have

Bf _(~0¢8f dp’ Bf
_ Za;ﬂ o and 651 Z 36 57 (1.3)

Note: In this book there often appear equations which contain
indices such as 1, 4, - - -, and are to be summed over those indices that
are both super and subscripted. For these equations we shall abbre-
viate by omitting the summation sign Y, corresponding to these
indices. For example, Equations (1.2) and (1.3) above would be

written as o A
06 959 _ op' ogl

907 56 = BE7 3, ~ Ok
o _ocos  of _odor
579 "B BE T Eas

We shall also abbreviate 37, 2% . A% B as A% B". Hence (un-
less there is ambiguity), whenever there appears such an equation
we shall assume that there is an implicit i.e., there i

tion over the relevant indices). Note therefore that Az X = ALX*

for instance, is always true. This notation is known as [Einstein’s

convention.

Let S and @ be manifolds with coordinate systems ¢ : § — R™ and ¢ : Q —
R™. A mapping A: 8 — @Q is said to be C* or smooth if po Ao~ is a O™
mapping from an open subset of R™ to R™. A necessary and sufficient condition
for A to be C*° is that f o A € F(S) for all f € F(Q). If a C* mapping[X is al

[bijection (i.e., one-to-one and A(S) = @) and the inverse A~! is also C°°, then
A is called a C* diffeomorphism from S onto Q.

1.2 Tangent vectors and tangent spaces

The tangent space T}, at a point p € S of a manifold S is intuitively the vector
space obtained by “locally linearizing” § around p. Let [¢] be some coordinate
system for S, and let e; denote the “tangent vector” which goes through point
p and is parallel to the i*" coordinate curve (coordinate axis). By the i*" coor-
dinate curve we mean the curve which Is obtained by Hixing the values of all &
for j # 4 and varying only the value of £. The n-dimensional space spanned by

the n tangent vectors e e, is the tan
Let p’ be a point “very close” to p, and let [¢%] and [¢* 4- d¢7] (where d¢* is an
infinitesimal) be the coordinates of p and p’, respectively. Then the segment
joining these two points may be described by ;1? = dé’e;, an infinitesimal vector
in T,.

Let us make the above concepts more precise. To do so, we must first
formally define what we mean by curves and the tangent vector of curves on a
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6 1. ELEMENTARY DIFFERENTIAL GEOMETRY

& R"

IFigure 1.3: Tangent Space |

manifold. Consider a one-to-one function v : I — S from some interval I (C R)
. irgy def g
to S. .By defining v*(t) = £4(y(t)) we may express the point v(¢) (¢t € I) using
coordinates as F(t) = [y} (¢), -+, y*(1)]. I 7(t) is O for t € I, we call v a C*®
curve on S. This definition is independent of coordinate system choice.
Now, given a curve y and a point y(a) = p, let us consider what is meant by

the “derivative” of v at p, or alternatively the ‘Itangent vector” (%)n = ¥{a).

When S is simply an open subset of R™, or can be embedded smoothly into R¢
(€ > n), the range of « is contained within a single linear space, and hence it
suffices to consider the standard derivative

i(a) = lim y(a+h) ~~(a)

lim - (1.4)

In general, however, the equation above is not meaningful. On the other hand, if

we take a C* function f € F on S and consider the value of f (’7(t)) on the curve,

since this is a real-valued function, we may define the derivative < f (’7(t)) in the
gt

usual way. Using coordinates, we have f(y(t)) = F(5()) = F(v1(t),---,v"(£)),

and the derivatives may be rewritten as

4, _ (8 & _ (8f\ @)
< 1) (6@)% AORE (ae)w) QN

We call this the directional derivative of f along the curve +. Let us consider
this directional derivative as an expression of the tangent vector of . In other
words, we take the operator : F — R which maps f € F to £ f(v(t))|¢=q, and

simply define the tangent vector (%) = 4(a) to be this operator. Then we
»

may rewrite Equation (1.5) as

Y(a) = (%})p =4'(a) (527),, (1.6)

(#(a) = E4%(t)|t=a). Here (5%) is an operator which maps f (3‘%) It
P

is possible to show that when the tangent vectors can be defined using Equa,-

tion (1.4), there is a natural one-to-one correspondence between Equations (1.4)

1.3. VECTOR FIELDS AND TENSOR FIELDS 7

and (1.6). Hence the definition of tangent vectors as operators may be viewed
as a generalization of Equation (1.4).
Since a partial derivative is simply a directional derivative along a coordinate

axis, the operator (6%{) is the tangent vector at point p of the ith coordinate
P

curve. The e; mentioned previously corresponds to this (F) From Equa-

tion (1.3), we see that

(), = (&)-E), ), e

Consider all curves which pass through the point p. We denote the set
of all tangent vectors corresponding to these curves by Ty, or Tp(S). From
Equation (1.6), we see that

0
Tp(8) = {c (a—é) et M e R”}. (1.8)
p
This forms a linear space, and since the operators {(%) ii=1,--- ,n} are
P

clearly linearly independent, the dimension of this space is n (= dim S). We
call T(S) and its elements the tangent space and tangent vectors, of S at

the point p , respectively. In addition, we call ( 6€,> the natural basis of the

coordinate system [£7].
Let D € T, be some tangent vector. Then for all f,g € F and all a,b € R,

D satisfies the following:
[Linearity] D(af + bg) = aD(f) + bD(g). (1.9)
[Leibnizs rule]  D(f-g) = f(B)D(g) + g®)D().-  (1.10)
Conversely, it can be shown that any operator D : F — R satisfying these

properties is an element of Tp,. Hence, it is possible to define tangent vectors in
terms of these properties.

Let A : S — Q be a smooth mapping from a manifold S to another manifold
Q. Given a tangent vector D € Tp(S) of S, the mapping D' : F(Q) — R
defined by D/(f) = D(f o A) satisfies Equations (1.9) (1.10) with p replaced
with A(p), and hence D’ belongs to Ti(,)(Q). Representing this correspondence
as D' = (d)\),(D), we may define a linear mapping (dA)p : Tp(S) — Trp)(Q),
which is called the differential of A at p. When S and @ are provided with
coordinate systems [¢¥] and [p7] respectively, we have

(@) ((851) )—( 36(:/\)) (C%f)x(p). (L11)

Moreover, for any curve v(t) on S passing through the point p it follows that

d,\),,(( ))_( ’\d‘t”))“p). (1.12)
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8 1. ELEMENTARY DIFFERENTIAL GEOMETRY

1.3 Vector fields and tensor fields

Let X : p — X, be a mapping which maps each point p in the manifold S

example, if [¢%] is a coordinate system, then we may define n vector fields through

the mappings aigf ip (%)p (¢ =1,--,n). These are the vector fields formed

by the natural basis. Below, we shall write §; to mean %. In general, given
a vector field X, for each point p there exists n real numbers {Xg, cee ,Xz’}}
which uniquely determine X, = X;(8;),. Hence we may define the functions
Xt:pr X on 8. We call the n functions {X?,---, X"} the components

of X with respect to [¢']. This allows us to write X = X;. If, in addition,

we let [o7] be another coordinate system and X = X78; (5 def a_z;:') be the

component expression of X with respect to [p7], then the following hold:
o . 8p7 R . OL°
3= xiZl t= X2 1.1
X=X a6 and X'=X Bp7 (1.13)

If the components of a vector field are C* with respect to some coordinate
system, then the components are C*® with respect to any other. We call such
a vector field a C™ vector field. Since we consider only C* vector fields in this
book, we shall refer to them as simply vector fields. We shall denote this family
of vector fields by 7(S), or simply 7. Clearly 8, € T (i =1,---,n).

Now for any X,Y € T and any ¢ € R, the mappings X +Y :p— X, + ¥},
and c¢X : p — cX, are also members of 7. Hence T is a linear space. In
addition, for any f € F, the mapping fX :p — f(p)X, is a member of 7.

Wecall F: V; x Vo x -+ x V. — W, where V1,---, V., W are linear spaces,
a multilinear mapping if the following property holds. Let F(v;) denote a
mapping of one variable equal to F(vq,---,v,) where some v; has been distin-
guished as the variable, and the other v; (j # ©) are held constant to some value
(€ V;). Then F : v; — F(v;) is a linear mapping from V; to W.

Now for each point p € S, let [T,]% denote the family of multilinear mappings
of the form Ty x --- X T, — R, and let [T,]} denote the family of the form

[ ——-

7 direct products

Tp X -+ X Tp — Tp. We call mappings A : p — Ap which maps each point
v direct products
p in S to some element A, of [Tp)2 (¢ = 0,1) a tensor field of type (g,r)
on S. The types (0,7) and (1,7) are also respectively called tensor fields
of covariant degree r and tensor fields of contravariant degree 1 and
covariant degree r. Vector fields may be considered to be tensor fields of type
(1,0). Although it is possible to define tensor fields of type (g,7) for ¢ = 2,3,- -+,
they will not be used in this book. In addition, we shall occasionally refer to
tensor fields as simply tensors.

Let A be a tensor field of type (g,7) and Xi,-- -, X, be r vector fields. Then

1.3. VECTOR FIELDS AND TENSOR FIELDS 9

we may consider a mapping with domain S of the following form:
AKXy, Xr) tp e Ap((Xa)ps -+, (X)) (1.14)

When ¢ = 0, Ap((X1)p, ., (Xr)p) € R and hence this mapping is a real-valued
function on S. When ¢ =1, A,((X1)p,- -+, (Xr)p) € Tp, and hence this defines
a vector field on S. Given A, if for all C* vector fields X3,---, X, € T the
mapping A(X3,---,X,) is C® (i.e., when ¢ = 0 the mapping is in F, and when
g=11itisin T), we call A a C® tensor field. Below, we consider only C®
tensor fields, and shall simply call them tensor fields.

Consider the tensor field A of type (g,7) to be a mapping (X1,-++,X;) —
A(Xy,---,X.). Then when g =0wehave A: T x.---x7T — F, and when

N e’

r direct products

g=1wehave A: T x---xT — T. This, in addition to forming a multilinear

7 direct products

mapping, has the following property: for all f1,..., fr € F,
A(hXy, - 7err) =f1- frAXy,- - , Xr)-

We call this the F-multilinearity of A. Conversely, if the mapping A : T x
<o X T — F, or alternatively A: T X --- x T — 7 is F-multilinear, then this
determines a tensor field p — A, satisfying Equation (1.14).

The operation of a tensor field A of type (0,7) on the r basis vector fields

8,0, 00, (&; def %) defines a function. Let us denote this by

A(a’in e 78‘1:1-) = A’il"“ir'
We call the n” functions {4;,...;.} obtained by changing the values of iy, -,
the components of A with respect to the coordinate system [£%]. Let X, -, X,
be r vector fields; these may be expressed component-wise as X; = X;:a.;. Then
from F-multilinearity, we have

A(Xy, o, X)) = Agyi XD XE

In the case of a tensor field A of type (1,7), A(8y,- -+, 8;,) is a vector field, and
its component expression is given by

A(By,,+,8.) = AE , b

410wty
The n™+! functions {A%,_ ; } thus defined are called the components of A with
respect to [£']. As in the previous case, letting X; = X38;, the following holds:
A(Xy, -, X0y = ( I‘C,mi,Xf‘ < X0
Let [of] be another coordinate system. Using ~ to denote components with
respect to [p7], we have

- Hen Heir

Ajlu.jr = Ail""ir (3/5}71 ) “ee (_——_35)77‘) and (115)
<p _ & a€i1 o agir ape

Ajl“‘j-r- = Ail-..i,. (6/171 ) (6/}7') (‘6?) . (1.16)
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1.4 Submanifolds

Let S and M be manifolds, where M is a subset of S. Let [£2,..-,£7] = [¢]]
and [ul,---,u™] = [u®] be coordinate systems for S and M, respectively, where
n = dlmS and m = dimM. Below, we shall use the indices 4,7, k,--- over
{1,---,n} for § and a,b,c,--- over {1,---,m} for M.

We call M a submanifold of S if the following conditions (i), (ii), and (iii)
hold.

(i) The restriction ¢*|as of each & (: § — R) to M, is a C* function on M.

(ii) Let BY e (-gﬁ;)p (more precisely, (ag“m ) )and B, def [BL,---,BY €

due

R™. Then for each point p in M, {By,--- m} are linearly independent
(hence m < n).

(iif) For any open subset W of M, there exists I/, an open subset of S, such
that W=MnU.

These conditions are independent of the choice of coordinate systems [¢] and
[u*]. Indeed, conditions (i) and (ii) mean that the embedding ¢ : M — S
defined by ¢(p) = p, Vp € M, is a C*™ mapping and that its differential (de)p is
nondegenerate at each point p.

An open subset of S, as we noted in §1.1, forms an n-dimensional manifold;
in addition, it is also a submanifold of S. We may construct an example of a
submanifold of dimension m (< n) in the following way. Let [¢?] be a coordinate
system of § and {¢™*!,...,¢"} be n — m real numbers. Now define

M {pe Slgip) =ct,m+1<i<n)

We assume that M # § (the empty set). Then if we let u® def & (1 < a<m),
M is an m-dimensional manifold with coordinate system [u®], and hence it is
a submanifold of S. The “reverse” of this is also true at least locally. In other
words, if M is an m-dimensional submanifold of S, with [u?] its coordinate
system, and {¢™*+!,-- -, c"} is a set of n — m real numbers, then it is possible to
choose U, an open subset of S, and a coordinate system [£7], so that

MNnU={peUl® =c,m+1<i<n},
and moreover, u*|yny = € mnu (1 < a < m).

If M is a submanifold of S then a curve « : ¢t — «(t) in M is also a curve
in §. Hence letting p be a point on v, the tangent vector (F}) of v may be
considered both as an element of T,,(M) and as one of T,(S). Usmg coordinate
systems [u®] and [¢*] for M and S, respectively, and letting v et o o~ and
7 = &ef &t oy, these tangent vectors may be written as ( & )p (Oa), € Tp(M)

)
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and (%i)p(a) € T,(S), where 8, et z2= and 8 & 6—5;. Since

(%), (3 (“—“"i) ’ a1
dt /, ousJ \ dt /,

from condition (ii) for submanifolds we see that there is a one-to-one correspon-
dence between these tangent vectors. In other words, this correspondfance is
given by the differential (ds), of the embedding ¢: M — 5. By c.onsidermg the
corresponding pairs to be equivalent, we may view Tp(M) as a linear subspace
of T,(S). From Equation (1.17) we obtain

(&), (),(&), -0 o

This shows that B:8; is the natural basis vector 8, of M with ?espect to
coordinate system [u ] seen as a vector in Tp(S). In addition, this may be
interpreted as the equality of the differential operators: for all f & F(8),

({?J“)p = (%)p (g_ff‘)p

1.5 Riemannian metrics

Let S be a manifold. For each point p in S, let us assume that an inner product
(, }, has been defined on the tangent space Tp(S). In other words, for any
tangent vectors D, D' € T,(S) we have (D, D), € R, and the following hold.

[Linearity] ~ {(aD +bD’,D"), = a(D,D"), +b(D’,D"),

(Va,b € R) (1.19)
[Symmetry] (D,D), = (D', D}, (1.20)
[Positive-definiteness] If D # 0 then (D,D), >0 (1.21)

Note that {, ), € [Tp(S )13 since from Equations (1.19) and (1.20) we see that
(,) isa b111near form. Hence the mapping from points p in S to their inner
product on Tp(S), say g:p— {, ), is a tensor field of covariant degree 2. We
call this a (C*°) Riemannian metrlc on S. Such a metric, g, is not naturally
determined by the structure of S as a manifold; it is possible to con51fler an
infinite number of Riemannian metrics on S. Given a Riemannian metric g on

S, we call S (more precisely (S,g)) a Riemannian mamfold

def
Let [¢7] be a coordinate system for S, and let &; = 65, Then the compo-

nents {g;;;4,5 = 1,---,n} (n = dim S} of a Riemannian metric g with respect
to [¢7] are determined by gi; = (8;,8;). This is a C*° function which maps
each point p in S to gij(p) = {(8:)p, (0;)p),- If we rewrite the ta.ngent vectors
D,D' € T, in terms of their coordinates as D = D* “(8;)p and D’ = D'{(8;)p,
their inner product may then be written as:

(D, D"), = gi;(p)D'D".
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Also, the length || D] of the tangent vector D is given by
IDI” = (D, D), = g:;(n)D°D’.

If we let G(p) = [9:;(p)] be an n X n matrix whose (1, )P element is g;;(p),
we see from Equations (1.20) and (1.21) that this is a positive definite sym-
metric matrix. Conversely, suppose we are given a coordinate system [fi] for
an n-dimensional manifold S, and n? C* functions {g;;} (C F(S)). Then if
G(p) = [gi;(p)] is a positive definite symmetric matrix for every point p € S,
the corresponding Riemannian metric on S which has g;; as its components
with respect to [¢¥] is uniquely determined. The relationship between these
components and the components g = <(§k,t§g> (ék def 5?;;) with respect to
a different coordinate system [p*] is given by the following transformations of
covariant tensor fields of order 2 (refer to Equation (1.15):

s aéi afj . apk 6p2 ’
ke = G5 (6—/7k) (6;;‘—’) and gy = Jre (65‘ a7 ) (1.22)
Let g% (p) be the (i, §)*" component of the inverse G(p)~* of G(p) = [9:; (V)]
(this inverse is also positive definite symmetric). Now define the function g% :
p+ g9 (p) on S. Then

| 916" = & Z{ (1) 82;3 , (1.23)

and the relationship between this inverse and G(p)~! = [§*(p)], which is the
inverse of G(p) = [Gre(p)], is given by the following,.

- i {00\ [ 8p* .o [ OE [0
For(B)(E) w () o

Let v : [a,b] — S be a curve in the Riemannian manifold S. We define its

length ||v]| to be
def [P]|dy b P
vl = = gy dt, (1.25)
a a

where 4* is the derivative of 7' % ¢! 0y (see Equation (1.6).)

Let M be a submanifold of a Riemannian manifold S. As noted in §1.4, for
each point p € M, we may view T,(M) as a linear subspace of T,,(S), and hence
an inner product g(p) = (, ), on Tp(S) naturally defines an inner product on
Tp(M). Then, letting g|p(p) denote this inner product, glar : p + glar(p) is a
Riemannian metric on M. Given a coordinate system [u®] on M, we see from
Equation (1.18) that the components of g|ns, {gas} satisfy

(8 OoN_ (% (%
s () (@) e

.
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1.6 Affine connections and covariant derivatives

Let S be an n-dimensional manifold. If S is an open subset of R™, then by
defining the tangent vector of a curve vy according to Equation (1.4), the tangent
space T, = T,(S) at each point p € S may be considered equivalent to R™. This
means that for p and ¢ not equal, there is still a natural correspondence between
T, and T,,. For a general manifold S , however, T, and T, are entirely different
spaces when p # g. Hence, to consider relationships between T, and T,, we
must somehow augment the structure of S as a manifold. Affine connections
are such a structural augmentation.

Intuitively, defining an affine connection on a manifold § means that for
each point p in § and its “neighbor” p’, we define a linear one-to-one mapping

between T}, and Tyy. Here we call p’ a neighbor of p if, given a coordinate system

[¢1] of S, the difference between the coordinates of p and p', d&t % ¢i(p')—£i(p),

when construed as a first-order infinitesimal, is sufficiently small that we may
ignore the second-order infinitesimals (d¢?)(d¢7). Below we shall introduce the
notion of affine connections in an intuitive manner using infinitesimals. (It is
possible to formalize this discussion by using fiber bundles.)

As shown in Figure 1.4, in order to establish a linear mapping I, v between
T, and T we must specify, for each j € {1,---,n}, how to express I, ((8;)p)

in terms of a linear combination of {(81)p, -, (8n)p'} (6j o a—‘zf). Let us

assume that the difference between II, .+ ((8;),) and (8;), is an infinitesimal,
and that it may be expressed as a linear combination of {d¢?,---,dé¢™}. Then

we have )
o ((85)0) = (85)p — AEH(TE)p(Bk)yp, (1.27)

where {(I‘,’fj)p; 1,5,k = 1,---,n} are n® real numbers which depend on the point
p.

If for each pair of neighboring points p and p’ in S, there is defined a linear
mapping Iy o : Tp — T of the form described in Equation (1.27), and if the
n® functions T : p — (I';)p are all C*, then we say that we have introduced
an affine connection on S. In addition, we call {I‘fj} the connection coeffi-
cients of the affine connection with respect to the coordinate system [¢?]. Note
that the only constraint on the connection coefficients are that they be C°°, and
that therefore affine connections have this degree of freedom. Below, we often
refer to affine connections as simply connections.

Let {p7] = [p%,---,p"] be a coordinate system distinct from [¢], and let

5, X g‘Z: = g-;:ai. From Equation (1.27) and the linearity of II, ,» we have

Ty (B2)y) = (2%) {85}y ~ dE (T, (Be)y .
¥4

By substituting into the right hand side of this equation

i), = (5), (arar), @
S = +l—= d and
(5‘175 » op°/, \0p8p°/, ?
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Figure 1.4: Affine connection (an infinitesimal translation)

i _ [0 - pdef oy
¢t = (apr>pdp (dp = () —p (p)),
and ignoring second order infinitesimals, we obtain
HP,P’((gs)p) = (gs)p’ - dpr(f‘:s)p(gt)p” (1.28)
where (I'%,), is the value of the function

po o[ 8800 ok ) o

TS T 2 8pr aps 6p'raps 65"

at the point p. Note that Equations (1.27) and (1.28) are of the same form.

Furthermore, if the functions I‘fj are C* for all (4, , k) then so are the functions

T, for all (r, 5,t). In other words, the notion of affine connections is independent

of the choice of coordinate system. Their connection coefficients, however, are
related according to Equation (1.29).

An affine connection determines, for neighboring points p and p’, a corre-
spondence between T, and T,,. By connecting a sequence of such correspon-
dences, we may find, for non-neighboring points p and ¢, a correspondence
between T, and Ty,. This correspondence depends, however, on the curve ~ by
which one connects p and g. Let us define the notion of “translating tangent
vectors along a curve” in the following way.

Let v : [a,b] — S, where y(a) = p and v(b) = ¢, be a curve which connects
points p and g in S. We call a mapping from each point ~(t) to a tangent
vector X(t) € Ty, say X : t = X(t), a vector field along ~. Given such
a vector field X, if, for all ¢ € [a,b] and the corresponding infinitesimal dt, the
corresponding tangent vectors are linearly related as specified by the connection,
ie., if

(1.29)

X(t+dt) = TLya),perany (X (1), (1.30)
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/\Hr(n.r(uan

X(t+de)

X(6)=11,(D)

7(a)

Figure 1.5: Translation of a tangent vector along a curve

then we say that X is parallel along v (Figure 1.5). ]

Let us rewrite the equation above with respect to the coordinate system [¢¢].
Letting 8; = 6%;, we have X (t) = X*(t)(;).()- From Equation (1.27) we have
that

Iy t) yierar) (X (1) = {X*(@) - &V O XTI @) TE)r0} B)yeran,  (1.31)

where v % ¢i 0, and 4(t) is its derivative with respect to t. Now since in
addition, X (t+dt) = X*(t+dt)(8;)(s+dr), Substituting this into Equation (1.30)
we obtain ) )

X4E) 4+ 5 (X T8y = O, (132

where X*(t) def dx [;(t) = Xk(”‘d;z‘xk(t). Equation (1.32) is an ordinary linear
differential equation on X*(t),- -+, X™(¢t), and hence given an initial (boundary)
condition there exists a unique solution. From this, given D € T,(o) = Tp, we
see that there exists a unique parallel vector field along - such that X(a) = D.
Then letting IL,(D) denote the vector X (b) € T,y = T, determined by D, we
see that IL, is a linear isomorphism from T, to T,. We call II,, the parallel
translation along ~.

Let v : [a,b] — S be a curve and X be a vector field along «. In general,
X(t) and X (¢ + h) lie in different tangent spaces and hence it is not possible
to consider the derivative d"égt) = limp—g ﬂ-t—t%)‘;x—(ﬁ However, if an affine
connection is given on S, then the parallel translation of X (t 4 h) € Tyz4n) to
the space T,y along v gives us X;(t + h) = Iy(s4n),45) (X (¢ + })), and using
this we may consider within T, the quantity lim,_o Mﬁ)im We call
this the covariant derivative of X (t), and denote it by 5—);&1. In other words,
instead of dX (¢) = X (t 4 dt) — X (t), we use

BX(8) = TL(uran o0 (X (2 + d8)) = X(2) (133)

(see Figure 1.6).
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yp

8X(t) /\
/ X(t-+dt)

Xx(t)
ﬂtﬁ'dt)

r(t)

/

T

Figure 1.6: The covariant derivative along a curve.

Rewriting X (t) as X7(2)(8;)4(), we have

Iy (adt) yey (X (E4d)) = {XF(t + dt) + At XTI (TE) (0} )y (1.34)
and substituting this into Equation (1.33), we obtain

§
X(t) = {X*0) + () X7 ()T a0} (Bk)te)- (135)

This also forms a vector field along 4. In addition, we see that the parallel
translation condition in Equation (1.32) may now be written simply as 2% ‘SX

In this way, using an afﬁne connection it is possible to define the 1nﬁmtes1ma1
6X and the derivative & — + of a vector field X (£) along a curve. Extending this to
“the directional derlvatlve of a vector field X = X%8;, € T on & along a tangent
vector D = D¥(8;), € T,,” is straightforward as follows: consider a curve whose
tangent vector at the point p is D, and by taking the covariant derivative of X
along this curve we obtain

VpX = D*{(8:X*), + XI(T5),} (Be)p € Tp(S). (1.36)

In fact, letting X, : £ — X vty for an arbitrary curve v, we have from Equa-
tions (1 35) and (1 36) that

280
dt

We may also define for each X,Y € T(S) the vector field VxY € T (S) by
(VxY)p = Vx,Y € T,(S). We call this the covariant derivative of ¥ with
respect to X. Given X = X'§; and Y = Y'8;, we may write

VxY = X {8,Y* + YIT} 6. (1.38)
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In particular, when X = 8; and Y = 0;, we obtain the component expression
of the covariant derivative
V5,0; = T%0. (1.39)

This may be construed as the vector field which expresses the change in the
basis vector 9; as it is moved in the direction of J;.

The operator V : 7 X T — 7 which maps (X,Y) to VxY satisfies the
following properties: for arbitrary X,Y,Z € 7 and f € F (: the set of O
functions on S),

() Vx4vZ=VxZ+VyZ.

(i) V(Y +2) = VxY + VxZ.
(iii) VxY = fVxY.
(iv) Vx(fY) = fVxY + (Xf)Y

Here, X f denotes the function p — X,f (€ F). Note that VxY is F-linear
with respect to X, but not with respect to ¥, and hence V is not a tensor field.
In fact, it is possible to consider the conditions (i)-(iv) as the defining prop-
erties of affine connections. In other words, we may define an affine connec-
tion on S to be a mapping V : 7(S) x T(S) — T(S) which satisfles condi-
tions (i)-(iv). In addition, we may define the connection coefficients {I‘ .} of
V with respect to some coordinate system [£!] to be the n® functions deter-
mined by Equation (1.39). Then it is possible to prove Equations (1.38) and
(1.29) from conditions (i)-(iv). It is also possible to reverse the derivation in
Equations (1.32)-(1.37) to arrive at the definitions of QE(E(Q and II, from that
of V. This method would make the use of both infinitesimals and fiber bundles
unnecessary. In this book, we shall often refer to the “connection V”.

Finally, we note that the totality of afine connections on a manifold forms
an affine space. In other words, for any affine connections V and V’/ and for
any real number « € R, the affine combination oV + (1 — o)V’ defines another
affine connection. Note also that the difference of two affine connections is a
tensor field of type (1,2).

1.7 Flatness

Let X € 7(S) be a vector field on S. If for any curve yon S, X, : ¢ X,y is
parallel along « (with respect to the connection V), we say that X is parallel on
S (with respect to V.) In this case, for any curve v which connects points p and
g, X = IL(X,) holds. A necessary and sufficient condition for an X = X9,
to be parallel is that Vy- X =0 for all Y € 7(S), or equivalently that

8X* 4+ XITE = 0. (1.40)

Note that nonzero parallel vector fields do not exist in general.




18 1. ELEMENTARY DIFFERENTIAL GEOMETRY

Let [¢] be a coordinate system of S, and suppose that with respect to this
coordinate system the n basis vector fields §; = a& (i =1,---,n)are all parallel
on S. Then we call [¢7] an affine coordinate system for V. This condition
is equivalent both to V5,8; = 0 and also to the condition that the connection
coefficients {T'f;} of V with respect to [£] are all identically 0.

Given some connection, a corresponding affine coordinate system does not
in general exist. If an affine coordinate system exists for connection V, we say
that V is flat, or alternatively that S is flat with respect to V. Let [¢%] be an
affine coordinate system. Then with respect to a different coordinate system
[07], we see from Equation (1.29) that the connection coefficients {I'%,} may be

k
written as Tt a(zi LTE ggg Hence a necessary and sufficient condition for [p"]
to be another affine coordinate system is that 5—,(5,? = 0. This is equivalent to

the condition that there exist an n x n matrix A and an n-dimensional vector
B such that

&(p) = Ap(p) + B (vpe 5) (1.41)

(é(p) = [¢'(p)] and p(p) = [p"(p)].) We call a transformation of the form
described in Equation (1.41) an affine transformation (when B = 0, this
is simply a linear transformation). In addition, we see that this transformation
is regular, i.e., one-to-one, and that A is a regular matrix. The collection of
such regular affine transformations form a group, and affine coordinate systems
have this degree of freedom.

Let V be a connection on S. Then for vector fields X, Y, Z € 7, if we define

RX,Y)Z ¥ Vx(VyZ)-Vy(VxZ)-Vixy)Z and (1.42)
TX,Y) ¥ VxY-vyX-[XY), (1.43)

then these are also vector fields (€ 7). Here, letting X = X; and Y = Y?9;,
we have defined [X, Y] to be the vector field

[X,Y] = (X78,Y* — Y78,X%)8;

(this does not depend on the choice of coordinate system). The mappings R :
TxTxT—TandT:T xT — T as defined above are both F-multilinear.
Hence R and T are respectively tensor fields of types (1,3) and (1,2). We call
R the Riemann-Christoffel curvature tensor (field) of V, or more simply
the curvature tensor (field), and T the torsion tensor (field) of V. The
component expressions of R and T with respect to coordinate system [£f] are
given by

R(8;,8;)0 = R{;6, and  T(8;,8;) = T}k (1.44)

(6,~ def %), and these may be computed in the following way:

Ry = 0T% — 8T +T4T% —T4L TS and (1.45)
T; = TH-Ts (1.46)

1.8. AUTOPARALLEL SUBMANIFOLDS 19

If [¢'] is an affine coordinate system for V, then clearly Rfjk =0and T =0. In
fact, in this case the components of R and T, since they are tensors, are always
all 0 with respect to any coordinate system. In other words, if V is flat, then
R=0and T =0. Conversely, if R=0and T = 0, it is known that V is locally
flat in the following sense: for each point p € S, there exists a neighborhood U
of p such that V is flat on U. A proof will be found in standard textbooks of
differential geometry.

In general, when T = 0 (i.e., I‘,’fj = I‘;Ci) holds, V is called a symmetric
connection or torsion-free connection. The connections having appeared
so far in information geometry are mostly symmetric connections. However,
the incorporation of torsion into the framework of information geometry, which
would relate it to such fields as quantum mechanics (noncommutative probabil-
ity theory) and systems theory, is an interesting topic for the future. We will
make an attempt in this direction in §7.3.

If a connection is flat, then parallel translation does not depend on the
curve selected to connect the two points. In particular, the n basis vector fields
b; = 5, (¢ = 1,---,n) of an affine coordinate system [¢]) are parallel vector
fields, and hence IL,((8;),} = (8;), regardless of the curve « used to connect the
points p and q. In addition, if the components X* of a vector field X = X?%9;
are all constant on S, then X is parallel, and IL,(X,) = X

In general, if parallel translation does not depend on curve choice, or in
other words if there are n linearly independent parallel vector fields on S then
R =0, and in addition, when S is simply connected (i.e., when arbitrary closed
loops may be continuously contracted to a single point) it is known that the
converse also holds.? There exist, however, connections for which B = 0 and
T # 0. When this is the case, although parallel translation does not depend
on the curve selected, there does not exist an affine coordinate system. Such
spaces, called spaces of distant parallelism, were introduced by Einstein within
the context of unified field theory, and also serve a major role within the theory
of non-Riemannian plasticity. Another example will be shown in §7.3.

From Equatlons (1.45) and (1.46) we see that in general RY;, = — fuc and
Tk = . Hence, in the particular case when S is 1-dimensional, R = 0 and
T=0 necessarlly hold, and therefore § is flat.

1.8 Autoparallel submanifolds

Let S be an n-dimensional manifold and M be an m~dimensional submanifold
of S. Let [¢%] and [u%] be coordinate systems for S and M, respectively, and let
0; = 3—6—; and &, azﬂ' Suppose also that V is an affine connection on $ and
that {I‘ ;} are the connection coefficients of V with respect to [£%]. Now letting
X = X"a and Y = Y8, € T(M) be vector fields on M, we may consider
Vx,Y, the “directional derivative of ¥ along X,,”, as we did in Equation (1.36).
However, even though in general Vx Y is a tangent vector of S (€ Tp(S5)), it

2There are those who define “flat” to denote this case.
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is not necessarily a tangent vector of M (€ T,(M)). If we let VxY denote the
mapping from points p in M to V x,Y € Tp(S), then using identities such as
Oa = (8£%)8; we have

VxY = X*(8.Y?)8, + XY {(8,£%)(8687 % + 8,06* ) 6. (1.47)
In particular, letting X = 8, and Y = 8y, we obtain
V3,00 = {(aagi)(abgf)rfj + 6,1655"} O. (1.48)
Note also that Equation (1.47) may be written as
VxY = X°(8.Y?)8, + X°Y*Vy, 5, (1.49)

As we mentioned above, for X,Y € 7(M), (VxY)p =Vx,Y is an element
of Tp(S), but not necessarily one of Tp(M), ie., in general VY ¢ T(M). If
however, ,

VxY eT(M) for VXY eT(M), (1.50)

then V determines a covariant derivative on M. In fact, when this is the case
the conditions (i)-(iv) from §1.6 hold for all X,Y;Z T(M) and all f € F(M)
and V is an affine connection on M. If we use this connection to deﬁneda’
parallel translation Hf‘/ ¢ Ty (M) — Ty (M) on M along the curves ¥t
la,b] — M, then this translation coincides exactly with the parallel translation
Iy : Tya)(S) — Ty() (S) on S restricted to the tangent spaces of M, using the
original connection on S. In other words

M _
Y = TLlp oy (1.51)

If a submanifold M of S satisfies Equation (1.50), we say that M is au-
toparallel with respect to V. In particular, open subsets of S are autoparallel.
From Equation (1.49) we see that a necessary and sufficient condition for M
to l?e autoparallel is that Vs 8, € T (M) holds for all a,b. This, in turn, is
equivalent to there existing m3 functions {T,} (e F(M)) which satisfy ’

V5.0 = <, 0.. (1.52)

These.{I‘gb} form the connection coefficients of V with respect to [u®]. Using
Equation (1.48) we may rewrite Equation (1.52) in the following way:

Teb0ct* = (82£")(B67)TY; + B,4¢". (1.53)

We can also see that M is autoparallel in S if and only if M is closed with respect
to t.he parallel translation on $ in the following sense: for every curve v : [a,b] —
M in M and for every tangent vector D of M at 7v(a), the result IL, (D) :Jf the
E:r;(l};l translation IL, : T (5)(S) — (%) (5) belongs to the tangent space of M
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1-dimensional autoparallel submanifolds are called autoparallel curves or
geodesics. For a curve 7 : t — (£, the condition in Equation (1.52) may be
rewritten using Equation (1.37) as .

§dy

dtdt
where I' : ¢t — I'(t) is a C°° function. As we noted at the end of §1.7, connections
on 1-dimensional manifolds are necessarily flat, and hence by substituting into
Equation (1.54) a suitable one-to-one transformation (change of variable) of ¢,
we may obtain I'(¢) = 0. We call such a ¢ an affine parameter of . In this
case Equation (1.54) reduces to

p(t)%%, (1.54)

¢ dvy
T 0, (1.55)
and implies that % is parallel along . It is possible to define geodesics using
Equation (1.55). Rewriting Equation (1.55) using the coordinate system €9
and the corresponding representation 4* = £* o vy, we obtain

H(E) + 7 O = 0. (1.56)

Let M be an autoparallel submanifold of S. If the torsion tensor of S is.
0, then the torsion tensor of M is also 0. This is clear from Equations (1.46)
and (1.53). The same holds for the curvature tensor. The latter fact may be
derived using Equations (1.45) and (1.53), but it is in fact immediate from the
analysis of parallel translation as follows: from Equation (1.51) we see that if
the choice of curve does not affect parallel translation in S, then it similarly does
not in M. Note that, in the case when parallel translation does not depend on
curve choice, a necessary and sufficient condition for a submanifold M to be
autoparallel in § is that there exist mn = (dim M) linearly independent vector
fields on M which are parallel with respect to the connection on S.

Consider the case when S is flat with respect to V. Then by the argu-
ment above autoparallel submanifolds of § are also flat. Hence without loss
of generality we may assume that [¢*] and [u®] are affine coordinate systems
in Equation (1.53), the condition for a submanifold M of S to be autoparallel.
Equation (1.53) then reduces to 8,056 = 0. This condition is equivalent to
there existing an n X m matrix A and an n-dimensional vector B which satisfies

£(p) = Au(p) + B (Vpe M) (1.57)

(¢(p) = [¢'(p)] and u(p) = [u*(p)].) In general, a subspace of R™ which may
be expressed as {Au + Blu € R™} is called an affine subspace of R™ (; when
B = 0 we have a linear subspace). We summarize the discussion above in the

following theorem.

Theorem 1.1 If S is flat, then a necessary and sufficient condition for a sub-
manifold M to be autoparallel is that M is expressed as an affine subspace (or
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an open subset of an affine subspace) of S with respect to an affine coordinate
system. In particular, geodesics may be expressed using linear equations (as a
line or a segment) with respect to affine coordinate systems. In addition, if M
is autoparallel, then it is also flat.

1.9 Projection of connections and embedding
curvature

If M is a submanifold of S which is not autoparallel with respect to V on S, then
there is no natural connection on M which may be derived from V. However, if
there is for each point p a mapping 7, from Tp(S) to Tp(M), then we may use
this to define a connection on M. Assume that m, : Tp(S) — Tp(M) is a linear
mapping and that m,(D) = D for every D € T,(M) , and that the relation
p > 7, is C®. Now suppose, for each X,Y € 7(M), we define vS}"e T(M)
in the following way:

VPV, =m((VxY))  (Ype M). (1.58)

Then V) is a connection on M. In particular, if a Riemannian metric g = (, )
is given on S, we may take as m, the orthogonal projection with respect to g.
This is defined to be that which satisfies, for all D € T,(S) and all D’ € T,(M),

(rp(D), D'y, = (D, D), . (1.59)

We call such V(™ the projection of V onto M with respect to g.

If S has a coordinate system [£%]; then the connection coefficients {T'%} of V
are determined by Equation (1.39). If S also has a Riemannian metric g, then
we may define n® additional functions {I';;x} in the following way:

Tijn € (V6,8,06) = Ty g (1.60)

The quantities {T';;+}, like {1" .}, may be considered as a different component
expression of the same V. Wlth respect to a different coordinate system [p"] for

S, these may be written as follows (5T def 66p’>:

~ o I 8 i ) ] 62 h 65’“
Trs & <V5,33,6t> = (6;67 6157 Tik+ 'a‘l;rg—sghk) ot (1.61)

Similarly, for the projection V(™) of V onto M, we may define, given a co-
ordinate system [u®] for M, I‘g?c def <V§,’:)6¢,,30> (6a def au“) Using Equa-

tions (1.58), (1.59) and (1.48) we may rewrite this as

Fc(;l:)c <Faaab7 {(aaé) 61753) id,k + (6 6175])9_7):} cfk (1.62)
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The connection coefficients of V(%) are then given by I‘g)d = I‘i’g)cgc‘i. From

this, we see that if V is symmetric, then so is V(™.

Now let
HX,Y) ¥ vyy - v{y (1.63)
for X,Y € T(M). Then (H(X,Y))p = (VxY)p—mp((VxY)p) is the orthogonal
projection of (VxY), onto [Tp(M)]*, the orthocomplement of Tp,(M). Given
this, note that the autoparallel condition for M in Equation (1.50) is equivalent
to stating that H(X,Y) = 0 holds for all X,Y € 7(M), and that this, in turn,
is equivalent to simply stating that H = 0. Intuitively, H may be considered
as measuring the degree to which M is “not autoparallel” or “curved” in S. In
addition, since H(X,Y) is 7(M)-linear with respect to both X and Y (i.e., is
F(M)-bilinear), H may be considered as “a kind of” tensor field, even though
H(X,Y) is not a vector field on M in general. We call such'an H an embedding
curvature of the submanifold M (C S) with respect to V.

Since M has V(7) as a connection, we may use this to compute its Riemann-
Christoffel curvature R(™. This R(™ expresses the “inherent curvature” of
M itself, while the embedding curvature H expresses the curvature of the ar-
rangement of M within S. As we noted in §1.8, if R, the Riemann-Christoffel
curvature of S, is 0, and if, in addition, H = 0 (i.e., M is autoparallel), then
R(™ = 0 also. However, R(”) = 0 does not entail H = 0. For example, con-
sider a cylinder surface M embedded within a 3-dimensional Euclidean space.
The 2-dimensional geometry on the surface of this cylinder is Euclidean, and
R = 0. However, within the 3-dimensional space it is curved, and hence H is
not 0. It is important to distinguish these two notions of curvature.

For each point p in S, let {(8.)p;1 < @ < m} (m = dim M) be a basis for
T, (M), and let {(8c)p;m +1 < £ < n} (n = dim S) be a basis for [T,(M)]*.
Then we may define the m?(n — m) functions {H,p.} in the following way:

Hapw & (H(8a,8),8c) = (V,06, 0x) - (1.64)
It follows from the properties of tensors that H =0 < Hgype = 0 (Va, b, &).

1.10 Riemannian connection

Let V be an affine connection on a Riemannian manifold (5,9 = (, )), and
suppose V satisfies, for all vector fields X,Y, Z € 7(8),

Z(X,Y)=(VzX,Y) +(X,V5Y). (1.65)

Then we say that V is a metric connection with respect to g. Using the
coordinate expressions of g and V we may rewrite this condition as follows:

Or9i5 = iy + Thiji (1.66)

Let us show that, under a metric connection, the parallel translation of two
vectors leaves their inner product unchanged. Consider a curve v : ¢ — (2)
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on § and two vector fields X and Y along . Letting % and % respectively
denote the covariant derivatives of X and Y with respect to V, we see from
Equation (1.65) that

ax0re) = (G2 ve)+ (xo.59). ae

Now if X and Y are both parallel on v (i.e., % = % = 0), then the right hand
side of the equation above is 0, and hence (X (t), Y (t)) does not depend on ¢ and
is constant. The parallel translation 11, along v, then, is a metric isomorphism
which preserves inner products. In other words, letting p and ¢ be the boundary
points of v, for any two tangent vectors Dy, Dy € T, the following holds:

{I1,(D1), Ty(Da)), = (D1, Dy, - (1.68)

We call a connection which is both metric and symmetric the Riemannian
connection or the Levi-Civita connection with respect to g. For a given g,
such a connection exists uniquely. In fact, combining Equation ( 1.66) with the
requirement that I';; » = T'j; %, we have

1
Lige = 5 (Bigs + 0;9x: ~ Orgis) - (1.69)

The geodesics with respect to the Riemannian connection V are known to
(locally) coincide with the shortest curve joining two points (where we measure
length according to Equation (1.25).) In addition, if we consider the case when ¥
is flat and there exists an affine coordinate system [6%], we find that since 8; = %
is parallel on S, (8;,8;) is constant on S. Since affine coordinate systems have
a degree of freedom as given in Equation (1.41), we see in particular that there
exists an affine coordinate system which satisfies

(61,0;) = &;. (2.70)

A coordinate system which satisfies the equation above is called a Euclidean
coordinate system (with respect to g). Hence the Riemannian connection is
flat if and only if there exists a Euclidean coordinate system.

In most differential geometry textbooks, only Riemannian connections are
introduced on Riemannian manifolds. Non-metric connections are not even
discussed. However, when considering families of probability distributions as
manifolds, we find that the natural connections which one would introduce are
non-metric (see §2.3). As we shall discuss in Chapter 3, this leads us to the
novel notion of dual connections.

Chapter 2

The geometric structure of
statistical models

Information geometry began as the geometric study of statistical estimation.
This involved viewing the set of probability distributions which constitute a
statistical model as a manifold, and analyzing the relationship between the ge-
ometric structure of this manifold and statistical estimation using this model.
In this chapter, we show that a Riemannian metric and a family of affine con-
nections are naturally introduced on such a manifold, and analyze their func'la—
mental properties. Investigation of deeper properties resulting from a duality
which underlies these structures is postponed till the next chapter.

2.1 Statistical models

In this book, we shall represent probability distributions on a set X -using
functions defined in the following way. If X is a discrete set (with finite or
countably infinite cardinality), then by a probability distribution on X’ we mean
a function p : X — R which satisfies

p(@)>0 (VzeX) and Y pl@)=1 2.1)
zEX

(p is also referred to as a probability function). If X = R", then we mean a
function p : X — R which satisfies
p(z)20 (Vo€ X) and / p(@)de = 1. (2.2)

In other words, p is a probability density function on X. Here the do.ma.in of
integration is the entire set X, and when n > 2, [ denotes a multiple 1ntegr.al.
As a mathematical note, let us mention that in general, what we are considering
may be viewed as the density function p = %15 : X - R (the Radon-Nikodym

25




26 2. GEOMETRIC STRUCTURE OF STATISTICAL MODELS

derivative), where v is a o-finite measure on a measurable space (X, B) with B
being a completely additive class (i.e., Borel field) consisting of X and its subsets,
and P is a probability measure on (X, B) which is absolutely continuous with
respect to v.

In the discussions below, we shall focus our attention on the cases most
significant from the point of view of applications, namely the cases given in
Equation (2.1) and (2.2). However, most of the analysis may be carried over to
the general case of (X, B,v). When we wish to consider the two cases in Equa-
tion (2.1) and (2.2) in a unified manner, we shall use the (integral) expression
of Equation (2.2). The results for the discrete case may be obtained by simply
replacing occurrences of the integral [ -..dz with the sum Yosex

Consider a family S of probability distributions on X. Suppose each ele-
ment of §, a probability distribution, may be parameterized using n real-valued
variables [¢1,---,£"] so that '

S={pe=p&| =1, " eE}, (23)

where Z is a subset of R® and the mapping £ pe is injective. We call such
S an n-dimensional statistical model, a parametric model, or simply a
model on X. We will often abbreviate Equation (2.3) as S = {p,}, and also
use expression such as pe(z) = p(z;¢) and S = {p(z;£)}. When we say “a
statistical model S = {p¢},” there shall be cases in which we refer simply to
the set S, and other cases in which we refer in addition to the parameterization
€ — p¢. The intended meaning should be clear from the context.

Suppose we wish to estimate the underlying probability distribution which
has produced the observations z1, - - -, zy. Often what is first done is to establish
a statistical model § from which to select the possible candidates. In doing so,
we assume that there exists some distribution p* which governs the generation
of the data, and that we may consider the observed data to be the results of
sampling a random variable governed by this distribution. We call this p* the
underlying distribution or the true distribution. Although p* is unknown,
it is often possible to use prior knowledge concerning the data to determine the
“shape” of p*. This “shape” typically contains several free parameters, and in
order to specify a particular distribution, the values taken by these parameters
must be given. Equation (2.3) is a general expression of this notion.

Let us now state several assumptions we make concerning statistical models
S = {p¢ | £ € E}. So that we may freely differentiate with respect to the param-
eters, we assume that Z is an open subset of R™ and that for each z € X, the

function £ — p(z;£) (2 — R) is C*. This allows such expressions as 8;p (z;¢)
and 8;0,p (z;€) to be defined (6,; &f %). In addition, we assume that the

order of integration and differentiation may be freely rearranged. For example,
we shall often use formulas such as

/Bip (z;€)dz = 8; /p (z;€)dz = 8;1 =0. (2.4)

For a probability distribution p on X, let supp(p) def {zlp(z) > 0} (the

o
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support of p). The case when supp(pe) varies with £ poses rather significant
difficulties for analysis, and hence we shall only consider the case when supp(p¢)
is constant with respect to ¢ below. Letting X be redefined as supp(p), this is
equivalent to assuming that p(z;£) > 0 holds for all £ € E and all z € X. This
means that the model S is a subset of

p(x) {p:x—»R‘p(z)>0(vzeX),/p(z)dz.—.1}. (2.5)

We give as examples several standard statistical models.
Example 2.1 (Normal Distribution)
X=R, n=2, €=[u0], E={po]] —co<p<oo,0<o<o0}

1 (z - w)?
p(z;€)=mgexp{— 5o }

Example 2.2 (Multivariate Normal Distribution)

k(k+1
X=Rk’ n___k_*__(_;_'_), £=[u,%]
2= {[u, 5] | p € R*, T € R¥*: positive definite}

p(a:€) = (2n) 2 (der 5) 2 exp { (o~ W2 o - W}

Example 2.3 (Poisson Distribution)

Example 2.4 (P(X) for finite X)

E£>0(v), » &< 1}

4=l

X = {zo,z1,**,%n}, E= {[61’1€n]

t (1<i<n)

—rLE (@=0)

= o

plese) =

Given a statistical model S = {p¢ | £ € £}, the mapping ¢ : § — R" defined
by @(pe) = ¢ allows us to consider ¢ = [£%] as a coordinate system for S. In
addition, suppose we have a C™ diffeomorphism 1 from Z to 9(Z), the latter
being an open subset of R™. In other words, suppose that % is one-to-one,
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and that both ¢ and ¥~ are C®°. Then if we use p = () instead of ¢ as
our .parameters, we obtain S = {p¢-1(p) ]p € '¢v(E)} This expresses the same
family of probability distributions as § = {pe}.

If we consider parameterizations which are C°° diffeomorphic to each other
to be equivalent, then we may consider § as a O differentiable manifold (we
may call S a statistical manifold). In this case, a parameterization of S is in
fact also a coordinate system of S. Below, we shall often conflate the distribution

D¢ and the coordinate £, and shall use phrases such as “the voint £” ¢
tangent space T¢(S5).” © point & and the

2.2 The Fisher metric

LetHS' = {p¢ | £ € E} be an n-dimensional statistical model. Given a point £
(€ E), the Fisher information matrix of S at & is the n x n matrix G(¢) =
[g,;j(.f)], where the (i, )" element g;;(£) is defined by the equation below; in
particular, when n = 1, we call this the Fisher information. ,

9i5(6) % B[ 610:0,0,) = / Bl(z; £)0;8(w; E)p(w; €)dz,  (2.6)
where 8; def %,
Le(z) = £(z;£) = logp(z; £), (2.7)

(log denotes the natural logarithm), and E; denotes the expectation with respect

to the dlStrlbu.tIOIl pe, Ee[f] et [ F(z)p(z;€)dz. Although there are some
n?odels. for which the integral in Equation (2.6) diverges, we assume in our
Fhscussmn below that g;;(£) is finite for all £ and all %7, and that g;; 1 E > R
is C°°. We note that it is possible to write Gij as v

9i5(§) = —E¢[ 0,0;¢¢ ] . (2.8)
This may be derived by rewriting Equation (2.4) as
E¢[0i8e] =0 (2.9)

and applying 8; to both sides. Another important representation is

(€)= 4 / 8/p(@€) 0;/p(@ ) da, (2.10)

which will be revisited in §2.5.
. The matrix G(fl) is symmetric (gi;(£) = g5:(¢)), and since for any n-dimen-
sional vector ¢ = [¢!,--+,c"]t (¢ denotes transpose)

’

n 2
6(Qe=ccigy(e) = [ { Zcfaie(z;@} pEe)dz>0,  (211)
i=1
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it is also positive semidefinite. We assume further that G is positive defi-
nite. From the equation above, we see that this is equivalent to stating that
the elements of {814, -, 0,8} when viewed as functions on X are linearly
independent, which, in turn, is equivalent to stating that the elements of
{81pe,- -+, Onpe} are linearly independent.

As we noted in Example 2.4, when X is a finite set we may consider P(X)
itself to be a statistical model which forms a (|X| — 1)-dimensional manifold (||
denotes the cardinality of X). In this case, the various assumptions we have
been making concerning the model S on X may be considered as formalizing the
statement “S is a submanifold of P(X).” When X is an infinite set, however,
this statement is not meaningful since it is not possible to view P(X) as a
manifold; nevertheless, a similar intuition may be said to hold for this case also.

Now suppose that the assumptions above hold, and define the inner product
of the natural basis of the coordinate system [¢*] by g;; = (8, 8;). This uniquely
determines a Riemannian metric g = (, ). We call this the Fisher metric,
or alternatively, the information metric. Since g;; defined by Equation (2.6)
behaves according to Equation (1.22) under coordinate transformations, we see
that the Fisher metric is invariant over the choice of coordinate system. Indeed
we may write (X,Y), = E¢[(X£)(Y¢)] for all tangent vectors X,Y € T:(S).

In order to grasp the nature of this metric, and to make preparations for
later arguments as well, let us review some fundamental results in statistics
concerning the Fisher information matrix.

Let F : X — Y be a mapping which transforms the value of random variable
X toY = F(X). Then, given the distribution p (z;£) of X, this determines the
distribution q (y; £) governing Y. In addition, letting

r(z;§) = -—quff;f?@, (2.12)
p(elui8) = r(wé)dpw) and (213)
Pr(A|y€) = /A p(elyié)ds, AC X, (214)

where §p(;) is the delta function on (), dy) concentrated on the point F(z), we
have for any BC Y

/ p(z;é)dz=/ Pr(Aly;€)q(y:€)dy. (2.15)
ANF-1(B) B

This means that Pr (A | y;£) is the conditional probability of the event {X € A}
given Y = y. If the value Pr(4|y;£) does not depend on £ for all A and y,
or equivalently, if r (z;¢) does not depend on ¢ for all z, then we say that
F is a sufficient statistic for the model S. One-to-one mappings are trivial
examples of sufficient statistics. More important examples will be given later in
connection with exponential families (§4.2).

If F is a sufficient statistic, then we may rewrite Equation (2.12) as

p(;€) = g (P(z);€) (). (2.16)
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Then the portion of the distribution p (z;¢) which depends on ¢ is wholly con-
tained within the distribution ¢ (y;€) of ¥ = F(X), and hence in order to
estimate the unknown parameter £ (the unknown distribution p (z;¢)), it suf-
fices to know the value of Y. (Indeed, given the value of Y, we can “simulate”
X by using the random number generator p (z | y) which does not depend on
&. ) This is reason for its name. The following fact, known as the factorization
theorem, gives a simple criterion for sufficiency: F is a sufficient statistic if and
only if there exist some functions s : Y xZ — R and ¢t : X — R such that for
all z and £

p(@:6) = 5 (F(@);£) ¢(3). (2.17)

Now we have the following theorem.

Theorem 2.1 The Fisher information matriz Gp(€) = [gg (&)] of the induced

model Sp & {q(y;€)} satisfies Gp(£) < G(€), where G(§) = [gi;(€)] is the

Fisher information matriz of the original model S, in the sense that AG(£) o

G(€) — Gr(£) is positive semidefinite. A necessary and sufficient condition for
the equality Gr(€) = G(€) to identically hold is that F is a sufficient statistic for
S. In general, the information loss AG(€) = [Agi;(€)] caused by summarizing
the data x into y = F(z) is given by

Agi; (&) = E¢[d;logr(X;£)0;logr (X;€)]
Be [Cove[0:(X;6),0,6(%;6) | Y1), (2.18)

where Eg[Cove[-,-|Y]] = [ Cove[-,-|y]a(y; £) dy, and Cove-,-|y] for a fived
y denotes the covariance with respect to the conditional distribution p(z|y;€).

Proof: For any B C Y we have

I

/ Bilogq (1;€) ¢(w;€) dy = & / ¢ (4;€)dy
B B

= 0 p{z; €)de
F-1(B)

/ 8t (z;£) p (z:£) da,
F-3(B)

and hence
B logq (y;§) = Eel0:£(X;€) | y)- (2.19)
On the other hand, Equation (2.12) leads to
8:l (z;£) = Bilog q (F(=); €) + O;logr (z;€) . (2.20)

From these equations, we have

Egloslogr (X;€) | F(z)] = 0.
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This implies that 8;logr (z; £) as a function of z is orthogonal to any function
of the form ¢(F(z)), where ¢ is an arbitrary function on Y, and is orthogonal
to 0; log q(F(x); £) in particular, with respect to the inner product

(2, W = Ee[2(X)U(X)]. (2.21)

It is then easy to see that Equation (2.18) follows from Equations (2.20), (2.19)
and the definition of the conditional covariance:

COV& [6,~£§, 6j£§ f y] =
Be [ {outc - Beloste 1)} {06 - Ecloste 191} | ],

The nonnegativity of AG(£) is now obvious, and the condition for AG(£) to
identically vanish is that 8;logr (z; &) = 0 for all £, 4, z, which is equivalent to
the sufficiency of F. =

The properties Gr(€) < G(¢) and G(¢) = Gr(€) + AG(¢) with Equa-
tion (2.18) are often referred to as the monotonicity and the chain rule,
respectively, of the Fisher metric. %et us make some remarks on these no-
tions. First, it is easy to see that these are extended to G (€) < G(£) and
G(&) = Gk(€) + AG(€) for any transition (or conditional) probability distri-
bution (i.e. Markov kernel) x = {k(y|z) > 0 ; = € X,y € Y} such that
Jr(y|z)dy = 1,Vz, where G, (£) is the Fisher information matrix of the in-
duced model: ¢(y;€) = [ x(y]z)p(z;€)dz. The previous case for a determin-
istic mapping F' corresponds to & (y | ) = dp(a)(y). Secondly, as a special case
of the chain rule, the additivity

Gr2(€) = G1(§) + Ga2(§) (2.22)

holds for a product model: p12(z1, z9; &) = p1(z1; £) pa(z2; €). Thirdly, given two
models {p;(z; &)} and {pa(z; &)} having common sample space X and parameter
space E, the following convexity follows from the monotonicity (cf. Equation
(3.23) in §3.2 and its proof):

Ga(§) £AG1(8) + (1-X2G(¢), 0<vALl, (2.23)

where G1(£), Ga(£) and G\(£) are the Fisher information matrices of {p;(z; £)},
{p2(z;£)} and {Ap1(z; &) + (1 — A)pa(m; £)}, respectively.

Next, we shall review the well-known Cramér-Rao inequality. Suppose
that a data z is randomly generated subject to a probability distribution which
is unknown but is assumed to be in a prescribed n-dimensional model S =
{pe| € = [£1,---,€™] € B}. We consider the problem of estimating the unknown
parameter ¢ by a function £(z) of the data z. A mapping £ = [1,... & .
X — R” introduced for this purpose is called an estimator. We say that é is an
unbiased estimator if

B [5‘(;{)] =¢ for VEcE (2.24)
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The mean squared error of an ‘unbiased estimator é ma.y be expressed as the
variance-covariance matrix V¢[£] = [v}'] where

o ¥ B [(800-€) (@00 -9)].

Theorem 2.2 (Cramér-Rao inequality) The variance-covariance matriz
Vel€] of an unbiased estimator £ satisfies Vi[€] > G(¢)~! in the sense that
Vel€] — G(&)™! is positive semidefinite.

A proof of the theorem will be given in §2.5, which is essentially the same as a
standard proof, but is rather tinged with a geometrical flavor.

An unbiased estimator ¢ achieving the equality Vg[gC =G lforall ¢is
called an efficient estimator. It is obvious that an efficient estimator is the
best unbiased estimator in the sense that its variance is the minimum among
those of all the unbiased estimators. The converse, however, is not generally
true. In other words, the best unbiased estimator does not always achieve the
Cramér-Rao bound. Furthermore, there is a case where a biased estimator
has a smaller mean square error than the efficient estimator. See textbooks of
statistics for further details.

It should be noted that there does not generally exist an efficient estimator
on a model S = {p;}. A necessary and sufficient condition for the existence of
efficient estimator will be given in §3.5, which imposes restrictions both on the
shape of §' and on the parametrization ¢ +— pg- However, it is worth emphasizing

s o
that there always exists a sequence of estimators {EN = fN(a:l,---a:N)}N .
which asymptotically achieves the equality in the CraméR-Rao inequality as
the number N of independent observations goes to co. Such a sequence of
estimators is called an asymptotically efficient estimator or & first-order
efficient estimator; see §4.1 and §4.4. Thus the matrix (7(¢) L. represents the
degree to which an asymptotically optimal estimator fluctuates around the true
value of parameter £&. In other words, a smaller G(¢)~! (i.e., a larger G(£))
indicates a more accurate estimator.” To be able to accurately estimate the
parameter { means that as the value of ¢ is changed, the “character” (i.e., p¢)
of the data changes dramatically. The Fisher metric may be considered to be a
geometric expression of the size of this change.

2.3 The o-connection

Let § = {pe} be an n-dimensional model, and consider the function Fz(:;c which
maps each point £ to the following value:

o =2 1-
(Fl(j’i)g def E [(aiajlg + ——2—36,»1{56]-1{5) (6;c1f5)] y (2.25)

where ¢ is some arbitrary real number. The n® functions Ffz;c thus defined

behave according to Equation (1.61) under coordinate transformations, and
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hence we have an affine connection V{®) on S defined by
(v528;,8,) =151, (2.26)

where g = (, ) is the Fisher metric. We call this V(*) the a-connection .}
The a-connection is clearly a symmetric connection. The relationship be-
tween the a-connection and the S-connection is given by

I =1 + O‘—;—ETM, (2.27)
where Tj;x is a covariant symmetric tensor of degree 3 defined by
(Tin)e & B [0:450;00ke] (2.28)

(Note that this is in no way related to the torsion tensor T{; = Ffj — 1"_’;1) We
also have
v@ = 1-a)VO® 4av®
Ihegw  1-ege, (2.29)
2 2

(See the last paragraph of § 1.6.) In addition, for a submanifold M of S, the a-
connection on M is simply the projection with respect to g of the a-connection
on S (see §1.9). )

Let us investigate some fundamental properties of V(@) for several particular
values of a. First, taking the partial derivative of the definition of g;; in Equation
(2.6) with respect to £¥, we obtain

Oegis = Ee{(010:le)(854e)] + Ee [(0ile) (Ox0sbe)] + By [(Oikle ) (854 W Oike)]

= pg?ﬁpg{i, . (2.30)

which leads to:

Theorem 2.3 The 0-connection is the Riemannian connection with respect to
the Fisher metric.

In general, when a # 0, V(%) is not metric.

Let us introduce now the notion of exponential family, which will be shown
to have close relation to V. In general, if an n-dimensional model S =
{pe | 0 € ©} can be expressed in terms of functions {C, F1,--, Fr} on X and a
function ¢ on © as

p(z;0) = exp | C(z) + iGiFi(a:) - (6], (2.31)
i=1

lIn the sequel, the terms “flat”, “affine”, “parallel”, “autoparallel”, etc. with respect to
the a-connection are referred to as a-flat, a-affine, a-parallel, a-autoparallel, etc.
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then we say that S is an exponential family, and that the [6] are its natural
or its canonical parameters. From the normalization condition [ p(z; 8)dz =
1 we obtain N
$(6) =log / exp [C(z) +3 OiFi(a:)] dz. (2.32)
d=1
It is easy to see that the parametrization  — pg is one-to-one if and only if the
n 4+ 1 functions {Fy,---, F,, 1} are linearly independent, where 1 denotes the
constant function which identically takes the value 1. From now on, this linear
independence will always be assumed when an exponential family is considered.
Many practically important models are shown to be exponential families,
including all of the examples given in §2.1.

Example 2.5 (Ezample 2.1: Normal Distribution)

C@)=0, F@) =3, R@)=2 ¢=L @#=-"

i 0?1
$(0) = L5 +log(vam0) = _(491 + 2iog (-1

Example 2.6 (Ezample 2.2: Multivariate Normal Distribution)
Letting

o = S, 65 = —2(E 5, 09 = - (<))
J

and 1
Fu(z) =1z, Fp(z)=azzt, 4=ty 6% = —52_1,
we have
p@0) = exp[ Y OR@+ Y. 09Fy(@) - y(0)]
1<i<k 1<igi<k
= exp [(6*) Fa(z) +tr(6% Fa(z)) — 9(6)]
where

P(6) %pt S+ % log det(27X)

= OO0 + logdet(—m (6) 1)

Example 2.7 (Example 2.3: Poisson Distribution)
C(z) = ~logz!, F(z)==z, 0=log{
P(0) =€ =expl
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Example 2.8 (Ezample 2.4: P(X) for finite X )

Cl) =0, Fi(z) ={ 5 g;ﬁ;
i o PEs) £ A B
gt = Ing(zo) =log - E?:l 3] (i=1,--,n)

Y(8) = —logp(f) = —log <1 - i&i) = log <1 + iexp 01')
i=1

t==]

From the definition of an exponential fa.}nily given in Equation (2.31), and
letting 8; = 3%;, we may obtain

: 61‘6]{(:12; 9)

—8:0;9(6). (2.34)

Hence we have '), = ~8;0;1(6) Eg[84Ls), which is 0 from Bquation (2.9). In
other words, we see that [#] is a 1-affine coordinate system, and S is 1-flat. We
therefore call V(1) the exponential connection, or the e-connection, and
shall write V) = (o),

Next, let us consider the case when an n-dimensional model § = {ps} can
be expressed in terms of functions {C, Fy,---, F,} on X as

p(z;0) = C(z) + zn: 0iF;(z), (2.35)

or in other words, when § forms an affine subspace of P(X). In this case we say
that § is a mixture family with mixture parameters [#] . In particular,
P(X) itself is a mixture family when X is finite. A representative form of
a mixture family is given by the mixture of n + 1 probability distributions
{po,p1,-+ -, pu}:

n

p(z;0) = Z@ip.;(z) + <1 - Z@’) Do(x)
i=]1 i=1
= po(z) + ) 0*{pi(x) — po(z)} (2.36)
i=]1

where [0%] are subject to 6° > 0 and >,6° < 1. The distribution family
P({zo,---,zn}) may be expressed in this form by letting the distributions
{po,-++,Pn} be defined by p;(z;) = 6;;. In general, for a mixture family we

have "
84(z;0) = p(;(’a;)) and (2.37)
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_ Fy(z)Fy(=)
p(2;0)?

from which we see that 8,04 + 8;£8;¢ = 0, and hence Fg._,i) = 0. Therefore

[67] is a (—1)-affine coordinate system, and S is (—1)-flat. "We call V(-1 the

mixture connection or the m-connection, and we write V(-1 = y(m),
The discussion above is summarized in the next theorem.

6i6j1f(x; 9) = (2.38)

Theorem 2.4 An ezponential family (a mizture family, respectively) is e-flat
(m-flat) and its natural parameters (mizture parameters) form an e-affine (m-
affine) coordinate system.

I.n the next chapter (§ 3.3) we shall see that an exponential family (a mixture
family, respectively) turns out to be also m-flat (e-flat, resp.) as a consequence
of the duality between the e-connection and the m-connection.

Theorem 2.5 Let § be an exponential family (a mizture family, respectively)
and.M be a submanifold of S. Then M is an ezponential family (a mizture
family) if and only if M is e-autoparallel (m-autoparallel) in S.

Proof: We only give here the proof for the part that if § and M are expo-
nential families then M is e-autoparallel in S, because the rest is straightforward
from Theorem 1.1. Let § = {p(z;0)} and M = {q(z;u)} be given by

p(a36) = exp [C(z) +3°0R @) - «p(e)] ,
=1

a=1

a(z;u) = p(z; 6(u)) = exp [D(w) + ijuaGa(w) - w(U)} .
Then we have '

Ga(z) — Bap(u) 0, log g(z; )
(0a6") 8; log p(=; 6(u))

(@a8")u {Fu(2) - Bip(0(u))},

and hence )
(aaal)u E(I) + Aa(w) = Ga(ﬁ);

where Au(u) is constant with respect to z. Since G,(z) does not depend on u
and _since {Fy,---, F,,1} are assumed to be linearly independent, we see that
(8a8%)u is constant with' respect to u for all ¢ and all a. This, combined with
Theorem 1.1, implies that M is e-autoparallel in S. ]

. In the theorem above the part for exponential families is of practical signif-
icance. A submanifold M of an exponential family § is called a curved expo-
nential family and will play the leading role in chapter 4. In general, the degree
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to which a curved exponential family M differs from an exponential family can
be measured by the embedding curvature with respect to the e-connection (see
§4.5).

‘We conclude this section by demonstrating an instructive example. Suppose
that we are given a smooth probability density function ¢ on R, and let q®
be the kth iid. extension; ie., for y = (y1,..., %)% ¢® (@) = qy1)-- - alyw)-
For & regular matrix A € R*** and a vector p = (u1,...,us)t € R¥, define the
probability density function p4 , on R* by

p(@; A,p) = M (A7 (@ — ) /| det A,

which gives the probability distribution for the random variable AY + p when
Y is supposed to distribute according to ¢®*)(y). For instance, letting g be the
standard normal distribution, we obtain

p (@ A, ) = (2m)~H/(det )2 exp {—%(z G m} :

where & & AAt. Now let ¢ and A be arbitrarily fixed and consider the statis-

tical model § % {pA,# | ue ]R"}. This model is not in general an exponential
family nor a mixture family, but is always a-flat for all & and, in particular,
is a Buclidean space with respect to the Fisher metric. This may be regarded
as a consequence of the fact that S is essentially the direct product, including
its a-connections and Fisher metric, of k copies of the 1-dimensional statistical
model {g(y —v)|v € R} on which affine connections are always flat (see the
last paragraph of §1.7). Moreover, when ¢(y) (or g(y — v) for some v) is an
even function as in the case of normal distributions, the tensor T defined by
Equation (2.28) vanishes, which means that all the a-connections are identical,
and the vector parameter u, as well as its regular affine transformations, forms
an affine coordinate system for the a-connections.

2.4 Chentsov’s theorem and some historical
remarks '

As we noted in §1.5 and §1.6, it is possible to define an infinite number of
distinct Riemannian metrics and affine connections on a manifold. This is, of
course, also true for the manifolds which are formed by statistical models. Hence
the Fisher metric and the a-connections defined above are simply instances
among the infinite number of possible metrics and connections. This may lead
one to ask, however, whether there is anything which distinguishes the Fisher
metric and a-connections from the others; the answer is that indeed there is. A
statistical model S, in addition to its structure as a manifold, has the property
that “each point denotes a probability distribution.” Taking this property into
consideration, we find that there are natural structural conditions which are
uniquely met by the Fisher metric and the a-connections. We formalize this
below.

'
i
i
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Let S = {p(z;£)} be a model on X and F: X — ) be some .m?.pping, which
induces a model Sr = {q(y;£)} on V. If F is a sufficient statistic for .5, t}zzr)l
B;logp (z;€) = 8;log q (F(z); ) from Equation (2.16), and hence 9is and I';
are the same on both S and Sp. We refer to this as “the invariance of t}}e
Fisher metric and the a-connection with respect to F.” Denoting the Fisher
metric and the a-connection on § by g = {, ) and V{®), while denoting those
onSpby g ={(,) and V(@) the invariance properties are represented as

(X,Y),
(VYY)

<A* (X)> A*(Y)y;\(p) and

V&(f()xy\*(Y), YX,Y,Z € T(S),

where ) is the diffeomorphism from § onto Sg defined by A(p¢) = ¢¢, and
the mapping A, : 7(S) — 7(SF) is defined by (/\*(X)))\(p) = (dA)p(Xp). In
general, this invariance plays a crucial role when analyzing the felations}}ip
between statistics/probability theory and the structure formed by introducing
a metric and a connection on a statistical model. The Fisher metric and the a-
connections are uniquely characterized by this invariance in the sense described
below.

First let us consider a manifold which has, as its points, distributions on
some finite set. Let X, = {0,1,---,n} and Py, &ef P(A,) for the natural
numbers n = 1,2, ---. Suppose that we have a sequence {(gn, Vn)}ney, Where
the g, and the V,, are an arbitrary Riemannian metric and an arbitrary affine
connection, respectively, on P, for each n. Then letting S be a model on X,
and F : X, — Xn (n > m) be a surjective mapping, (gn, Vz) and (gm, Vim)
induce metrics and connections on S (C P,) and Sr (C Prm) by restriction and
projection (see §1.5, §1.9). Now, we have the following theorem, whi'ch rest‘.?tes
a result by N. N. Chentsov (Cencov) [65] from a slightly different point of view.
(We omit the proof.)

Theorem 2.6 Assume that {(gn, V) }rey 18 tnvariant with respect to sufficient
statistics; i.e., for alln, m, 8§ C Py, and F : X,, — Xm such that F is a sufficient
statistic for S, the induced metrics and connections on S and Sr are assumed
to be invariant. Then there exist a positive real number ¢ and a real number o
such that, for all n, g, coincides with the Fisher metric on Pn, scaled by a factor
of ¢, and V., coincides with the a-connection on Pr.

In this way, we see that for models on finite sets the Fisher metri.c (up t(.) a
constant factor) and the a-connections are characterized by the inva.rla.n(.:e W.lth
respect to sufficient statistics. It is natural to expect that the cha..ra,cterlza.txon
will also apply to models on infinite sets so that the Fisher metric and the.a—
connections can always be considered as the only metric and connections which
meet the invariance requirement. However, it is not so easy to extend Chentsov’s
theorem to the case when the underlying set X may be infinite, because both
the formulation and the proof of the theorem essentially rely upon the finiteness
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of X. Here, we shall only observe that Chentsov’s theorem leads to the Fisher
metric and the a-connections for a model S = {p(x;£)} on an infinite set X if
a kind of limiting procedure is permitted.

First, let us finitely partition X into the regions 8,8, --,48,. In other
words, each J; is a subset of X, §;Nd; =@ (i # 5), and UL, 8 =X. Now fix a
particular partition A = {&,---,48,} and let

pa (056) & /‘s‘p(w;f)dz.

Then Sy & {pa (9:;€)} forms a model on A. Since A is a finite set, from
Chentsov’s theorem we know that the Fisher metric and the a-connections are
introduced on Sa by the invariance requirement. Now we may consider S to
be the limit of Sa as A becomes finer and finer. Hence, if we require that the
desired metrics and connections on models should be “continuous” with respect
to such a limit, it is concluded that the metric and the connections on § should
be given by the limit of the Fisher metric and the o-connections on Sa, and
under some regularity condition they coincide with the Fisher metric and the
a-connections on S.

Let us now mention some history. The actual idea of considering statistical
models as a manifold and analyzing them from the point of view of differential
geometry is quite old. C.R. Rao had already pointed out in the 1945 paper [190]
that the Fisher information matrix determines a Riemannian metric, and had
written on the importance of analyzing model structures from the perspective
of Riemannian geometry. After this, there were a variety of efforts to pursue
this line of research, but unfortunately very few of these produced results which
related directly back to statistical problems.

In 1975, B. Efron [83] introduced the notion of “statistical curvature” for 1-
parameter models, and found that it serves an important role in the asymptotic
theory of statistical estimation. Building on this result, A.P. Dawid [76] intro-
duced a connection on the space P of all the positive probability distributions
and showed that the statistical curvature could be expressed as the embedding
curvature with respect to this connection. This connection is the e-connection
introduced above. In addition, Dawid pointed out that it was possible to in-
troduce a variety of connections on P, and as examples gave the Riemannian
connection with respect to the Fisher metric (the O-connection) and the m-
connection. However, in general P is a difficult space to treat rigorously since
it is of infinite dimension, and cannot even be viewed as an infinite-dimensional
manifold in the usual sense (; see the next section). Amari {5, 6], in 1980,
reformulated Dawid’s discussion by “projecting” them onto finite-dimensional
models, and introduced the natural generalization to a-connections. In addition,
the importance of considering the e-connection and the m-connection as a pair
was clearly shown for the first time. This result leads to the topic of the next
chapter, that of understanding the structure of dual connections. The notion of
the duality of connections was introduced by Nagaoka and Amari [161] in 1982,
where the general theory of dually flat spaces was developed to provide a math-
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ematical foundation to the theory of a-connections, and since then it has come
to serve a central role in information geometry. On the other hand, the notion
of a-connections itself had in fact been introduced from a different perspective
(that of its invariance) in 1972 by the Russian mathematician N.N. Chentsov
[65]. However, because its relation to curvature and statistical estimation was
not pursued, and because the paper was written in Russian, this result was not
widely known within the international statistical community.

2.5 The geometry of P(X)

Let X be a finite set. As mentioned previously, an arbitrary model $ on X
is a submanifold of P = P(X), and the Fisher metric and the a-connection
on S are the projections of those on P onto S. The geometry of P is most
fundamental in this respect. In this section we shall focus our attention upon the
Fisher metric and the e, m-connections on P, and postpone the study of general
a-connections until the next section for the reason that the e, m-connections
are particularly important in most applications and, in addition, have much
simpler structures than the other a-connections. It is also noted that some of
the important properties of the e, m-connections are closely related to the notion
of dual connections and will be discussed in §3.5. As for the the case when X
is infinite, we shall briefly mention it at the end of this section.

In the first place, the model P is a subset of R* %' {A]| A: X - R}: the to-
tality of R-valued functions on X. More specifically P is an open set of the affine

subspace A, % {4] 22, A(z) = 1} of R¥ and hence the tangent space T,(P)

can naturally be identified with the linear subspace Ag {A] ¥, A(z) = 0}.
When a tangent vector X € T,(P) is considered as an element of Ay, we denote
it by X and call it the mixture representation or the m-representation
of X, and write as

(™ (p) & {X<m> ‘X € T,,(P)} = Ap.

For the natural basis 8; of a coordinate system ¢ = [¢7], we have (61»)?") = B;pe.
As observed in §2.3, P is a mixture family which is m-flat, and its mixture pa-
rameters form an m-affine coordinate system. This means that the m-connection
on P is nothing but the natural connection induced from the affine structure of
A;. Obviously, the parallel translation Hé'f,;) : Tp(P) — To(P) with respect to
the m-connection is given by

ng)(x) =X == X/ = x(m), (2.39)

We have thus seen that the natural embedding of P into R¥ makes the meaning
of the m-connection clear.

Next, let us take another embedding p — logp, and identify P with the
subset {logp|p € P} of R¥. A tangent vector X € T,(P) is then represented
by the result of operating X to p - logp, which we denote by X(® and call the
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- exponential representation or the e-representation of X (although some

people might prefer to call it the logarithmic representatz'qn.) In particular we
have (61»)?) = 9;log p¢. It is obvious that '

X9 () = X (2)fp(z) (2.40)
and that (cf. Equation (2.9))

TO(P) ¥ x| X e T,(P)} = {4 e R¥ | Byl4] = 0}, (2.41)

where Ep[A] = > p(z)A(z). Note that the definition of the Fisher metric is
expressed in terms of the present notation as

(X,Y),=E, [X@Y(e) ] . (2.42)

Unlike Tp(m) (P), the space Tp(e) (P) depends on p, and an element A of T,ge) (P)
does not generally belong to Tq(e) (P) when p # q. Nevertheless, the shifted
function A’ = A ~ E,[A] always belongs to Tq(e) (P), and the correspondence
A — A’ establishes a linear isomorphism between T,Se) (P) and Tée) (P). Note
that this is different from the correspondence between the e-representations of
X and X' = I'Igf;) (X), which is represented as A’ = Ap/q. In fact, we have

ME(X) = X' = X' =X -5, [x®], (2.43)
where Hé?,), denotes the parallel translation from 7,(P) to T,(P) with respect to
the e-connection. This may be seen as follows. Let X : p — X, be an arbitrary
vector field on P, and {8;} the natural basis of a coordinate system [¢*]. From
the definition of the e-connection (Equation (2.25) for o = 1) we have

(VX0 =B, 0.X9),000], (2.44)

where (8;X (e))p denotes the i*® partial derivative of the mapping X : p s
Xée) (P — R¥) at a point p. Now suppose that X (€ is represented as X,Se) =
F—E,[F], ¥p € P by a function (random variable) F' on X. Then (9;X N, =
—8,E,[F] is constant as a function on X, and hence <V§)X, Bk>p = 0 at
each point p by Equation (2.44). This implies that X is e-parallel and proves

Equation (2.43).

Let us investigate some properties of the Fisher metric through the e-repre-
sentation. We begin with mathematical preliminaries concerning the cotangent
space T3 (P) = [T,(P)}} (the totality of R-valued linear functions on T,,(P); see
§1.3) of a Riemannian manifold (S,g = {, )). First, for each tangent vector
X € T,(P) let wx € T,;(5) be a cotangent vector such that wx : ¥ > (X,7),.
Then the correspondence X «+ wx establishes a linear isomorphism between
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T,(5) and T;(S), and the inner product and the norm (length) for cotangent
vectors are naturally defined by (wx,wy), = (X,Y), and [lwx|l, = [| X1, Next,
for an arbitrary smooth function f € F(S) let (df), € T,;(S), the differential
of f at p, be defined by (df), : X = X (f), and (grad f), € T(8), the gradient
of f at p, be the tangent vector corresponding to (df),:

((grad f)p, X)), = (df)p(X) = X(f), VX € T,(5). (2.45)

(Recall that a tangent vector is a mapping : 7(S) — R). We have the following
coordinate expressions:

(grad F)p = (8:F)9" (9)(B)ps (2.46)

1(@P)el2 = liewad £),I2 = (8:F)p(01)ps™ (B), (247)

where [g*/ (p)] denotes the inverse of the matrix [gi;(p)] = [(6:,0;),].

The following theorem states that the variance Vp[A] = E, [ (A — E,[A])?]
of a random variable A is measured by the sensitivity of the expectation E,[A]
to perturbation of p.

Theorem 2.7 Suppose that an A : X — R is given and let E[A] denote the
function p — Ey[A] on P. Then we have

Vol A] = [ @EAD, |2, (2.48)

where the norm is the one induced from the Fisher metric.

Proof: For every X € T,(P) we have
X(EA]) = 3 X®(2)Az) = B, [ X 4|
= B[ X4~ B,l4])], (2.49)

where the last equality follows from E,[X(®] = 0. Since A— E,[4] € Ts”(P) by
Equation (2.41), there exists a vector ¥, € T,{P) satisfying Yp(e) = A~ Ey[4],
which turns out to be (grad E[A]), from Equations (2.45) and (2.49). Hence we

obtain .
IABLAD I = Y12 = By [ (1)?] =V, 1 4].

When the domain of the function E[A] is restricted to a submanifold § C P,
the previous theorem is modified as follows.

Theorem 2.8 We have
Vo[ A] 2 [(AE[A]ls)sll (2.50)
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where the equality holds if and only if

A-E,Al e TE(5) & {X<e>

Xe T,,(S)} . (2.51)

Proof: Obvious from the previous theorem and the fact that for every f €
F(P) the gradient (grad f|s), of the restricted function f|s is the orthogonal
projection of (grad f), onto T5(S). »

Now, Theorem 2.2 (the Cramér-Rao inequality) for a finite X is straightfor-

ward from the theorem above. Indeed, letting A &ef ¢;£" for an unbiased estima-
tor £ and an arbitrary column vector ¢ = [¢;] € R™, and using Equation (2.47),
we can easily verify that Equation (2.50) yields c¢tV;[€]c > ¢tG(£)~'c. Moreover
we see that a necessary and sufficient condition for the equality Vg[é ]=G(&)?
to hold at p is that ¢ (£ — ¢i(p)) belongs to Tp(e)(S) for all {¢;] € R™, or
equivalently that £ — £i(p) belongs to Tp(e)(S) for all 3. Therefore, if £ is an
efficient estimator, there exist n vector fields {X 1,---,X"} on S such that
(X;)(e) = €' — £¥(p), Vi, Vp, which turn out to be parallel with respect to the
e-connection on P due to Equation (2.43). This means that the existence of an
efficient estimator for S implies that S is e-autoparallel in S (see §1.8), or in
other words that S is an exponential family (Theorem 2.5). We shall revisit this
subject in §3.5, where a necessary and sufficient condition for (5, [¢%]) to have
an efficient estimator will be given (Theorem 3.12).

Note: An estimator ¢ is said to be locally unbiased at a
point £ when the unbiasedness approximately holds around ¢ in the
following sense:

Berael€] = £+ AL +o(AE), (2.52)
which means that
Eg[é]=¢ and OB [&]=06]. (2.53)

Obviously, é is unbiased if and only if it is locally unbiased at every £.
We see from the above discussion that the Cramér-Rao inequality
Ve[€] > G(&)~! at a point ¢ holds if £ is locally unbiased at £
Moreover, the equality can be always attained for each £ by the
locally unbiased estimator

§(z) = & + g7 (€)d; log p (z: ). (2.54)

As we have seen above, the e-representation is particularly useful for con-
necting the Fisher metric with some statistical notions like expectation and
variance. However, if one is concerned only with purely geometrical aspects
of the Fisher metric, it might be better to use another representation. Let us
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consider the third way of embedding P into RY : p s 2,/p, whereby P is iden-
tified with the set { 2P f pE P} which forms a part of the sphere of radius 2
: {a e R¥ | S {a(x))? = 4}. A tangent vector X ¢ T,(P) is then represented
by X(© &t x(m) /P = VPX (), which is called the O-representation of X
(see the next section for the general a-representation), and the Fisher metric
takes the form

(XY), =3 XO)yO(g), (2.55)

which is equivalent to Equation (2.10). This indicates that the Fisher metric
is nothing but the Riemannian metric induced on the sphere from the natural
Euclidean metric of R*.

Here, we discuss Jeffreys’ prior distribution to illustrate an application of
the observation made above. Let § = {pe [e=¢t, - :€"] € £} be a statistical
model, and let G(¢) denote the Fisher information matrix at point £. Now sup-

pose that the volume V % J= V/det G(€)d¢ of S with respect to the Fisher met-

ric is finite (where the integral is implicitly n-fold.) Then Q(£) &f £ +/det G(€)
defines a probability density function on Z. Since this is invariant over the
choice of coordinate system [¢9], we may consider it as a probability distribu-
tion on the model S. This distribution is called J effreys’ prior within the feld
of Bayesian statistics, and has recently been found to play an important role
in universal data compression (see Clarke and Barron [67]). Now consider the
case when § = P(X) and X = {0,1,---, n}. Then we can see that V equals to
the surface area of the n dimensional sphere of radius 2 divided by 27+ and
letting I" be the gamma function we have

p(nt+1)/2
TRy

In addition, Q(¢)d¢ is then the uniform distribution on the sphere.

Finally, let us give a brief look at what happens when X is infinite. For g
finite X', we have seen that P is an open set of the affine space .A; and therefore
is a manifold with the tangent space T,(P) isomorphic to Ay at each point p.
Intuitively speaking, the essence of this fact is that the constraint p(z) > 0
(Y2 € X) imposed on the elements of P is loose enough for P to have the same
dimension as 4;. According as the cardinality |X| gets larger, however, the
constraint becomes relatively more restrictive, or in other words, the portion
of A; occupied by P becomes relatively smaller. Eventually when X gets in-
finite, 7 cannot have the same dimension as .4;, nor even be regarded as an
infinite-dimensional manifold in the usual sense, and the geometrical arguments
on P in the present section lose their mathematical basis. Nevertheless, this
does not mean that the arguments become totally meaningless. For instance,
the Cramér-Rao inequality for a model on an infinite X can be proved almost in
parallel with the proof given above for a finite X , even though the differential
geometrical framework does not completely work any more. It should be noted
that the geometrical proof for a finite X is essentially based on the nature of
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P as an exponential family. We may regard P for an infinite X' as an infinite
dimensional version of exponential family in some sense, but should be. c%.ueful
making mathematical reasoning based on such an analogy in general. It is m.ter-
esting and important to try to construct the geometry of P, or of an appropriate
variant of P if necessary, by rigorous functional analytic methods, so .tha.t many
significant statistical arguments including those of the present section and of
chapter 4 can be treated within the scope of such a geomt.atry. Several attempts
have already been made in this direction; see von F.'r?edrlch [215J, Kambayashi
[118], Lafferty [136], Pistone and Sempi {189}, Gibilisco and Pistone [97] and
Pistone and Rogantin [188].

2.6 o-affine manifolds and a-families

The present section is aimed at extending some of the results on tl:le e- and m-
connections obtained in §2.3 to the general a-connections, and has little relat.uon
to the other parts of this book except for §3.6 and §8.4. Although. we are mainly
motivated by a purely geometrical interest here, it is worth mentlonlng that the
results of this section and §3.6 are closely related to the theory of Tsallis entropy
[207, 74, 208] developed in statistical physics. . .

We begin with loosening a fundamental assumption made so far. Previously
when we considered a statistical model S = {p¢ | £ € =}, each e'lement_p.g was a
probability distribution (€ P(X)). In this section we relax .thlS cond‘xtlon and
consider cases in which [ p(z;£)ds is allowed to take arbitrary finite values
other than 1. In other words, we suppose that § = {pe¢} is a subset of the
following set:

P(x) & {p X >R 'p(a:) >0(vze X),/p(a:)dz < oo} . (256)

This extension allows a more natural understanding of the properties of the a-
connection. Aside from this, we retain the assumptions made in '§2.1 and §?.2.
In this case we again find that S is a manifold, and that the Fisher metric ¢
and the a-connection V{®) may be defined using Equations (2.6) and (225)
There are, however, previous equations such as Equations (2.8) and (2.9) which
no longer hold in general.

Now for each o € R define the following:

i 1

L) & 1=a” @A (2.57)
logu (a=1)

£(z;8) € L (p(z;6)) (2.58)

Note in particular that £(1)(z; €) = £(z;£) and that £~ (z;¢) = p(z;¢). For a
tangent vector X € T;(S), we call

X (z) & xp@(5;¢) (2.59)
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as a function of = the a-representation of X. The e-, m- and 0-representations
introduced in the previous section are special cases corresponding to a=1, -1,0,
respectively. Now since

8,0 = p(1=0)/29,0  and  §;8;4() = pi=)/2 (aiajz + 1;226,»1{6]-0 ,
we may rewrite Equations (2.6) and (2.25) as

9:5(6)

TEx(©)

‘We can read these equations to mean that the a-connection on S.is induced from
the affine structure of the space RY of functions on & through the embedding
& — £ (z; £). In addition, they lead to the duality of ta-connections as seen in
the next chapter. Note also that if S = {p¢} consists of probability distributions
then, corresponding to Equations (2.8) and (2.9), we have

/ 8,4 (z;£)0;£¥ (z; £)dz,  and (2.60)

It

/ 8,0, (;£)8 ) (w; £)d. (2.61)

/p(z‘;f)%ﬁ 86 (z;¢)dz =0, and (2.62)
1 4+« eI
M2 000 = - [p@0) T 00, @m0 (269)
Let us fix « to a particular value. If for some coordinate system [6%]
8:0:)(z;6) =0 (2.64)

(6,; def %) , then from Equation (2.61) we see that [§7] is an a-affine coordinate
systemn, and that § = {ps} is a-flat. We call such an S an a-affine manifold.
The condition in Equation (2.64) is equivalent to the existence of the functions

{C,F,--+,F,} (n = dim§) on X such that

£ (z;0) = C(z) + Y _ 6°F(x). (2.65)
iz=1
In addition, from Theorem 1.1 (§1.8) we see that a necessary and sufficient
condition for a submanifold M of § to be a-affine is for M to be a-autoparallel
in S.

Example 2.9 A mizture family is a (—1)-affine manifold, while an exponential
family is not a 1- affine manifold.

Example 2.10 (P(X) for finite X') Consider the case when X is a finite set
{1, -,2,}. Let F; : X — R be the functions defined by Fi(z;) = & for
i,§ = 1,---,n. Then for each p € ﬁ(z’\f ), using the independent parameters
6%,---,0™, we have L) (p(z)) = 6 F,(z) (here 6 = L\ (p(z;)}.) Therefore
P(X) is an a-affine manifold for every o € R.
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Figure 2.1: The denormalization of a statistical model

When X is infinite, on the other hand, P(X) may not be viewed as a manifold
as in the case of P(X) mentioned in the last section, but in an informal sense
its structure may still be considered similar to that of an a-affine manifold.

Let §= {p¢ | £ € B} (C P(X)) be a statistical model. If we let

§E (rpe e, r>0  (CPQ)), (2.66)

where 7p; denotes the function on X which maps z to 7p (z;€), then S is a
manifold which contains S as a submanifold with dim § = dim §+ 1. We call §
the denormalization of § (Figure 2.1). As a coordinate system of § we adopt
[¢,7) = [¢,---,£",7] and denote its natural basis by &; = 5—2—; and 8, = 2,
while the natural basis of the coordinate system [¢7] of S is denoted by 6:
In general, for a vector fleld X = X'§; (€ 7(S)) on §, we define X = X5,
(€ 7(5)) as the vector field on S which maps 7p; to (Xi)g(gi)(g,.r).

Letting /) = g(e) (z;€,7) = L(® (Tp(a:; §)) and £(®) = £®)(z; ¢), we have

A = 15204, BE) =
B = 5 0,00, .5 F) = - Ly,

5.5, = §,5,0 — 1_;&—%—“3#@_

Using these relations and Equations (2.60) (2.61), we obtain

gij = T8ij» g’iT = 01 g'r'r = 7——1, (267)
Fe) _ Yy l+a
F5h=mThe Ty = 594 (2.68)

~ ~ 1—a ~ ~
ik =T0h = 5o, T8 =T =, (2.69)
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f-(r(-j;?k = 0: f-(r?'?f = _1 -lz-a'r_z' (2'70)

Here § and T are the components of the Fisher metric and the a-connection
on S, while g and T(®) are those on §. These equations enable us to verify that
the following relations hold for the covariant derivatives of the a-connections on
S and S, which we denote by V{®) and V(@) respectively:

~(fl)" - (a) ~_1+a 5> o\ X

VPY = (vry -2 <X,Y> 5., (2.71)
@y _ Sy _ l-a 4o

Sy _ _lto

Veo = =G, (2.73)

where X and Y are arbitrary vector fields on 5, and (- --)~ denotes (fv)
Now we are ready to show two theorems about the relation between S and

8.
Theorem 2.9 § is (—1)-autoparallel in §.

Proof: Obvious from Equation (2.71) or from the definition of (~1)-connec-
tion. »

Theorem 2.10 Let M be o submanifold of S and M be its denormalization.
For every a € R, the following conditions (i) and (4) are egquivalent.

(i) M is a-autoparallel in S.

(it) M is a-autoparallel in §.

Proof: Let V() and V(":) be the a-connections on § and S as above. Noting
that every vector field on M can be represented as fiX; + b iz by vector
fields {X;} on M and functions {f*} and f° on M, we see from Equations (2.72)
and (2.73) that condition (ii) is equivalent to stating that 6&?)? € T(M) for
all X,Y € T(M). On the other hand, we have for all X,Y € 7(M),

VOV e T(ll) = (YY)~ e T(T)
= Vg?)Y € T(M),

where the first equivalence follows from Equation (2.71) and the second one is
obvious. It is thus concluded that (i) and (ii) are equivalent. u

We call a statistical model S = {p;} whose denormalization § is an a-affine
manifold an a-family.
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Example 2.11 (P(X) for finite X) When X is finite, P(X) is an a-family
for every a € R.

For an o-family §, its denormalization S may be written in the form of
Equation (2.65). We rewrite this as

L) (rp(z;£)) = C(z) + i‘ 0> Fy(), (2.74)
A=0

where a one-to-one correspondence between [¢*,---,£", 7] and [6°,0%,---,67] is
implicitly assumed. When a # 1, considering either the asymptote of 7 — 0
(e < 1)ort— oo (a> 1), wesee that the affine space spanned by L (rp(a; £))
must contain the origin and hence be a linear space. This means that C(z) in the
equation above vanishes and that the elements of the model § are represented
as n

£ (2:8) = )_ OO F (@), (275)

=0

or, rescaling 6> by a constant factor, we have

n 2/(1—a)
p(z;€) = {Z 0*(&)&(@} : (2.76)
A=0

Example 2.12 (o= —1: mixture family)} When a= —1 this becomes a miz-
ture family. Indeed, if Fi(z) — (a;/a0)Fo(z) for 1 <1 < n and Fo(x)/ao, where
ay def J B(z)dz, are respectively renamed Fi(z) and C(z), then Equation
(2.76) is rewritten as Equation (2.35). The fact that a (—1)-family is a mizture
family (and vice versa) is also viewed as a consequence of Theorem 2.9.

Example 2.13 (@ = 1: exponential family) A 1-family is an ezponential
family (and vice versa). Indeed, when o = 1, observing that L(l)(fz?(a:; &) =
log p(z; 7)+log T, we see that the basis functions {Ey,- -+, Fn} in Equation (2.74)
can be chosen so that Fy = 1 , and then, the elements of S are written as Equa-
tion (2.81) with 6° = 4(8,...,0™).

From Theorem 2.10 we see that the following theorem holds for any «, which
is a generalization of Theorem 2.5.

Theorem 2.11 Let S be an a-family. Then a necessary and sufficient condi-
tion for a submanifold M of § to be an o-family is for M to be a-autoparallel
in S.

In particular, when X is finite, the o-families on X are characterized as the
a-autoparallel submanifolds of P(X).
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It should be noted that, unlike Theorem 2.5, Theorem 2.4 has no a-version
because a-family is not a-flat in general. What then makes the cases a = +1
special? It is easy to answer the question for the case o = —1. Indeed, this
simply means that a (—1)-family S inherits the (—1)-flatness from S due to
Theorem 2.9. The speciality of the case @ = 1 can also be understood through
Theorem 2.9 with the aid of the duality between (+1)-connections. We will
revisit this in §3.5.

Chapter 3

Dual connections

‘When investigating the properties of the Fisher metric g and the a-connection
V{®) | and also when applying them to particular problems, it is important to
consider them not individually, but rather as the triple (g, V{9, V(=a)), The
reason for this is that, through g, there exists a kind of duality between V(®) and
V(=) which is of fundamental significance. This notion of duality emerges not
only when considering statistical models, but in a variety of problems relevant to
information geometry. Through duality, it is possible to analyze these problems
from a unified perspective; to do so is one of the principal motivations underlying
this book. The present chapter is devoted to both the general theory of dual
connections and its applications to the geometric structure of statistical models.

3.1 Duality of connections

Let § be a manifold on which there is given a Riemannian metric g = (,)and
two affine connections V and V*. If for all vector fields X, Y, Z € T(S)

Z(X,Y) = (VzX,Y) + (X, V}Y) (3.1)

holds, then we say that V and V* are duals of each other with respect to g,
and call one either the dual connection or the conjugate connection of the
other. In addition, we call such a triple (g, V, V*) a dualistic structure on
5. By respectively using the coordinate expressions Gijs Tijk, and ik of g,
V, and V* with respect to a coordinate system [¢?], we may rewrite the duality
constraint in Equation (3.1) as

Okgij = Urij + Thjir (3.2)

In general, given a metric g and a connection V on S, there exists a unique
dual connection V* of V with respect to g. In addition, (V*)* = V¥ holds. We
also see that (V 4 V*)/2 becomes a metric connection. And conversely, if a
connection V' has the same torsion as V* and if (V + V’)/2 is metric, then
V=V~

51
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The following result may be verified in a manner similar to the derivation of
Equation (2.30), or is immediate from Equations (2.60) and (2.61).

Theorem 3.1 For any statistical model, or more generally, for any manifold
of finite measures treated in §2.6, the a-connection and the (—a)-connection are
dual with respect to the Fisher metric.

In particular, the duality of the e-connection and the m-connection are of prac-
tical importance.

Suppose we have a dualistic structure (9,V,V*) on S. Letting M be a
submanifold of S, consider Vj; and Vs, which are respectively the projections
of V and V* onto M with respect to g. These are dual with respect to gas (the
metric on M determined by g). We call (g9u, Vs, V%) the dualistic structure
on M induced by (g, V, V*), or the induced dualistic structure on M.

The condition for a connection V to be metric in Equation (1.65) is equiva~
lent to requiring self-duality, V = V*. Hence we see that the duality of connec-
tions may be considered as a generalization of the notion of metric connection.
This becomes 2l the more clear if we analyze the meaning of duality using the
parallel translation of vectors. Let vy : ¢ 'y(t) be a. curve in S and let X and
Y be vector fields along . In addition, let and T respectlvely denote the
covariant derivatives of X with respect to V and Y with respect to V*. Then
from Equation (3.1) we see that

(X(t) Y1) = < 8X(t) Y(t)> +<X(t), 5*;(t)>. (3.3)

Now suppose that X is parallel with respect to V, and that Y is parallel with
respect to V*. Le., suppose that ‘SX = dt = 0. Then the right hand side of
Equation (3.3) is 0, and hence the i mner product (X (t),Y(t)) is constant on ~.

Therefore, we obtain the following theorem.

Theorem 3.2 Letting IL, and I ( T,(8) — T,(8), where p and q are the
boundary points of ) respectwely denote the parallel translation along v with
respect to V and V*, then for all X,Y € T,(S) we have

(I, (X), H;(Y))q =(X,Y),. (3.4)

This is a generalization of “the invariance of the inner product under parallel
translation through metric connections” discussed in §1.10.

The relationship between II, and I'I* is completely determined by Equation
(3.4). In other words, if either one of H or I3 is known, then the other can be
obtained using Equation (3.4). Hence 1f 10, is mdependent of the actual curve
joining p and ¢, and hence may be written as 1L, =10, 4, then this is true of I,
also. This means that the following theorem holds
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Theorem 3.3 Letting the curvature tensors of V and V* be denoted by R and

R*, respectively, we have
: R=0<R"=0. (8.5)

Actually, what follows is that for any vector fields X, Y, Z, W € 7(S)

from which Equation (3.5) is immediate. On the other hand, the corresponding
property does not hold for the torsion tensors T of V and T* of V*.

3.2 Divergences: general contrast functions

Let S be a manifold and suppose that we are given a smooth function D =
D(-||-) : § x5 — R satisfying for any p,q € §

D(pllg)=0, and D(pllg)=0 iff p=g. 7)

In other words, D is a distancelike measure of the separation between two
points. However, it does not in general satisfy the axioms of distance (symmetry
and the triangle inequality). The aim of the present section is to show that such
a D is closely related to the duality of connections.

Let us introduce some notations. Given an arbitrary coordinate system [¢¢]
of S, let us represent a pair of points (p,p’) € § x § by a pair of coordinates
([€%, 16"]) and denote the partial derivatives of D (p || p') with respect to p and

P by
D( &)y Ilp) 4Dy,
e 1@)) = 83D llF),

((aia > I (ak) ) E 898D @lly), e,
where in the right -hand sides §; = %{ is applied to the first variable of D at
p while 8, = e 8 to the second variable at p'. These definitions are naturally
extended to those of

D((X1-- X)) |P), Do (Y1 Ym)p)

and D ((X1---X)p || (Y1 Ym)w)

for any vector fields Xq,--+, X1, Y1, -, Ym € 7(5). Now we consider t.heir
restrictions onto the diagonal {(p,p) |p € S} C S x 5 and denote the functions
induced on S by

DX;---Xi||-] : p=D((X1--Xi)pll9),
D[”Yly‘m] : pHD(p”(Yl"'Ym)p)y
D[Xy-- X || Vi Y]+ po D((Xy-Xi)p | (Y1 Ym)p) -



54 3. DUAL CONNECTIONS

It then follows from Equation (3.7) that
D[g|-1=D[-]|8]=0, (3.8)
D[8:d;|-1=DI- || 8:8;] = -D[6: ]| 8] (¥ ¢, (3.9)

and that the matrix [gfj )] is positive semidefinite. When [gij ] is strictly pos-

itive definite everywhere on S, we say that D is a divergence! or a contrast

function on S. For a divergence D, a unique Riemannian metric (2 = (, )(D)
on S is defined by (0;, 0; )(D) = g(D) or equivalently by
x, V)P = _p[x||v]. (3.10)
This metric gives the second order approximation of D as
D) () AiAg Y{& 3.11)
D(pllg) = 2911 (Q)AEAE + of | AEH), 3.

where Agt & f”“(p) ~¢£4(q) and of|| AL||?) is a term vanishing faster than |[A¢]}?
as p tends to q.
Given a dxvergence D, we can also define an affine connection V) with
coefficients 1"5] % by
T = -D[0:0; | &l, (3.12)

or equivalently by )
D
<v§?)Y, z> - _DIXY | 2], (3.13)

because {FEJ ,2} obeys the same transformation rule as Equation (1.61). Note

that V(P) is necessarily symmetric (I‘EJD,Z Fgf,z) Combined with the metric
9'P), the connection VD) gives the third order approximation of the divergence

D:
D(pllg) = —glm(qmwm SMR @AFAFAL +o(lA¢)  (3.14)

where ]
rD) < D (6,:8;8: |- ] (3.15)

ijk

Indeed, the coefficients {h(D)} are determined from {g; D)} and {FEJD,Z} by

W) = 8ig(y) + TS0 (3.16)

Conversely, we see that ¢‘®) and V() are determined by the expansion (3.14)
through Equation (3.16).

1In some literature the term divergence is used to mean a narrower notion such as the
canonical divergence (as in the original Japanese edition of this book) introduced in §3.4 or
the Kullback divergence.
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Let us replace the dlvergence D (p|| q) with its dual D* (p | q) = D (q || p).
Then we obtain g(P") = ¢(P) and

I = -Dow ] 8:65]. (3.17)

Now it is easy to see the following theorem.

Theorem 3.4 V) and V") are dual with respect to g(P),

This general construction of the dualistic structure (g(2), v(P) y(D* ) from a
divergence D, together with the convenient notation of D [X] - Xl Y- Yol,
is due to Eguchl [84, 85, 87]. Corresponding to Equations (3.14) through (3 16),
we have

Dp| q) =D"(q| p) (3.18)
— 0P EAE B8 ~ hEDGIAEAS AL + o(IAC),  (3.19)

where

def
K = D[ 8,004 = diglf + 107, (3.20)

We thus see that any divergence induces a torsion-free dualistic structure.
Conversely, any triple (g, V, V*} of a metric and mutually dual symmetric con-
nections are induced from a divergence. Given such a triple together with a
coordinate system (£, let

D(plla) * J0s(@AEAE + thin()AEAE AL,
where A¢* = £¥(p) — ¢%(g) and

def "
hik = 8igjk + Tjg = Lije + Tk + Dok

Then noting that ks is symmetnc under a.ll the permutations on {%, 7, k},
we have D{8,0; -] = g,] and D [8;8;0 || -] = hijk, which immediately im-
plies that (g,V,V*) = (g2, v(D), V(]D )). Note that the positivity (3.7) for
sufficiently near p, q follows from the positive-definiteness of [g;;]. Also, an al-
ternative choice of D is given by

def 1 i i A gd
Dplla) = 595(P)AE AgT - —hm( VAE AL ALY,
where

huk = Bigjk + Tk =T +Tikg + i e

While these constructions are local, T. Matumoto [150] has proved that every
torsion-free dualistic structure is induced from a globally defined divergence.
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Now let us introduce an important class of divergences on statistical models.
Let f(u) be a convex function on u > 0. For each probability distributions p, g,

we define
Dol ¥ [t (j—,%) da

and call it the f-divergence following I. Csiszar. Let us review some fundamen-
tal properties of the f-divergence [70, 71, 214]. First, using Jensen’s inequality
we have
D > z md:z: = f(1 .
rlellg) > F{ [ (=) f@), (3.21)
p(z)

where the equality holds if p = g and, conversely, the equality implies p = ¢
when f(u) is strictly convex at u = 1. Secondly, Dy is kept invariant when
f(u) is replaced with f(u) + c(u ~ 1) for any ¢ € R. Thirdly, D} = Dy,
where f*(u) = uf(1/u). Fourthly, and most importantly, D; has the following
property similar to the monotonicity of the Fisher metric mentioned in § 2.2.
Let &« = {x(y|z) > 0; z € X,y € YV} be an arbitrary transition probability
distribution satisfying [ x(y|z)dy = 1,Vz, whereby the value of z is randomly
transformed to y according to the probability «(y|z). Note that the determin-
istic transformation y = F(z) by a mapping F : ¥ — ) corresponds to the case
when (y | £) = §p@)(y). Denoting the distributions of y derived from p(z) and
q(z) by px(y) and g, (y) respectively, we have

Ds(pllg) = Dy (pxllax) - (3.22)

This inequality is referred to as the monotonicity of Dy and is proved by
Jensen’s inequality using the conditional distribution p.(z|y) as follows:

[ [r@nwior (1%%) dady
= [ [oetomatelis (2 coey

[ ([ pn(ziy)f;g’;—;dz) dy
Dy (eIl 00).

The equality in Equation (3.22) holds if & is induced from a sufficient statistic
with respect to {p, ¢}, which means that p.(z|y) = g.(z|y) for all z and y,
and the converse statement is also true when f is a strictly convex function.
Note that the joint convexity

Dy (Ap1 + (1= Np2 [ An + (1 — N)gz2)
SADs(prll@) + (1= NDs(p2llg2), 0<AL1 (3.23)

Dy (pllq)

v

follows from the monotonicity by setting Ay = A, A = 1 — A, p(z,1) = \ip;(z),
q(z,1) = Aigi(z) and F(z,i) = z for i = 1,2. In addition, we may now consider
Equation (3.21) as the monotonicity for a constant mapping F.
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Let us assume that f is a strictly convex and smooth function satisfying
f(1) = 0. Then Dy becomes a divergence in our sense on each statistical
model, and induces the metric g{°7) = g{f) and the connection V{Ps) = V{f )
in the aforementioned manner. Since Dy is invariant with respect to sufficient
statistics, so are gt/ ) and V), According to Theorem 2.6, this implies that
they are represented as ¢\f) = ¢g and V) = V(@) by some ¢ > 0 and a, where
g is the Fisher metric and V{® is the o-connection. Indeed, a direct calculation
shows that this is true for ¢ = (1) and a = 3 + 2" (1)/F"(2).

Important examples of smooth f-divergences are given by the a-divergence
D(@) = Dy for a real number a, which is defined by

{1 - ulF9/2) (£ £1)
FO () =

ulogu (x=1) (3.24)
—logu (o=~1).

We have for o £ +1

o 4
D@ (p]|q) = 1=

{1 - / p(z)l—;gq(a:)%ﬁdz} (3.25)

and for @ = +1

_ _ p(x)
DD (pljq) = DD (g | p) = / pla)log 53z, (3.26)

We can immediately see that the a-divergence D(® induces (g (Q)), v{f (u))) =
(g, V(®)), whereas a deeper relation between D(*) and (g, V(™) will be elu-
cidated in § 3.6. Note that D (p|q) = D% (q||p) generally holds. In
particular, D (p || q) is symmetric, and moreover v/D© (p|| q) satisfies the
axioms of distance, which follows since

DO (p1q) =2 [ (vol@) - v/a@)da.

DO (pllg) (or DO (pllq) itself) is called the Hellinger distance. The a-
divergence is closely related to the a-entropy of Rényi [194], the Chernoff dis-
tance [66] and the Tsallis entropy [207, 74, 208].

The +1-divergence is called by several different names, among which are
the Kullback divergence, the Kullback~Leibler information, the relative
entropy or simply the divergence. It is particularly important and has many
applications in fields related to probability and information. Following the con-
vention, we refer to D(™Y as the Kullback divergence and DM as its dual in
this book. Unlike other f-divergences, the Kullback divergence satisfies the
following chain rule:

DY (pllg) = DY (pxl| ge)
+ / DY (- 19) | ael- |9)) Pu(w)dy,  (3.27)
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which gives another proof of the monotonicity. In particular, it satisfies the
additivity:

DED (p1s || q12) = DEY (py || 1) + DE (p2 || 2) (3.28)

for product distributions pia(z1,z2) = pi(z1)pa(ze) and g¢ia(zy,z2) =
¢1(z1)qz(z2). See § 2.2 for the chain rule and the additivity of the Fisher metric.

3.3 Dually flat spaces

Let (g,V,V*) be a dualistic structure on a manifold 5. If the connections V
and V* are both symmetric (T' = T* = 0), then from Theorem 3.3 we see that
V-flatness and V*-flatness are equivalent. For example, since the a-connections
are always symmetric, we have for any statistical model (or more generally for
any manifold consisting of finite measures) S and for any real number o that

S is a-flat <= S is (—a)-flat. (3.29)

In particular, recalling that an exponential family is 1-flat and that a mixture
family is (—1)-flat (§2.3), we now see in addition that they are both (+1)-flat.

In general, we call (5,9, V, V*) a dually fiat space if both duals V and V*
are flat.

Theorem 3.5 Let (S,9,V,V*) be a dually flat space. If a submanifold M of §
is autoparallel with respect to either V or V*, then M is a dually flat space with
respect to the dualistic structure (gar, Vs, Vi) induced on M by (g,V,V*).

Proof: Suppose M is V-autoparallel. Then from Theorem 1.1 (§1.8) we

know that Vs is flat. Hence by Equation (3.5) the curvature tensor of Vj,
is 0. On the other hand, since V* is flat, it is a symmetric connection, and
hence its projection V3, is symmetric also. From the above we see that V3, is
flat, and that M is a dually flat space. The argument for the case when M is
V*-autoparallel is similar. ]

For instance, an m-autoparallel submanifold of an exponential family and an
e-autoparallel submanifold of a mixture family are both (+1)-flat, even though
they are no longer exponential nor mixture families in general.

Now let us investigate the general structure of a dually flat space (S, g,V,V*).

First, from the definition it follows that there exist for S a V-affine coordinate
system [¢] and a V*-affine coordinate system [n;],? for which we let 8; def 2

and 89 & ain,-' Since 8; is a V-flat vector field and &7 is a V*-flat vector field,

we see from Theorem 3.2 that (8;,87) is constant on S. From Equation (1.41)
which describes the degree of freedom in an affine coordinate system under

2By superscripting one of the indices and subscripting the other, we obtain forms which
are naturally suited to the use of Einstein’s convention
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regular affine transformations, we see that for a particular V-affine coordinate
system [6°], one may choose a corresponding V*-affine coordinate system (51
such that

8,07y = 4. (3.30)

In general, if two coordinate systems [6°] and [r;] for a Riemannian manifold
(5,9) satisfy the condition above, we call the coordinate systems mutually
dual (with respect to g), and call one the dual coordinate system of the
other. We see then that the Euclidean coordinate system defined in Equation
(1.70) is self-dual. In general, there do not exist dual coordinate systems for a
Riemannian manifold (5, g). However, if (5, g, V, V*) is a dually flat space, then
such a pair of coordinate systems exist. Conversely, if for a Riemannian manifold
(8, g) there exists such coordinate systems [¢] and [;], then the connections V
and V* for which they are affine are determined, and (S, g, v, V*) is a dually
flat space.

Let the components of g with respect to [0%] and [;] be defined by

95 & (8,8;) and g7 X (5 a7). (3.31)

By considering the coordinate transformation between [6%] and [n,], we have
& =(86"0; and 8 = (Bim;).

From this we see that Equation (3.30) is equivalent to

677j 86t ..
—_— = . Y
a6t = 9 and o, =9 (3.32)

and therefore g;;67F = 6F, which is consistent with Equation (1.23).

Now suppose that we are given mutually dual coordinate systems [6%] and
[7;], and consider the following partial differential equation for a function 1 :
S —R:

i = ;. (3.33)

We may rewrite this as diy = n;d#?, and a solution exists if and only if &;n; =
;1. Since from Equation (3.82) we see that d;m; = 9i; = O;m;, in the context
of our discussion a solution 4 always exists. From Equations (3.33) and (3.32)
we see that

Hence the second derivatives of ¢ form a positive definite matrix, and therefore
1 is & strictly convex function of [0, --,6™]. Similarly, a solution ¢ to
By =gt (3-35)

exists. In particular, using a solution % to Equation (3.33), let

p =0 — . (3.36)
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Then we have
Substituting di = 7;d6" into this equation, we obtain dy = #idn;, which is

equivalent to Equation (3.35). From Equations (3.35) and (3.32) we see that @
satisfies

B = g7, (3.37)

and hence it is a strictly convex function of [y, - - -, 7). Purthermore, it follows
from the convexity of 4 and Equations (3.33) and (3.36) that for every ¢ € S

(@) = max {6°(p)mi(a) — ¥ (0)} - (3.38)
Similarly, for every p € S we have
(p) = max {6*(p)mi(q) — ()} - (3.39)

Sometimes it is more natural to view these relations as

¢(n) = max{6'n —p(6)} (3.40)
¥(O) = max{f'n - o)}, (341)

where v and ¢ are simply convex functions defined on convex regions © and H
in R™.

In ge.neral, those coordinate transformations [6%] « [r;] which may be ex-
pressed in the form given in Equations (3.33) through (3.39) are called Leg-

e}xlldre transformations, and ¢ and ¢ are called their potentials. Note also
that

Q.
e,

Tk (vg{ajﬁ@:aiajakw and (842)
pik def (Ve:09,0%) = 0*67 85, (3.43)

which are derived from Equation (3.2) combined with Dijp =9k =0,
We summarize the discussion above in the following theorem.

Theorem 3.6 Let [6%] be a V-affine coordinate system on a dually flat space
(5,9, V,V*). Then with respect to g there exists a dual coordinate system [n;] of
[07], where [r:] turns out to be ¢ V*-affine coordinate system. These two coordi-
nate systems are related by the Legendre transformation given using potentials
¥ and @ in Equations (3.88) through (3.89). In addition, the components of
the metric g with respect to these coordinate systems are given by the second
derivatives of the potentials as given in Equations (3.8 ) and (3.87).
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3.4 Canonical divergence

In §3.2, we observed that an arbitrary divergence induces a torsion-free dualistic
structure and that the converse statement is also true. However, it should be
noted that the correspondence between divergences and dualistic structures is
not one-to-one in that infinitely many divergences correspond to one dualistic
structure. In this section, we show that a kind of canonical divergence is uniquely
defined on a dually flat space.

Let (S, g, V,V*) be a dually flat space, on which we are given mutually dual
affine coordinate systems {[0%],[n:]} and their potentials {1, 0}. Given two
points p,q € S, let

D(lla) ¥ ¢() + ela) — 0 (2)m(a)- - (344)

Then from Equations (3.38) and (3.39) we see that D (p||¢) > 0and D (p|l q) =
0 & p = ¢q. Moreover, it is easy to verify the equations

D((0:0)p | 9) =9:5(p) and D (p[ (8'0")q) = g"(9) (3.45)

which immediately implies that D is a divergence and induces g. We can also
conclude from these equations that V = V{2) and V* = V(2™ since we have
Ty = T*9* = 0 due to the V-affinity of [6%] and the V*-affinity of [r;].

On a dually flat space (S, g, V, V*), the degrees of freedom of the dual affine
coordinate systems {[6%], [n;]} and the potentials {%, ¢} are expressed by

§7 = AlG + B, fiy = Clni + Dj,
p=9p+D;f7 +¢, and G=¢p+ B —B'D;—c

Here [A]] is a regular matrix, [Ci] is its inverse, [BY] and [D;] are real-valued
vectors, and c is a real number. These degrees of freedom completely cancel each
other in Equation (3.44) so that D is uniquely determined from (S,g,V,V*).
We call this D the canonical divergence of (S,g,V,V*) or the (g, V)-
divergence on § for short.?

By interchanging the roles of V and V* on 8, the roles of [6*] and [}, and
also those of ¥ and y are exchanged, and we find the (g, V*)-divergence D* to
be : '

D'(pllg)=D(qllp)- (3.46)

In addition, if we let M be a submanifold which is autoparallel with respect to
either V or V*, and consider the induced dually flat structure (gar, Var, Viy)
(see Theorem 3.5), then it is possible to prove that the (gas, Vas)-divergence
Dy, is given by the restriction Das = D|arxum, or in other words

Dy (plle)=D(ll9) (¥p,q € M). (3.47)

3In some literature (including the original Japanese edition of this book), the canonical
divergence is simply called the divergence.
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A similar argument can be made for D};.

When V is a Riemannian connection (V = V*), the condition for “dually
flat” reduces to V being flat, and hence in this case there exists a Euclidean
coordinate system [#]. This coordinate system is self-dual (§° = 7;), and its
potential is given by ¢ = ¢ = § 3,(6%)%. Substituting this into Equation (3.44),
we obtain

Dol = 33 {EG)+E@) -26E00)}

= S {im0), (3.48)

where d is the Euclidean distance d(p, q) o > {0 ) — 6:(g)}". In general,
the canonical divergence D (p || g) on a dually flat space is only approximately
equal to 1(d(p, q))* in the sense of Equation (3.11).

Let us give an important characterization of the canonical divergence.

Theorem 3.7 Let {[6%], [n:]} be mutually dual affine coordinate systems of a
dually flat space (S, 9,V,V*), and let D be a divergence on §. Then a necessary
and sufficient condition for D to be the (g, V)-divergence is that for allp,q,7 € §
the following triangular relation holds:

D(pllg)+D(lir)=Dplir)
= {6*(p) - 6*(q)} {mi(r) — m(®)} - (3.49)

Proof: The necessity of Equation (3.49) is straightforward from Equations
(3.36) and (3.44). To show the sufficiency, suppose that a divergence D obeys
Equation (3.49). Applying (8;), to the both sides of the equation and then
letting r = p, we obtain

D ((9:)p |1 @) = milp) — ml9)- (3.50)

On the other hand, we see that the canonical divergence also satisfies the same
equation as above and that a solution of the equation is unique under the initial
condition D (p||p) = 0 (¥p). Consequently, D coincides with the canonical
divergence. u

‘We may generalize the Pythagorean theorem for the Euclidean distance to
the (g, V)-divergence D on an arbitrary dually flat space (S,9,V,V*).

Theorem 3.8 Let p, q, and v be three points in S. Let v1 be the V-geodesic
connecting p and q, and let v, be the V*-geodesic connecting q and r. If at the
intersection q the curves v1 and vy, are orthogonal (with respect to the inner
product g), then we have the Pythagorean relation

D(plr)=D@la)+Dlgllr) (3-51)
(Figure 8.1).
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V- geodesic

7*- geodesic

p

Figure 3.1: The Pythagorean relation for (g, V)-divergences.

P

- geodesic

Figure 3.2: The projection theorem of (g, V)-divergence

Proof: Since a V-geodesic is a straight line with respect to [6%], we may
parameterize v; using ¢ as 6] = t0'(p) + (1 — £)6%(g), and obtain $6i5; =
{6(p) — 01 (g)} 8; as an expression of the tangent vectors of this curve. Similarly,
we may parameterize vz as ni = i9;(g) + (1 — t)7:(r), and obtain as its tangent
vectors $::8% = {n:(q) — m:(r)} *. From Equation (3.30) we see that the inner
product of these tangent vectors at the intersection point ¢ may be written as
{6:(p) — 6*(q)} {m:(g) = 7:(r)}. Therefore when the curves are orthogonal at g,
Equation (3.51) follows from Equation (3.49). »

The projection theorem given below follows immediately from the theorem
above (see Figure 3.2).

Corollary 3.9 Let p be a point in S and let M be a submanifold of S which is
V*-autoparallel. Then a necessary and sufficient condition for a point g in M

to satisfy D (p|| q) = min,epm D (p||7) s for the V-geodesic connecting p and q
to be orthogonal to M at q.

The point ¢ in the theorem above is called the V-projection of p onto M.
More generally, the following holds for any submanifold M.
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Theorem 3.10 Let p be a point in S and let M be a submanifold of S. A
necessary and sufficient condition for a point ¢ € M to be a stationary point
of the function D(p||-) : v — D (p||r) restricted on M (in other words, the
partial derivatives with respect to a coordinate system of M are all 0) is for the
V-geodesic connecting p and q to be orthogonal to M at q.

Proof: Let 8, = 32 be the natural basis of a coordinate system [u?] of M.
Then from Equations (3.44) and (3.35) we have

D(p|(8a)g) = (8ams)q D (p]| (8")y)
= (0am:)e{0°(a) — 6°(0)}
= {(8a)e: {6°() — 8()}(B:)q) , (3.52)
from which the theorem follows. "

Corollary 3.11 Given a point p in S and a positive number ¢, suppose that the
“D-sphere” M = {qg e S| D(p|| q) = c} forms a hypersurface in S. Then every
V-geodesic passing through the center p orthogonally intersects M.

Before concluding this section, let us take another look at the notion of
canonical divergence to illustrate how our geometry modifies the usual Rie-
mannian geometry. Let a Riemannian metric g and an affine connection V be
given on a manifold S and let V* be the dual of V with respect to g. We do
not assume that (S, g, V, V*) is dually flat, and hence the canonical divergence
is not generally defined on S. Now, let v : [a,b] — S (a <“b) be a smooth
curve in S connecting the points y(a) and «y(b), on which the dualistic structure
(94, V4, V3) is induced from (g, V, V*) by projection. The coefficients of gy and
V., corresponding to gop and F(”)d Fg’,:,)cgc‘i in Equations (1.26) and (1.62)
are given by

0t = g P,
L) = {(FOF OTux00) + 7 Oosn(rE)} 4(0)/0, ).

Since -y is 1-dimensional, (, g, V., V) is always dually flat and the canonical

divergence D, is defined on . We define D(y) o D., (v(b) || ¥(a)) and call
it the (g, V)-divergence of the curve «. Note that D(vy) does not depend
on the parametrization t — ~y(t) of y but its orientation, and that the (g, V*)-
divergence of vy coincides with the (g, V)-divergence of the reversely oriented

curve. Some calculation shows that

Ht)
D(y) = //<s<t<b 7(3 (s) ds dt, (3.53)

¢
u(t) &ef exp[/ T, (s)ds].

I

where

3.5. THE DUALISTIC STRUCTURE OF EXPONENTIAL FAMILIES 65

In particular, if the parameter ¢ is chosen to be V.-affine, or in other words if
T, (t) =0 for all ¢, then we have (cf. Equation (3.45))

b
D(y) = / / L (e dedt= / (b 5) g, (s)ds. (3.54)

When V is the Riemannian connection, by applying Equation (3.48) to D,
we see that D(y) = L[y||?, where [|lv|| is the length of v defined by Equa-
tion (1.25). In this respect, the (g, V)-divergence of a curve gives a modification
of the definition of curve length. Now, suppose that (5,9, V, V*) is a dually
flat space, on which the canonical divergence D is defined. In the Rieman-
nian case (V = V*), for any geodesic v we have |v|| = d(y(a),v(b)) and hence
D(y) = D (v{(a) || v(b)) = D (7{b) || v(a)} by Equation (3.48). (Note that we are
only treating local properties and do not consider cases such as cylinders.) On
the other hand, in the general dually flat case we have D(vy) = D (v(b) || v(a))
if v is either a V-geodesic or a V*-geodesic (see Equation (3.47)). See Henmi
and Kobayashi [108] for an interesting physical interpretation of the canonical
divergence.

3.5 The dualistic structure of exponential
families

In this section, we investigate the dually flat structure of an exponential family
with respect to the (+1)-connections and the Fisher metric, which are shown to
be closely linked to some fundamental aspects of statistics. Let us begin with
revisiting the question put at the end of §2.6 about the origin of the 1-flatness of
an exponential family, which is now easy to answer. For an exponential family
8, its extension S is an l-affine manifold and hence is 1-flat, and turns out
also to be (—1)-flat by the duality. According to Theorem 2.9, S inberits the
(—1)-flatness from S, and turns out to be 1-flat by the duality again.
We showed in §2.3 that with respect to an exponential family

p(;0) = exp [C(z) + 0 Fi(z) —9(6)] , (8.85)

the natural parameters [6%] form a 1-affine coordinate system. Now if we define
def
w=m(0) 2 EalF] = [ e (i) iz, (350)

then from Equations (2.33) and (2.9) we obtain n; = 8;3. Furthermore, from
Equations (2.34) and (2.8) we obtain 8;0;% = g;;. Hence [n;] is a (—1)-affine
coordinate system dual to [#%], and ¢ is the potential of a Legendre transforma-
tion. We call this [r;] the expectation parameters or the dual parameters.
For the examples of exponential families given in §2.3, we have the following.
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Example 3.1 (Ezample 2.5: Normal Distribution)

o1 (61)? — 26°
M= p= =g n2=#2+02=_1T§2)2—

Example 3.2 (Ezample 2.6: Multivariate Normal Distribution)
M= psy Ty = (Bl payy (8<7)
ma == —5(0%)7 104,
ms = St = — 2 (0%)7 + (0°)10A0A)" (07)
Example 3.3 (Ezample 2.7: Poisson Distribution)
n=¢&=-expf

Example 3.4 (Ezample 2.8: P(X) for finite X)

exp 0

G ¥ S

The dual potential ¢ in Equation (3.36) is then given by

p(8) = 'm0~y
= Epllogpy ~ C]
= —H(pe) - Eo[C], (3.57)
where H is the entropy: H(p) & [ p(z)logp(x)ds. In addition, from
Equation (3.38) we have
(8) = max {6"n(0) — (8} , (3.58)

where the maximum is attained by ¢’ = 4.
From the definition of the Fisher information matrix (i.e., Equation (2.6))

we have
9:5(0) = Eo[(F; — m:)(Fy —n3)]. (8.59)

Now let us regard the function F; as an estimator for the parameter 7; and
denote it by 7 (z) = F;(z). Then Equation (3.56) means that f = [fi1,---, 7] is
an unbiased estimator for the coordinate system 7 = [1, - - -, 7}, while Equation
(8.59) means that the covariance matrix Vy[#] is equal to G' = [gy;]. It should be
noted that G is the Fisher information matrix for the coordinate system 8 = {§?]
and, at the same time, is the inverse of the Fisher information matrix for n = [n;]
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by Equations (3.31) and (3.32). Hence, 7} attains the equality in the Cramér-Rao
inequality (Theorem 2.2), or in other words, 7 is an efficient estimator. We have
thus seen that an m-affine coordinate system of an exponential family always
has an efficient estimator.

Conversely, if a coordinate system £ = [¢7] of a model S = {p;} has an
efficient estimator, then S is an exponential family and £ is an m-affine co-
ordinate system composed of expectation parameters. We give a geometrical
proof to this statement on the assumption that X is a finite set. Recall that
we have already proved in §2.5 that if there is an efficient estimator £ = [£7],
then S is an exponential family and there are n(= dim ) linearly independent
e-parallel vector flelds on .S, say {X1,---, X"}, such that their e-representations
are (Xg)(e) = £t — ¢, Letting 8; = %, we have (cf. Equation (2.49))

(85, X7 = 8, B; [5]’] =88 =51, (3.60)

In other words, the inner product between 8; and an arbitrary e-parallel vector
field is always constant on §. By the duality of e- and m-connections, this
means that 9; is m-parallel and consequently [¢¢] is m-affine. An essentially same
argument applies to the case when X is infinite, and we obtain the following
theorem.

Theorem 3.12 A necessary and sufficient condition for a coordinate system &
of a model S = {p¢} to have an efficient estimator is that S is an exponential
family and £ is m-affine.

Let us proceed to investigate the canonical divergence. Substituting Equa-
tions (3.56) and (3.57) into Equation (3.44) we see that the (g, V(!))-divergence
on the exponential family S = {pg} is given by

DY (pg || por) = Egr[logper ~ logps ],

which is the 1-divergence defined by Equation (3.26), or in other words, the dual
of Kullback divergence, and consequently the (g, V(‘“l))—divergence is the Kull-
back divergence D1, The triangular relation (3.49) in this case is essentially
equivalent to the following relation for the Kullback divergence D = D{(-1);

Dplle)+Dqllr)-D(plir)
~ [ 5(@) - a@)}togr(@) ~ oga(e)}a, (3.61)

which is elementary but often useful in applications.
From Corollary 3.9 and Theorem 3.10, the solutions to the minimization
problems
inD d in D
minD(pllg) and  minD(q]p)

are respectively given by the V(m)—projection and V(e)—projection, both of which
are important in many applications. The former problem frequently appears in
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statistics in connection with the maximum likelihood estimation (see Equation
(4.38)), while the latter plays a crucial role in the large deviation theory via
Sanov’s theorem (see §6.2). An example of the latter problem will be given
below, for which we begin with a slightly wider setting as follows.

Given (n + 1) functions C, Fy,...,F, : X > R, let S = {py |6 € O} be the
n-dimensional exponential family represented by Equation (38.55). Then for any
6 € © and any g € P(X) we have

H(po) + B, [C] + 0 Ep, [ F;] ~ H(q) = Eq[C] - ' By Fi]
= D(q ”pe) > 0:

which leads to

iz {H(@)+ B,[C]+0'F,( R}

= H(po) + Ep,[C] + 6" Ep, [ F] = (6). (3.62)
Given a vector A= (A1,..., ;) € R", let

My, {geP|E[FR]=x, i=1,..,n}. (3.63)

Since M), is defined by a linear constraint on the elements, it is & mixture family.

Now let us assume that SN M), # ¢, or equivalently that there exists an element

of ©, say 0y, such that n;(6,) = Epy, [Fi) =X fori=1,...,n Then we have:
max{H(q) + E)[C]} = H(pa,)+ Bpy, [C]

P(6x) — 05X
min{y(6) - o)}, (3.64)

where the first and second equalities follow from Equation (3.62), while the last
follows from Equations (3.57) and (3.58).

When C' = 0 it follows that maxgear, H(g) = H(pe, ), which is often referred
to as the principle of maximum entropy . This has the origin in statistical

physics; the thermal equilibrium state which maximizes the thermodynamical
entropy S(p) < rH (p), where k(> 0) is Boltzmann’s constant, under the

constraint Ey[e] = & on the average of the energy function ¢, is given by the
Boltzmann-Gibbs distribution

p (.’13) —E(.T.)/’CT

where T is the temperature and Z is the partition function. This corresponds
to the previous situation by letting C =0, n =1, F; =¢, A = §, 85 = —1/kT
and 9(0)) = log Z. Assuming T > 0, p* is also chara.cterlzed as the distribution
minimizing Helmholtz’s free energy Eq[e] — T'S(g), which may be regarded as
a special case of Equation (3.62).
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When C(z) = logp(z) for a given distribution p € P, on the other hand,
Equation (3.64) may be rewritten as

Jin D(glip) =D (pe, [I7)
= 03X — 9(62) = max{Fr — $(O), (365)

where pg and 1 are now represented as

p(z;0) = p() explg* Fy(w) — (6)] and (3.66)

$(8) = log B, [ee"ﬂ-] ) (3.67)

This (0) is commonly called the logarithmic moment generating function
or the cumulant generating functicn of p with respect to the random vari-
ables Fy, ..., F,,. Note that the mixture family M and the exponential family
S = {ps} intersects orthogonallyat ps,, and therefore for all ¢ € M, and all §
the following Pythagorean relation holds:

D(gllps) = D (a |l pe.) + D (pos |l pe) - (3.68)

The first equality of Equation (3.65) may be viewed as a consequence of this
relation for § = 0.

Now consider the case when n = 1. Given a probability distribution p €
P(X), a random variable F : X — R and a closed interval I C R, Equation
(3.65) leads to

RIDY min D(gllp)= rain mexc{0) — ¥(0)}, (3.69)
By Flel

where 9(6) = Ep[eeF ] . The probabilistic meaning of this quantity is given by
the large deviation theory, which tells us that

' N
1 1
im = =S F(Xy) €Iy = -R(),
A}l_rgoNlogPr{NtE:l (Xe) } 0

where X1, Xa, - - are X-valued random variables that are independent and iden-
tically dlstrlbuted according to p(z). Equation (3.69) may now be considered to
be a bridge between two famous large deviation theorems — Sanov’s theorem
and Cramér’s theorem (see e.g. [78]). .
We conclude this section by noting that, as examples of Equation (3.54),
the Kullback divergence has two mutually dua.l integral representations. For
() def g _ + tp; and
arbitrary distributions py and p,, let us define p; ( t)po ;);1
pﬁ") def 78 "t /Z;, where Z; is the normalizing constant. Then {pt } and
{pge)} form & mixture family and an exponential family, respectively, which
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are two different curves connecting pp and p;. Now, letting g¢™ () and ¢ (2)
respectively denote the Fisher informations of {pgm) } and {pge)}, we have

D (p1 || po)

1
J[_em@asa= [a-s5as @
0<s<t<1 0

|

‘ 1
Deoliz) = //0< <t<1 99 s dsdt = /0 (1-5)g(s)ds.  (3.71)

3.6 The dualistic structure of a-affine manifolds
and o~families

Let us turn our attention to the general a-connections and try to extend some
of the results in the previous section to their a-versions, using the framework
of §2.6. Let us fix @ to a particular value and let § = {ps} (C P(X)) be an
o-affine manifold represented as Equation (2.65). Then as mentioned in §2.6,
S is o-flat and [6%] forms an o-affine coordinate system, while from Equation
(3.29) we now see that .S is also (—c)-flat. In other words, (S, g, V{®), V(-2 i5
a dually flat space. Now if we define

7 d&ef /Fi(:t:)(("“)(a:; f)dz, (8.72)

Equations (2.60) and (2.65) lead to

dm; = / F0;4-%dg = / B89, 4N dg = g;;. (8.73)

Since this satisfies Equation (3.32), [6] and [r;] are mutually dual, and hence
[m] is a (—a)-affine coordinate system. In addition, letting for an arbitrary
peP(X)

2
gl (py 1_+_a/p($) do (o7 —1) , (3.74)
p(z) {logp(z) —1}dz (a=-1)

we may easily confirm that the potential functions of the Legendre transforma-
tion satisfying Equations (3.33) through (3.36) are given by

$(0) = \I,(a)(pe), (8.75)
\I,(—oz)(pe) _/C(I)e("a)(z; G)dz (3.76)

S

N
)

=
I

For arbitrary p,q € P(X) and o € R, let

D (p|lq) F ¥ (p) 4 W (q) - / L (p(z)) L™ (g(z))dz.  (3.77)
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Since this is represented as

4 1—a 14+ a l=a lia
D(“)(pllq)=1_a2/{ ARl Y }dz (3.78)

for @ # +1 and
D pllg) =DM (el = [ {q e T

for o = +1, we see that D{® (p|| q) coincides with the o~divergence defined in
§3.2 when p and ¢ are probability distributions. Now, applying Equations (3.75)
(3.76) and

i = / [£9(@;0) - O(=) } £z 0)dz
to the definition of the canonical divergence
D(06) =%(6) + p(6') — 6,
we obtain the following theorem.

Theorem 3.13 The (g, V(@)= and (g, V{=9)-divergences on an a-affine man-
ifold S (C P(X)) are given by the restriction of D@ and D) onto S8,
respectively.

From Theorem 3.13 it follows that, on any a-affine manifold, Theorems 3.7,
3.8, 3.9 and 3.10 hold for D = D(*® and V = V(). On the other hand, an
a-family is not o-flat unless @ = +1, and hence these theorems do not apply to
it. Nevertheless, the property described in Theorem 3.10 is still valid as follows.

Theorem 3.14 Let S be an a-family, M o submanifold of S, and p a point in
S. A necessary and sufficient condition for a point ¢ € M to be a stationary
point of the function r = DE® (p || r) restricted on M is for the (a)-geodesic
connecting p and q to be orthogonal to M at q (with £ the same sign).

Proof: Given a point g in M, let
yla) def {p ed ] Va, D) (p || (8a)q) = o} and
wiEe) & yEang,

where S is the denormalization of 5, which is an o-affine manifold, and 8,
denotes the natural basis of a coordinate system [u®] of M. It suffices to verify
the following statements.

(i) W) is (:ta)-autoparallel in §.
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(i) T,(WE®) is the orthogonal complement of Te(M) in T,(S).

First, noting that D() is the (g, V(*®))-divergence of the a-affine manifold §
and recalling Equation (3.52), we see the following.

(iif) VEY) is (+a)-autoparallel in 5.
(iv) To(V#)) is the orthogonal complement of T, (M) in Ty(3).
Then (ii) is immediate from (iv). Next, Equations (3.78) and (3.79) lead to
D& (1p|| (8a)q) = T FI/2DEN (p | (4

for any p € § and any r > 0, which implies that V{®) is the denormalization
of W), Hence, (i) follows from (iii) by Theorem 2.10. ]

Corollary 3.15 Given a point p in an a-family S and a positive number c,
suppose that M* ef {qe'S|DEN (p] g) = c} forms a hypersurface in S.
Then every ta-geodesic passing through the center p orthogonally intersects
M=,

For instance Theorem 3.14 is applied to S = P(X) for any finite X, since
S is an o-family for all o (Example 2.11). This may be generalized to the case
when & is infinite in a natural way (see Appendix of Amari [6]).

As briefly explained in §8.4, Kurose [134] showed that a divergence is canon-
ically defined on a manifold equipped with a dualistic structure of constant cur-
vature and exhibits a modified form of Pythagorean relation. The a-divergence
on an o-family is an example of Kurose’s divergence, for which the modified
Pythagorean relation is demonstrated in the next theorem. We can see that the
theorem provides Theorem 3.14 with another proof.

Theorem 3.16 Let S be an a-family, p,q and r be three points in S, v, be the
a-geodesic connecting p end g in S, and 7y, be the (—a)-geodesic connecting q
and r in S. If at the intersection g the curves v; and vo are orthogonal, then

D@ (p|r) = D (p|q)+D (q|r)
1-a?
D (p|lg) D (g |i7). (3.80)

Proof: When a = =1, the theorem is nothing but the Pythagorean relation
for the canonical divergence D(*V) on an e- or m-family S. Hence we have only
to consider the case when o 3 1. Throughout this proof we use a special
notation in which L™ (p(z)) is denoted by p(*®)(z) and Equation (2.75) is

written as n

7 (z) Z (3.81)
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which we may assume for the a-family S. Since the a-geodesic v, is an a-family
due to Theorem 2.11, it is represented as

7 (258) = a(®)p® (@) + b(t)a’ (2). (3.82)

Assuming v (z;0) = g(z), we have a(0) = 0 and 5(0) = 1. From Equation (2.62)
we have
dy{ (z;1)
(—o) 2RSS
/ ¢ %) ——

a(0) / P9 (@)q (z) dz + b(0) 1—34? (3.83)

dz

S
I

t=0

On the other hand, the denormalization §; of the (—a)-geodesic vz is (—a)-
autoparallel in § due to Theorem 2.10, and forms a plane in a (—a)-affine
coordinate system of the a-affine manifold S given by Equation (3.72). This
means that v, may be parameterized as

[R@f @i = ) [REd @
+ d(s) / Fa@)rC9(2)de.  (3.84)
We assume that y2(z;0) = g() to yield ¢(0) = 1 and d(0) = 0. Then the inner
product of the tangent vectors of these two curves at the intersection g is given
by
(11(0),42(0)),
@) / 4 (@5 1)
dt
t=0

@ [{ap @) + 50 (@) } a} ”)(”” )
© / {a(0)p (@) + b(0)a (@) } {e(0)a~ (@) + d(0)r~ "‘)(a:)}
@ / { 0)p (@) + b(0)¢ (2) }d )2 (a
@ a0)d(0)| / ) (2)r= () dz

[ #9@e I @a} [ ¢ @D @iz}],

where (A) follows from (2.60), (B) follows from (3.82), (C) follows from (3.84)
combined with the fact that both p{® and ¢(® belong to the linear span of {F»}
due to (3.81), and (D) and (E) follow from (3.83). This proves the theorem,

dy§™ (a3 5)

15 dz

da
s=0
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i
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because the quantity [---] in the last line coincides with the difference (RHS) -
(LHS) of Equation (3.80). =

The additivity (3.28) for the Kullback divergence is modified for the a-
divergence as follows:

1~ a?
D@ (p1a]lg12) = D (pa]lqr) + D' (pallg2) — TD(Q)(M||‘11)D(°‘)(p2”€12),

where p1a(z1, 2) = p1(z1)pa(2) and gi2(21,%2) = qi(z1)ga(x2). This relation
can be seen as an example of the above theorem.

Finally, we observe that the Cramér-Rao inequality and related results such
as Theorems 2.2, 2.7, 2.8 and 3.12 may be extended to their a-versions at least
from a viewpoint of formal analogy. For A: ¥ » R and p € P, let

ECo[A] X / A(z) L) (p(a))dz,

SO [ Aplerorias

(= 1+aE(‘°‘)[A] if as#-1), and

s« f {A(w)—u;—‘”[A}-p(x)<1-“>/2}2p(x)“dx
= VLA O]

Similarly, we can define the vectors E,S“’)[/i L u;“") [A] e R” and the n x n
matrix Vi® [ 4] for an n-tuple A = (AY,..., A™) of functions 4° : ¥ — R. Now
we have the following theorems, whose proofs are almost parallel to those of the
original results corresponding to the case when a = 1, and are omitted.

Theorem 3.17 Let S be a statistical model in P(X) and let B[ A]|s denote
the function p — E,(,—“)[A] defined for p € S. Then we have

(e) (~<) ?
VAL 2 @B Alls)| - (3.85)
Here the equality holds if and only if
A= A]- P2 e T(S) & {X@ | X em(5)},  (3280)

where X(®) is the a- representation of X defined by Equation (2.59). In partic-
ular, if S = P(X) then the equality always holds.

Theorem 3.18 Let S = {p¢; & € E} be an n-dimensional statistical model in
P(X). If an n-tuple of functions A = (AL,..., A™) satisfies Eé_a)[A‘] =¢ for
all &£ € B, then we have V(a)[A] > G(&)7!, where G(¢) denotes the Fisher
information matriz of S wzth respect to the coordinate system &.
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Theorem 3.19 A necessary and sufficient condition for an n-dimensional sta-
tzstzcal model S to have a coordinate system & = [¢] and an n-tuple of functions

= (AY) satisfying E( a)[A] ¢ and Vé(c‘)[f—f] =G(¢)7! for all £ € E is that
S is an a-family.

3.7 Mutually dual foliations

Let 0] and [;] be mutually dual coordinate systems of an n-dimensional dually
flat space (S,g,V,V*). First, let us divide the range of the index i =1,---,n
into the two sections 4 = 1,---,k and i =k +1,---,n, and call these sections I
and II, respectively. Now let M (cr) be the set of pomts whose coordinates [n;]
in Section I are fixed to constants ¢; = (cz,;), for i =1,---, k:

Mlcr)={peS|m)=cr1, -, mp) =crx}.

This forms a (n — k)-dimensional V*-autoparallel submanifold. The set M(c;)
varies with ¢y, and if ¢; 5 ¢pv then

M(CI) n M(CII) = 0,

and also

UM(er) =5

In other words, S is partitioned into the submanifolds {M{cr)}. We call such a
partition a foliation of S.

In a similar manner, consider the set E(d;;) of points whose coordinates
gF*1, ... g™ in the f-coordinate system are fixed to values d¥f?,. .., d%;:

E(di)={pe S|o** (p) = d¥f",---,0"(p) = dir}-

This is a V-autoparallel submanifold, and the set of {E(d;;)} form another
foliation of S.

A point p determines the M(c;) and the E(dr;) containing it. Then p
is the intersection of these M(csr) and E(d;;). The tangent space Tp(M) of
M(cy) at this point is the k-dimensional space spanned by {8;,---,8;}, and
the ta.ngent space T,(E) of E(dys) is the (n — k)-dimensional space spanned by
{6"“ -++,0"}. What is interesting is the fact that

(8;,67) =0 (i #4)

and that hence T,(E) and Tp,(M) are orthogonal. Such foliations orthogonal to
each other are said to be mutually dual.

Now divide the n-coordinates of the point p into the first k& dimensions and
the remaining n — k dimensions:

n = (nr,m11),
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E(6Ma))

Figure 3.3: Mutually dual foliations of S.

and similarly divide the 8-coordinates:

6 = (97,070
Then the point p is the intersection of M(nr) and E(8'1). If we let
€= (n1,6),
then this defines a coordinate system for S. We call this a mixed coordinate

tem. . Ir
sysLet p and ¢ be two points whose mixed coordinates are (n:(p), 87/ (p)) and

i i i e mixed coordinates
g,:’é(g), 9(17111((‘1;3)),,QE%S&G)K):tXéy:r’l\{ognc(?fl&dﬁr(;)}f I?I?}III;‘;IS ;” ?soi}}e; V*—prt?jectionsof
g onto M(n:(p)), and 7 is the V-projection of g onto E(8'/(p)) (Figure 3.3).
From this we see that
Dpla D(plr)+D(rllq) and
D(qllp) D(glr)+D (' | p),

*)-divergence.

WheIrnet‘}Zz Sair;oxfig (g, tg][,lev(,gv”z =) (P(X%, 9, V), V(™) the manifolds {M(cr)}
are mixture families, {E(dr;)} are exponential families, and D is the -Klilltl:;a.zck
divergence. An example is given by Equations (3.55) and (3.63?. That'é ;s, f: II11n§
E(C) = {ps} be the the exponential family defined by Equation (3.55) (;
function C, we see that the collections of the s.ets {E(C)}c and {M)g A ;rn:
mutually dual foliations (although the parametrization C — E(C) is redun arll
in this case), for which the Pythagorean relation (3.68) holds. Another example

will be shown in §6.2.
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3.8 A further look at the triangular relation

section, we shall reformulate the triangular relation in a wider setting where
the flatness is not assumed, so that we can fully understand the specialty of the
canonical divergence among other divergences.

We begin with introducing some important notions from differential geome-
try. Suppose that an affine connection V is given on a manifold . For a point ¢
and a tangent vector X e To(S), let v : ¢ 7(t) be a V-geodesic with an affine
parameter ¢ such that v(0) = ¢ and ¥(0) = X. We write Ey(X) = (1) when
(1) lies in S, and call the mapping & : X - £,(X) the exponential map for
V at g. It can be shown that there exist a neighborhood U of 0 in Tg(S) and a
neighborhood V of ¢ in S such that &)y is a diffeomorphism from [/ onto V.
We assume U = Ty(S)and V =S to simplify the description.

When a basis {u;, .., un} of Ty(S) is specified, a coordinate system [6%] of
S is defined by &, (9’(p)uz) =p, ¥p € 5. We call [#%] the normal coordinate
system for V determined by {u;}. In this coordinate system, a geodesic «
passing the point g is represented as yi(t) %f 8:((t)) = tc* by an affine param-
eter ¢ and constants {c'}. Conversely, if a coordinate system [0] satisfies this
property, then [6] is the normal coordinate system determined by {(%;)q}.
In particular, an affine coordinate system [6] of a flat connection is a norma)
coordinate system at g if 6*(g) = 0 for all 5.

Let [6%] be a normal coordinate system for V at q and {I‘fj} be the connection
coefficients of V with respect to [6%]. Then we have (Proposition 8.4 in chap.
I of [122], vol.1 )

(T5) +(T5) = 0. (3.87)

Indeed, substituting ¥4 (t) = t¢* into Equation (1.56) and then letting ¢ — 0, we
have cc? (I‘fj)q = 0 for all (¢!), which leads to the equation above. In particular,
if V is a symmetric connection, we have (I‘f] ¢=0.

Now we state the main theorems of this section,

Theorem 3.20 Let V and v pe symmetric connections, g = ( , } a Rieman-
nian metric and D q divergence on S. Then the Jollowing conditions (i) and
(#) are equivalent.

(4) The triple (g, V,V*) is a dualistic structure induced from D in the sense
described in §3.2.

(i) The following approzimation is valid at every point 4, as other points p
and r approach q:

Do +Dalir)-D(p|r) = (€01 E71 ), +0(A%), (3.88)
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where £ and £ are respectively the ezponential maps for V and V* at g,
and

A = max{ [lé(p) — €@, 1€(r) ~ €@}

for an arbitrary coordinate system € = [£%].

Theorem 3.21 In the same situation as the previous theorem, the following
conditions (i) and (i) are equivalent.

(i) (S,9,V,V*) is dually flat and D is its canonical divergence.
(i) For all p,q,r €8 it holds that

Dpllag+D(glir)—Dp|r) = (5 ), €;71(r)), - (3.89)

The rest of the present section is devoted to proving them. Our first goal is
to prove the part (i)=-(ii) of Theorem 3.20. Let D be a divergence on S and

(g, V, V*) the dualistic structure induced from D. Let p,g,7 be arbitrary three

points in S and let ¥ % £i(p) — £i(g) and b* et ¢i(r) ~ £1(q) for a coordinate

system [£%] of S. Let us expand D (p||q) + D (g|l*) — D (p||r) in terms of [¢7]
and [b] around p = g = r up to the third order of A = max{]la],[|b]|}. We

start from the expansion
. 1 .
D(pllr)=D(qllr) = D((Bqlir)a"+ 5D (8:8s)q I 7)a’e’
+%D ((8:8;01)q || ) a*a? aF + o(A®),

into which we substitute the following expansions:

D((@)qllr) = —gigb’ ~ F]k BV +o(A?),
D((8:8)¢II7) = gij — Tizud® +0(A),
D ((8:0;0k)q ) = huji+o(1),

where all the quantities g;;, 1'%, etc. are evaluated at the point g, and hijx is

hsj k) defined by Equation (3.15). Then we have

R SR | .
D (p “ 7‘) -D (q ” 7') = _‘gijazlﬂ + 591‘,_7‘41141] - EI‘ij,kalan’“
) 1 -
_"I‘;k Ao + ghz‘jka’a’ak + o(A®),
Combining this with

1 | o
D(pllg)= Egija’a’ + ghijka’aja’“ + o(A3),
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we obtain

D@la)+D(gllr)~D(p|r)

= 9iga® + STy ra'att + SThsaWbE 4o(A%).  (3.90)
Now, let a(z) and b(t) be curves in M satisfying a(0) = b(0) = q, and let

a(t) = £4a(t)) — £4(q) and bi(t) = £(b(t)) — £(q). Using the expansion above,
we have

D(a(®) |l 9) + D{gllb(t)) - D (a(t) II b(t))
= gi;a' b+ 2 (glj 80 gz lb7)t3+ 5 (Tized LGRS S L R O

= <a, b> 2+ %((vda, b> + <a, vgb>)t3 +o(#%),

where the derivatives of a and b are evaluated at ¢ = 0. In particular, if a(f)
and b(t) are V-geodesic and V*-geodesic, respectively, with ¢ being their affine
parameters, then

D (a(t) | 9) +D (a][6(#)) = D (a(t) | 6(8)) = (&,5) £ + o(s?).

Noting that &,(at) = a(f) and that £} (bt) = b(t), we see that Equation (3. 88)
holds.

Next, we show the converse part (ii)=>(i) of Theorem 3.20. Let {u;} and {v}
be two bases of T,(S) which are mutually dual in the sense that (us, vJ) =4,

and let [#%] ([n;], respectively) be the normal coordinate system for V (for v*)
at g determined by [u;] (by [v7]). We denote the components of g, V, V* with
respect to [0%] by g5, Tij T'}; - Then we have

(8, (8)q), = (ui07), =61, (3.91)
where 9; def W and & % Bn , which implies that (9i7;) = (gij)q- Now
Equation (3.88) is represented as

D(pllg)+D(gllr) = D (| ) = 6(p)ns(q) + o(A®), (3.92)

from which we have

D((@)plla) = D(@:)plir) = m(r)+o(A?), (3.93)
D (8o 1 B)r) = (Bymi)r +0(A), (3.94)
=D ((3:05)p | (Br)r) = o(1). (3.95)

Letting p = r = ¢ in the last two equations, we have (g,;(jD ))q = (Bim:)q = (915)q
and (I‘,EJD,Z) =0 = (T's,k)q, where the last equality follows from the assumption
that [¢%] is a normal coordinate system at g for the symmetric connection V.
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Since q is arbitrary, it is concluded that ¢(?) = g and V{®) = V. The equation
VP") = V* can be verified similarly.

Let us proceed to the proof of Theorem 3.21. It is easy to see that Equa-
tion (3.89) coincides with the triangular relation (3.49) when (S,g,V,V*) is
dually flat, and hence the part (i)=(ii) is straightforward. Assume (ii) to prove
(i1)=>(i). Then the triple (g, V,V*) is induced from D owing to Theorem 3.20.
Furthermore, the remainder term o(1) in Equation (3.95) can be omitted in this
case, and letting p = r, we have —D ((8:8;), || (Ok)p) = (Tizk)p = 0 for every
p. This means that V is flat with [#*] being an affine coordinate system, and
therefore (S,g,V,V*) turns out to be dually flat. Now Equation (3.89) is just
the triangular relation (3.49), and it follows from Theorem 3.7 that D is the
canonical divergence. The proof is thus completed.

Finally, let us take a look at the case when V and V* may have nonvanishing
torsions. In general, for any two affine connections V and V’, their difference
QX,Y) & Uiy - V%Y forms a tensor field of type (1,2). When @ is skew-
symmetric (Q(X,Y) = —Q(Y, X)), we say that these connections are equivalent
to each other. It is easy to see that the geodesics, the exponential maps and the
normal coordinate systems are kept invariant under this equivalence relation.
We also note that there is a unique symmetric connection in each equivalence
class. Indeed, given a connection V, the symmetric connection V' equivalent to
V is obtained by V%Y = VxY —~ L T(X,Y), where T is the torsion tensor of V,
or equivalently by I‘;’; = %(Pf] + I‘?‘i). We call this V' the symmetrization of V.

In general, for not necessarily symmetric connections V and V* and a metric
g, condition (ii) in Theorem 3.20 holds with a divergence D if and only if the
symmetrizations of V and V* are induced from D together with g. Therefore
a necessary and sufficient condition for (g, V, V*) to have such a divergence is
that the symmetrizations of V and V* are mutually dual with respect to g.

Chapter 4

Statistical inference and
differential geometry

Suppose that we are given data generated according to some unknown proba-
bility distribution. Statistical inference is the process of extracting information
concerning the underlying probability distribution from this data. If we have
prior knowledge concerning the underlying mechanism generating this data, in

. other words if we know the shape of the unknown distribution, then the possible

candidates may be constrained to a parameterized family of distributions. We
call such a family a statistical model. The field of statistics has a long history,
and many techniques and theories for inference have been developed. Of course,
probability theory and analysis serve as the foundation of this development.

On the other hand, a family of probability distributions which constitutes a
statistical model has a rich geometric structure as a manifold with a Riemannian
metric and dual connections. In order to obtain new insights into the frame-
work of statistical inference, and to develop superior techniques for inference,
it is vital that we reconstruct the field of statistics as the geometric reinterpre-
tation of statistical models. It appears likely that this fleld will see extensive
development in the future. In this chapter, we first consider classical inference
of estimation and hypothesis testing from the geometric point of view. We then
move towards non-parametric and semi-parametric inference, where the shape
of the underlying distribution is unknown.

4.1 Estimation based on independent

observations
Consider a family of probability distributions S = {p(z;£)} parameterized by
& = [¢4 for i = 1,---,n. Under appropriate regularity conditions, S may be

viewed as an n-dimensional manifold for which ¢ is a (local) coordinate system.
Now let z;,---,zny be N independent observations of the random variable z dis-
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tributed according to p (;£). Letting V¥ = (%1, -, Zn), the task of statistical
inference is to infer the probability distribution p (x;£) given the N data points
2. For example, estimation is a kind of inference task, where the goal is to
find an estimate £ of £; alternatively, one might consider the task of testing,
where the goal is to decide if the hypothesis Hy : £ = & is accepted against the
alternative hypothesis Hj : £ # o, or is rejected.

We have already seen how a Riemannian metric based on the Fisher in-
formation matrix and one-parameter family of affine connections called the a-
connections may be introduced on a manifold S representing a statistical model.
Since the probability distribution govermng 2V can be written using the distri-
bution of a single data point as

N
= H p (2 €)
t=1
we also have

logpy (z™;€ Z logp (2+;€) - (4.1)

By viewing =V as a random variable, we find Sy = {p (mN ;5)} to be, like
S = 53, a manifold with £ as a coordinate system. However, from Equation
(4.1) and the definitions, we find that the geometric structure introduced on Sy
is given by

g¥(€) = Ngy(¢) and (42)
s = Nl (4.3)

In other words, the geometry of Sy is simply that of S scaled by a factor of V.
Another way in which this can be seen is that the natural basis vectors 8} of
S¥ are simply those of S under the scaling transformation

Hence distinguishing between the geometries of SV and S serves no purpose,
and it suffices to simply consider the geometry of S.
In the theory of estimation, an estimator is defined as a function on the N

data points z?:
£=E(") =z, - an). (44)

Now, if we consider zVV to be a random variable, then we must consider é N to
be one also. In addition, it is necessary to select a condition that £ must satisfy
which ensures that £ is in some way similar to the actual parameter £ of the
underlying distribution p (z;£). Unbiasedness is one such condition which states
that € must be distributed around £&. We have already given its definition in
§2.2 for the case N = 1, and it is straightforwardly extended to the case N > 1
as

EE[§]=§ for Ve, (4.5)
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where FE¢ now denotes the expectation with respect to the distribution
n (zV;€).
The mean square error is often used to measure the accuracy of an estimator,
which may be expressed as the matrix Vz[£] = [v}'] where

of =of1€]= B[ (£ -¢) (¢ -¢)]. (46)

When £ is unbiased, Vg[é ] equals the variance-covariance matrix. It should be
noted that neither the unbiasedness and the mean square error are geometrically
invariant criteria. They actually depend on the choice of coordinate system £.
A lower bound on the mean square error of an unbiased estimator .;-‘ is given by
the Cramér-Rao inequality (Theorem 2.2 in §2.2), which now takes the form

pf1 2 wls¥(e), (7)

where [/ (£)] denotes the inverse of the Fisher information matrix [g;;(£)] of the
model S for a single observation, and we use > to mean that (L.H.S.)—(R.H.S) is
positive semidefinite. In addition, Theorem 3.12 in §3.5 claims that a necessary
and sufficient condition for the existence of an efficient estimator, i.e., an unbi-
ased estimator achieving the lower bound for all £, is that Sy = {pN (a:N ;.5)}
is an exponential family with £ being an m-affine coordinate system. It is easy
to see that the condition holds if and only if S = S} is an exponential family
with £ being an m-affine coordinate system. (To verify the “only if” part may
be a good exercise.) We shall discuss a more detail about the efficient estimator
for an exponential family in the next section.

Next we proceed to the asymptotic theory of estimation, in which the
issue is the performance of an estimator in the limit of N — co. In this case,
the unbiasedness is not so meaningful as in the case of a fixed N. Instead,
we usually require an estimator év = §N( zN), or more precisely, a sequence
of estimators {&N ; N =1,2,---}, to be consistent in the sense that for any
¢, the estimate éN(a:N } converges in probability to £ as N — oo when zV is
distributed according to py (a:N ;.5). In other words, this states that for all £
and all € > 0,

i { Ey — } =0. .
Jim Preqléy — €l >el =0 (4.8)
The probability distribution of a consistent estimator £y is concentrated at the

underlying value § as N — co. Under some regularity condition, the expectation
of &n converges to ¢ uniformly, so that we have for all £,

Jim Be[én] =¢ (49)

and
Jim_ 8, [g;’v] — 0,61 = 4. (4.10)
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The mean square error of such an asymptotically unbiased estimator satisfies
the following asymptotic Cramér-Rao inequality:

lim N[ [En]] = [99(€)). (4.11)

N—oco

Indeed, substituting qé}\, for the random variable A in Equation (2.50) and

letting p¢ E¢ [E}V ], we obtain

” ) . . 1
ciegof = {e(u' = €9} 2 exes (Ouss) (O7) 19,

from which Equation (4.11) follows. A consistent estimator which achieves the
equality in the equation above for all ¢ is called an asymptotically efficient
estimator or a first-order efficient estimator, or is sometimes simply called
an efficient estimator. Such an estimator is optimal with respect to the mean
square error up to differences of order N™1. Given this, it seems reasonable to
then ask whether there always exists an asymptotically efficient estimator for
an arbitrary model. Unlike the case of efficient estimator of finite NV, the answer
is “yes”, and an example is given by the maximum likelihood estimator.

Given ™V, consider py (a:N ; §) as a function of ¢, and call this the likelihood
function. We call é ~ the maximum likelihood estimator ém,l,e, if it satisfies

maxpy (zV;€) =pn (xN;éN) . (4.12)

i.e., if it takes a value for £ which maximizes the likelihood. The following result
is well known in statistics.

Theorem 4.1 The mazimum likelihood estimator &m 1o is asymptotically effi-
cient. In other words, for all £ we have

Jim N (€] = g9 (6). (4.13)

In fact, it is possible to prove the stronger claim that asymptotically, £ is a
Gaussian with mean £ and covariance N~'[¢¥]. In §4.4, we shall see these
classical results in the light of geometrical framework for a model embedded in
an exponential family.

The mean square error of an asymptotically efficient estimator é may be
written as

161 = 5090 +0( 7).

Given this, the discussion now shifts to considering the order N2 term of the
estimator. This is called the higher-order asymptotic theory of statistical
estimation, and shall be discussed in §4.5.

4
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4.2 Exponential families and observed points
In the definition of an exponential family:
p(z;0) = exp {C(a) + §°Fi(z) —(0)}, (4.14)

the n functions Fy(z), - -+, Fn(z) are random variables. Hence let us rename
them as the n random variables

z; = Fi(x) (i=1,---,n),

and let z = [z1, - - -, Tn). Suppose we also define the probability density functions
on the n-dimensional random variable & = [z;] with respect to the dominating

measure
du(z) = exp{C(z)}dz.

Then Equation (4.14) may be rewritten without loss of generality as
p(x;0) = exp {0'a; — P(B)}. (4.15)

We use this representation in the discussion below. As was already seen, the
exponential family S = {p(z;0)} is a dually flat space, with its e-affine coordi-
nate system given by the natural parameters , its m-affine coordinate system
given by the expectation parameters

n = Balz:].

We also have

Bgl (i — mi) (=5 — n3)] = 945(0), _
where g;; is the Fisher information matrix with respect to the natural parame-
ters.

Example 4.1 (Normal distribution: see Examples 2.1 and 2.5) Con-
sider a family of probability distributions parameterized by [u, o] of the form

p(zipo) = ﬁ exp {——2—;5@ - p)z}.

This is the 2-dimensional space formed by normal distributions, and it may be
rewritten as

1 2
p(z; 1, 0) =exp{ﬂa:— ——x® — %— — log( 27ra)}.

Now introduce the coordinate system 8 = [0*,02] defined by

[ 92 1

1_ —
o 202’
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and the random variable T = [z1,z2) defined by
si=F@E =z ad z=FRE) =%
We then see that we have the exponential family given by
p(z:0) = exp{fzm—¢(0)} oand
BO) = L +log(vro)

The expectation parameters n = [n1,72] are given by
m = Els]=p and
e = Elze]=E[2?] =u® + 0%

Consider N observations £ = z12s - - - Ziv, each independently distributed

according to an element pg in the given exponential family. The probability
distribution on this is given by

N
pw (zV;0) = [ [ p (2::0) = exp[N{6°2: — ¢(6)}], (4.16)
t==1

where we have let

z= %th (4.17) -

(Note that x; is not the t'P component of the vector x, but rather the gt
observed vector; F; is the i*" component of the vector #.) This shows that
{o~n (CL‘N ; 9)} also forms an exponential family with @ being natural parameters.
Here it should be emphasized that the probability distribution py on zV, which
has nN components, may actually be expressed as a function of the random
variable Z, which has n components. This means that Z is a sufficient statistic
with respect to the exponential family (see §2.2). This, then, guarantees that
statistical inference based on ™ may be reduced, without compromising the
quality of the result, to inference based on only Z, a compressed representation
of the data (the Rao-Blackwell Theorem).

Now consider, with respect to the observation z/, the point which has the

coordinates
7 =Z. (4.18)

In this way, the sufficient statistic Z of =V determines a point # in S (i.e., a
point whose coordinates under the n-coordinate system is Z.) We call this the
observed point. Then the following clearly hold:

n

Bl @)@ )] = o)

Eolz]

4.3. CURVED EXPONENTIAL FAMILIES 87

which means that # is an efficient estimator of . (Recall that the Fisher in-
formation matrix with respect to the 7-coordinate system is [g%] = [g;;]7?; see
§3.5. ) From the central limit theorem, we see that, asymptotically, # is dis-
tributed according to the normal distribution with mean 1 and variance N~1g;;.
We also see that the observed point is the maximum likelihood estimate of the
model. Indeed, for any 6 we have

Il

togpw ('36) —logpw (z7:0) = N{(F - 6%z — () +%(0)}

ND (ps||pe) =0,

where 6 is the 0-coordinates of the observed point and D is the Kullback diver-
gence.

4.3 Curved exponential families

By a curved exponential family we mean a set of probability distributions
which forms a smooth submanifold within an exponential family; put another
way, it is a family of distributions which is smoothly embedded in an exponential
family. Letting n and m respectively denote the dimensions of the space of the
exponential family and the curved exponential family, we call this an (n,m)-
curved exponential family.

Let M be a curved exponential family with the coordinate system u = [u%],
where @ = 1,---,m. Then since the probability distribution denoted by u
belongs also to .S, we may write their -coordinates as

0 = 6(u). (4.19)

‘We may consider this as the parameterization of the submanifold M within S.
Then the probability distributions in M may be written as

p(z;u) = exp { & (w)z; — p(0(u))} . (4.20)
We may also write this in terms of 7-coordinates as
n = n(v). (4.21)

In the sequel, we chiefly use the 7-coordinate system to represent a point in .S,
so that Equation (4.21) is primarily preferred.

Example 4.2 Let € be a random variable distributed according to the standard
normal distribution N(0,1) with mean 0 and variance 1. Suppose we observe a
signal of strength 1 with noise €, both scaled by a factor of u:

z=u(l+e).

Then z is distributed according to a normal distribution with mean u and vari-

ance u®. Hence the candidates we wish to consider, within the 2-dimensional
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point
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Figure 4.1: An example of a curved exponential family M.

space of the normal distributions S, are those probability distributions M =
{p (z;u)} such that

p=u and o=l
Now M is a (2,1)-curved exponential family parameterized by the scalar u, and
within the space of the exponential family S it is a curve whose defining equations
with respect to the 8-coordinate system are

1

91=; and = !

T 22’
while with respect to the n-coordinate system they are
m=u, and =20

(Figure 4.1).

Suppose the data points z;,- -, 2y have been observed. This determines a
point 7j = Z within S whose 7-coordinates are . We called this the observed
point. Since Z is a sufficient statistic for S, and hence for M also, it suffices to
simply consider functions of 7} for the estimators & = f () with which to estimate
the parameter v in the underlying distribution p (z; ). In other words, we may
represent an estimator by a mapping from S to M:

f:S8—>M where 7 a=f(H). )

The inverse of the estimator f, i.e., the set of all points in S which map under
estimation to the same point u, is in general an (n—m)-dimensional submanifold
of S. We let

Alw) = 7 w) = {n| f(n) =u} (4.22)
denote this space, and call it the estimating submanifold corresponding to

the point » in M. Then we see that selecting an estimator decomposes the space
S into a collection of estimating submanifolds (see Figure 4.2).
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Figure 4.2: Estimating submanifolds A(u).

From this point of view, we see that the characteristics of an estimator are
determined entirely by the set of estimating submanifolds {A(u)} and the shape
of the statistical model M. A similar visualization can be made in the case of
testing, which we discuss later.

4.4 Consistency and first-order efficiency

Asymptotic theory is the analysis of those properties which emerge when the
number of samples N is large. Let p(x;u) be the underlying distribution be-
longing to a curved exponential family described above, and let us consider the
accuracy of an estimator 4 with respect to the underlying value .

First let us consider the geometry of a consistent estimator . When the
underlying distribution is u, the expected value of the random variable z is
n(u). Therefore, by the law of large numbers, Z converges with probability
1 to the point n(u) which represents the underlying distribution under the 7-
coordinate system. Hence a necessary and sufficient condition for consistency
is for n(u), the limit of Z, to be contained in the estimating submanifold A(u)
corresponding to u. Since the point n(u) is indeed contained in M, this means
that this point 7(u) is the intersection of M and A(u).

It is possible to consider an estimator for which the estimating submanifold
A(u) depends on the number of samples N, or equivalently, for which f(n)
depends on N. In this case, we have consistency if An(u) = fy*(u) contains
n(u) as N — oo.

Suppose now that we are given a consistent estimator 4, and let us evaluate
its estimation error. Since the observed point 7 = Z converges to the underlying
point 7n(u) as N — oo, 7 is distributed close to n{u) when N is large. Therefore
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Figure 4.3: The coordinate system w = (u,v) for S.

we may consider the tangent space of the point n(u) in .3, and within this space
linearize the possible values of # with respect to the point n(u). Now take the
difference between % and its expected value, scaled by a factor of v/N:

5=vVN{Z-n(u)} where &= [%]. (4.23)

By the central limit theorem, this asymptotically follows the normal distribution
with mean 0 and covariance matrix [g;(u)], where by g;;(u) we mean g4;(n(u)),
the covariance matrix of z under the distribution p(z;u) = p(x;n(u)). Note
that this is also the matrix representing the metric of the tangent space T;(,)(S)
with respect to the §-coordinate system.

The space S, as can be seen from Figure 4.3, is covered by the family formed
by the set of A(u). Since A(u) passes through the point » in M due to the
consistency, we may introduce a coordinate system v onto the submanifold A(u)
with u as the origin. The dimension of A(u) is n — m, and we shall use indices
such as k and X ranging over m + 1,m + 2, -- -, n for the coordinate system v.

Then the point 7 in S may be indexed by (u, v}, where u represents the A(u)
which contains 7, and v is the index of n in A(u). Let us consider w = (u,v) as
a new coordinate system for S. When using indices, we shall write

w= [w*] = [u*,v"],

where o ranges from 1 to n, a ranges from 1 to m, and « ranges from m+1to _

n. Then the 7-coordinates may be written using the w-coordinates as

n = n(w) =n(u,v). (4.24)
This is a coordinate transformation from the (w = (w,v))-coordinates to the
n-coordinates. Since the origin v = 0 of A(u) is in M, the points in M may be
written as n(u) = n(xw,0).
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Let @ = (@,9) be the (u, v)-coordinates of the observed point #; this may be
written as

7 = (@) = n(4,9). (4.25)

Since 4 and 9 are close to v and 0, respectively, let us consider the following
normalized quantities:

a=vVN(@—-v), o=vVNo, b=(8). (4.26)

Now take the Taylor expansion of Equation (4.25) around the point w = (v, 0).
Then since ¥ = w+ ﬁi}, and expressing in terms of 7-coordinates, we obtain

. . 1 o 1 o~
=% = m(u, 0) + ﬁt’?am(u, O)w + m(f’aaﬁm)w P

1 G 1
+m(3aag&,m)w°‘wﬁw7 + O<7\ﬁ) . (427)
By moving the first term on the right hand side across the equality and
scaling by a factor of v/, we obtain

~ . 1 o~ 1 ot~ ~ 1
Z; = Bgiw® + mcagiwawﬁ + 6—NDaﬁ7iwawa7 + O(m) N (4.28)

where B, C, and D are the derivatives of n with respect to w. For example,
Bm‘ = aam(u, 0) and Caﬁi = Baagn,;(u, 0)

First let us discuss what is typically done in the asymptotic theory of esti-
mation, which is to drop the terms smaller than O(ﬁ) and take the linear
approximation. Let us denote the natural basis of n = [n;] by

i ) — At
e a—m =0 y
and that of w = [w®] by
eq = b
(s awa - Ya

These are bases for the tangent space T,(,)(S) of S at the point n(u) corre-
sponding to the underlying distribution in M{(C S). We may decompose {en}
into {e,} U {ex}, where the tangent space of M is spanned by

g
due

€, =

and the tangent space of A(u) is spanned by

9
ov*

ey = (k=m+1,---,n).
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We may also decompose the matrix B,; into the B,; and B.;. Since
e, = By;e'  and e. = By;é€',

we see that they are the components of the tangent vectors of each coordinate
axis in w = (u,v) expressed in terms of the basis {ei}. Recollect that the inner
products of basis vectors determine a metric; with respect to these bases, we
have

g% (e, &) ~ and
3 (4.29)
Gag = (eou eﬂ) = BaiBﬂjglj-
The matrix g representing the metric with respect to the w-coordinate system
may be decomposed as

_ | Gab  Gax
[9a5] [ o o ] , (4.30)
where

Gab = (eayeb) = Ba.iBbjgij (4.31)

is the matrix representing the metric on M, which is also the Fisher information
matrix of the distribution family M. When A(u) and M are orthogonal we have

9ax = (€a, €x) = ByiBy;g"? = 0. (4.32)

If we ignore the terms smaller than or equal to the order of ﬁ in Equation
(4.28), we obtain the linear relation

B* = B*;, (4.33)
where [B*’] = [9'w®] is the inverse matrix of [B,.]. From Equation (4.29) we
have

B* = g*fgi By, (4.34)

where [g*f] denotes the inverse matrix of [9ap]- Since #; is asymptotically
distributed according to the normal distribution with mean 0 and covariance
l9i5], its linear transformation % is also distributed normally, with mean 0 and
covariance [¢°f]. Since @® is the estimation error 4% — u® scaled by a factor of
VN, the mean square error scaled by a factor of N is given by

§” = El@a’] = NE[(a° — u®)(2° - )], (4.35)

where §° is the (a,b)®™ component of the matrix [g%#], the inverse matrix of
[905]; and E denotes the expectation with respect to p (@5 ). If we decompose
the matrix [g4g] as Equation (4.30) and take its inverse, we obtain

=ab

01 = (905 — gaxg™ g02] - (4.36)
Clearly, this is not smaller than [g?], the inverse of [gab], and we have

7% > g, (4.37)
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where we have used > to mean that [§2° — ¢°®] is positive semidefinite. Note that
this result just corresponds to the asymptotic Cramér-Rao inequality: Equa-
tion (4.11). Furthermore, we see that the equality §* = g% holds, i.e., the
estimator is asymptotically efficient, when and only when go. = 0, or in other
words, when and only when A(uw) and M are orthogonal.

In summary, we obtain the following theorems.
\

\
Theorem 4.2 An estimator 4 is consistent if and only if the estimating sub-
manifold A(u)(= An(u)) contains the point n(u) (as N — c0.)

Theorem 4.3 The asymptotic mean square error:
_ab def . ~a ay {ab b
= lim N — —
g i E[(u u?) (u u )]
of a consistent estimator ¢ is given by

-1
(3] = [9ab — gang™ g62]

and the estimator is (first-order) asymptotically efficient if and only if A(u)(=
An(uw)) and M are orthogonal (as N — o).

Now, let us characterize the maximum likelihood estimator @p, 1 from a ge-
ometric point of view, and establish the link between Theorem 4.1 and Theorem
4.3. If we compute the Kullback divergence from the observed point % to a point
n(u) in M, we obtain

DA |In(w) = $(0(w)+eH) — 6 (u)h
= w(ﬁ)—%logpw (@V;u). (4.38)

Since # is the result of an observation, () does not depend on u. Hence
the point » in M which minimizes the divergence with point # is the point
which maximizes the likelihood py (a:N ; u) , and this is the maximum likelihood
estimator @iy e Recollect that the point which minimizes the divergence was
the orthogonal projection of the point 7 onto M along an m-geodesic (i.e.,
m-projection, see §3.5). In other words, the estimating submanifold A(u) of
T 1e. IS m-autoparallel and orthogonal to M. We thus see that the maximum
likelihood estimator is an asymptotically efficient estimator.

More generally, if we consider an arbitrary divergence D on S which induces
the Fisher metric (or its constant multiple) in the manner described in §3.2, and
if we define the estimator 4 by

D (7 ||n()) = min D (7 | n(u)), (4.39)

then we see that 4 is asymptotically efficient (Eguchi [84]). Indeed, the esti-
mating submanifold of 4 at the point u is represented (in a neighborhood of u)

as
Alw) ={n| D (Fa)u) =0, Va}. (4.40)
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from which we have
9o = —D [an ” aa] =0.

4.5 Higher-order asymptotic theory of
estimation

Till now, we have been discussing the case when, by making linear approxi-
mations, the analysis is contained within a single tangent space. If we do not
drop the higher order terms ﬁ and %, then we need to consider not only the
tangent space of A(u), but also its curvature. Through the shape of A(u), it is
possible to analyze and evaluate various efficient estimators.

Let us outline the higher-order asymptotic theory. Using Equation (4.28),

Equation (4.33) may be more accurately written as

W% = B¥E; - ﬁcngﬁw
1 ) 1
—gﬁpgwwﬂwwé +0 (m> . (4.41)

We wish to obtain from this the distribution of @®. To do this, let us compute
the moments of @*. First, since E[%;] = 0 and E[@Pd*] = ¢%* + O(%), we
find that the expected value of ¥* is given by ’

E[o®] = _;\}-ﬁcuo(%), where (4.42)
¢ = oge

Then in general, even when n(u) is contained in A(u), the estimator 4 = [4°]
contains a bias of order % whose coefficient is C*(u). This becomes 0 as N — 0.
In order to reduce and compensate for this bias of the estimator, we use C*(4)
instead of the bias C%(u), to obtain

1
0 = 4% + —C°%(4). 4.43
4 4% 4 2NC’ (@) (4.43)
We call this a bias-corrected estimator. The bias of 4* is
-k 1

In order to compute the distribution of 4*, we first compute the distribution
of \

= (4%,9") = [wa + %O"(ﬁ)} ;

and then integrate this over o*. To compute the distribution of %*, we use the
fact that it is asymptotically distributed according to the normal distribution
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n(w; g*P) with mean 0 and covariance g%#. Let Ay denote the correction term,
and let us write the distribution in the form

p(@") = n(@*;9%%) {1 + AN (")}

Then we may expand Ay as the sum of tensor Hermite polynomials in &*. Each

term may be obtained by computing the moments of @* up to the orders O(ﬁ)

and O(%) using Equation (4.28). We call such an expansion the Edgeworth
expansion.

We refer the reader interested in the details of these calculation to 8, 9],
and instead simply state the results.

Theorem 4.4 The mean square error of a bias-corrected first-order efficient
estimator is given asymptotically by the expansion:

o a % a 1
E[(ua_u)(u”—u")]=ﬁgb+5j—v—2K°b+o<N1§>_ (4.44)

K may be decomposed into the sum of positive semidefinite matrices:
2ab 2ab 2ab
K= (0P) 2 (H) "+ (550) 7, (4.45)

where the terms I‘g‘,}‘) s Hﬁ), and Hﬁ.‘m) represent the m-connection coefficients of
M, the embedding e-curvature of the model M, and the embedding m-curvature
of A(u), respectively:

2ab m)% (m)?  ce
(K™ = pmzpem® ey (4.46)
o)\ 220 K A
(BT = HOLEO 0000, and (4.47)
m) 2e0 m)% m)®
(H,(, )) = HL g gughy (4.48)

and
g, = <V§T)ed,eb>gb”,
HOL, = (Vieyer) o™, and

HY = <Vg:)6,\,eb>gba-

This theorem leads to several observations. First, the I‘g}") term is not a
tensor, but rather depends on the choice of coordinate system u for M. This
reflects the fact that the square error is also not a tensor and depends on the
choice of coordinate system. However, once the coordinate system (parameter) u
is determined, this value remains invariant on the choice of estimator. Although
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it is possible to define the coordinate system u so that 1‘5;,“) is 0 for a particular
point (e.g. anormal coordinate system for the m-connection), it is only possible

to have Fg}‘) equal to 0 at all points if M is m-flat (and hence e-flat by the
duality).

Second, the Hz(\;) term represents the e-curvature of M. The e-curvature
of M is 0 when and only when M is e-autoparallel in S, i.e., when and only
when M is itself an exponential family (see Theorem 2.5). Hence this term
shows that it is not possible to avoid an increase in estimation error given by
the e-curvature, which measures the deviation of M from being an exponential
family.

Finally, the H&m) term shows that the estimation error includes the m-
curvature at the point n(u) of the estimating submanifold, and this is the only
term that depends on the choice of an estimator. Hence a first-order efficient
estimator for which the m-curvature of A(u) is 0 is an optimal estimator with
respect to the terms up to ﬁlg , which we refer to as the second-order efficiency
of the estimator. As we noted before, for the maximum likelihood estimator, the
estimating submanifold A(u) is m-autoparallel and orthogonal to M. Therefore,
we obtain the following.

Theorem 4.5 The bias-corrected mazimum likelihood estimator 4%, is
second-order efficient.

We also see that, for any divergence D which induces (g, VO™ V(}) on S, the
bias-corrected version of the minimum D estimator @ defined by Equation (4.39)
is second-order efficient, because Equation (4.40) leads to

Hr(cr)l\],)a = <V£r:)e)\7ea> =-D [aka)\ ” aa] =0.

To show that the maximum likelihood estimator is “optimal” was for R.
A. Fisher a life-long dream. This dream has been achieved in the asymptotic
case by the theorem above. The idea of bias correction was introduced by C.
R. Rao, and its higher-order asymptotic optimality was proven by Rao, Ghosh,
Pfanzagl, Chibisov, Efron, and Takeuchi-Akahira. Its geometric structure, and
in particular its relation to the e-curvature was first noted by B. Efron [83].
The differential geometric framework including both the e-curvature and the
m-curvature was introduced by Amari [5, 6]. The link between the asymptotics
of the minimum D estimator and the dualistic structure (g(2), V(2), ¥(P")) was
pointed out by Eguchi [84].

It is possible to consider evaluating the estimation error up to the 7l term.
Recently, Kano [116] calculated the 55 terms where the bias of a second-order
efficient estimator is corrected up to ﬁlg He proved a surprising result that
the maximum likelihood estimator does not minimize the 7\;1—3 term, implying
that it is not third-order efficient. He gave the third-order efficient estimator
explicitly. It should be noted that the expansion in Equation (4.44) of the error
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is an asymptotic expansion for large N, and even when the number of terms is
taken to be large, convergence is not necessarily guaranteed.

Finally, we make some remarks on the bias correction. We first emphasize
its dependence on the choice of coordinate system. For example, the bias-
corrected maximum likelihood estimator 4%, , . depends on the parameterization

_(coordinate system) u of the model, while the original estimator fm.1e. does not.
\‘Ihe purpose of the bias correction is just to compensate for the dependence of
the mean square error on the parameterization. More precisely, the difference
of the mean square errors of two bias-corrected first-order efficient estimators
turns out to be a tensor, so that we may compare them in a geometrically
invariant manner. We should also note that the second-order efficiency defined
above is the optimality, up to the order of ﬁlg, of a bias-corrected estimator
compared to all other bias-corrected estimators. In fact, it is sometimes possible
to improve a second-order efficient estimator, in the sense of the mean square
error up to the order of ﬁlg, by adding a bias term. However, the superiority
of the resulting estimator depends on the manner of parameterization, because
the mean square error is not geometrically invariant. The bias correction is
thus needed to discuss the asymptotic optimality in terms of the mean square
error. Another way to discuss the asymptotic optimality of estimators is to
consider a geometrically invariant criterion, rather than the mean square error,
‘to measure the accuracy of estimation. Recently, a remarkable progress in this
direction was made by Eguchi and Yanagimoto [88], where some notions from
the vector analysis and the harmonic analysis have been introduced in the world
of information geometry. See also Komaki [123], where the problem of higher-
order optimal prediction including the analysis based on the Bayesian framework
is studied from an information geometrical point of view.

4.6 Asymptotics of Fisher information

The information contained in the observed data concerning the underlying distri-
bution may be expressed using the Fisher information matrix. The information
contained in a single data point z is gqp, while that contained in a collection of
N data points zVV, which is summarized by the sufficient statistic z, is Ngap.
We express them as gop(X) = gap and gop(XY) = gas(X) = Ngap. Now let

y=f(@)
be a statistic which is a function of Z. Unless f is invertible, one cannot recover

# from y, and hence in general the Fisher information contained in y is less than
Ngas. The Fisher information contained in y is given by the covariance matrix

of 9, logp (v;u),
9a(Y) = E[ 8. logp (Y;4) 8y logp (Y;u) ], (4.49)

where p (y; ) is the probability density of y, and « is the underlying parameter.
According to Theorem 2.1 in §2.2, we have

gab(X) = Ngab = gab(Y) + Agab(Y), (450)

T A A S e o
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where the information loss due to the contraction from Z to y is given by the
expectation of the conditional covariance:

Agop(Y) = B[ Cov[8.4(X;u), 8p(X; ) [Y]]. (4.51)

The calculation of an estimator 4 based on # is an information loss pro-
cess. The information loss which a first-order efficient estimator incurs may be
computed using the distribution of @.

Theorem 4.6 (Amari [6, 9]) The information loss of a first-order efficient
estimator 4 is

oy (@) L rm)? 1
Agab(U)~(HM)ab+2(HA )ab+0 %) (4.52)
where
2 K
(BS) = HOLEO)g00%,  and (453)
2
(BE) = OB 0g™ 0™, (4.54)

This theorem shows that a first-order efficient estimator preserves a large portion

of the order N information Ng,; contained in a set of N data points, only
incurring an information loss of order 1, and the information loss per data point
asymptotically reaches 0. It should be noted that the dominant terms of the
information loss are just the covariant versions of the O(N~?) terms of the
mean-square error given in Theorem 4.4, except that the non-tensorial term

2
(1“5;}‘)) does not appear here.

Let us consider where this information is lost, and whether this knowledge
could improve inference. First let us examine the whereabouts of the lost infor-
mation in the case when 4 is the maximum likelihood estimator. Recall that the
observed point Z may be represented as Z = n(%, %) and hence the pair (4, )
contains the whole Fisher information N g,;, while 4 has an information loss of
O(1). The gap between (%, 9) and 4 may be analyzed by a decomposition of 9
given below.

The tangent space T,(S) of S at the point 7(u) may be decomposed into a
direct sum of the tangent spaces of the model M and the estimating submanifold
Afw):

Tu(S) = T.(M) & T.(A(u)).

The bases of Ty (M) and T,(A(u)) are {e,} and {e}, respectively. Let Bs

first extract the curvature directions of M from T, (A(v)). The embedding e-
curvature of M is given by the orthogonal component of the change in e; as it
is moved in the direction of e, with respect to the e-connection:

Héz)n = <V£fa)eb,e)\> .
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Then
el = H9%e,, (a,b=1,--,m) (4.55)

is the collection of vectors in T,,(A(u)) in the direction of the e-curvature of M.

Let us denote the linear span of these vectors by Vél).
Let us now similarly define even higher order embedding e-curvatures (the
change in direction of curvature). To do so, we compute

vevee,,

remove the components in Tp,(M) and in V,fl), and let the components orthog-
onal to them be denoted by

el = H e, (4.56)

In other words, et(;)c is the orthogonal projection of Vgi)V,(fb) e. onto the orthog-

onal complement of T,,(M) ® Vi, We call {H (o) "} the second-order embedding

abe

e-curvature of M, and denote the linear span of {el(;)c} by V&, In this way

we may successively define the pt"-order e-curvature {Hﬁ)”ap +1} and the space
Vi? of its direction.

Let @ be the maximum likelihood estimator. Then, since the estimating
submanifolds {A(u)} are m-autoparallel in S, coordinates v = [v*] may be
chosen so as to form an m-affine coordinate system on each A(u). Now let us
consider 9 as a vector in Ty (A(#)), representing it by 9°- (e, )4, and decompose it
into the directions of higher-order curvatures. The components of the direction
of first-order curvature is given by

Pap = H 57 = HO oeg, (4.57)

the components of the direction of second-order curvature by

Pabe = HE 0% = O irg, ., (4.58)
and similarly for the higher-order terms, where H i‘,i, H S,)CK, --- are all evaluated

at 4. Restating this in the language of statistics, 755, Fape, - - can be obtained
by taking the higher-order derivatives of the logarithmic likelihood

Bul(Z, 1), CubollT,u), BulhOcl(E,u), ---,

orthogonalizing them in order, and evaluating them at the point 4.
Now let

SV = g

)

s(p) = {ﬁ,fab,"',fal...ap}, P=2,3,---.

In addition, let us denote the qué,dratic form of the pth-order e-curvature of
2
M by (H};)p) ' which is defined from Hﬁ)”% 41 In a manner similar to the
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definition of (H](\f,?l)zb = (H)2, in Equation (4.53). We have the following
t}fle:)rem ([9, Theorem 7.10}), which is an extension of Theorem 4.6 in the case
of &t = iy 6.

Theorem 4.7 When s®) is maintained as o statistic, the Fisher information
lost is

2
Aga(s®) = N7 (HJ,) +0(N7), (4.59)

The majority of the information is contained in the maximum likelihood
estimator 4. Let us now consider whether the lost information, for example the
component 7y of ¥ in the direction of curvature, can still be useful in statistical
inference. Of course, use of this information cannot make the estimator 1 itself

better. However, #,;, provides us with information concerning the accuracy of
4.

Theﬂorem 4.8 (Amari [7, 9]) The conditional covariance matriz of the estima-
tor & when the supplemental information # = {44} is known is given by

NE[(8% —u®) (#° —u®) | #] = g% + 7% 4 0(%) . (4.60)

where 7% = #,,0%¢ g%,

When # was not used, the covariance of 4 (or @*) was given by Equation
(4.44). In comparison, we see that 4, provides a more refined order —k- measure
of the accuracy of 4. v

We call statistics such as 7, which by themselves contain no {or little) in-
formation ancillary statistics. Within the statistics community, there is the
“folklore” that when ancillary statistics are available, it is useful to classify the
situation based on this value, and to then perform conditional inference with
respect to them. On close investigation, however, we find that ancillary statis-
tics are useful not because they contain no information, but rather because,
although they contain no information by themselves, they contain the most in-
formation (conditioned information) supplemental to the information contained
in the estimator 7.

4.7 Higher-order asymptotic theory of tests

Along with estimation, an important branch of statistical inference is testing.
The problem:of interval estimation is a manifestation of testing and shall follow
from this discussion. In this section we discuss the geometrical theories of testing
hypotheses within the framework of a 1-dimensional curved exponential family
M = {p(=z;u)}, where v is supposed to be a scalar parameter. '
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Let us consider the problem of testing the hypothesis Hy : u = up against the
alternative hypothesis Hy : u # ug. Recollect that the observed data z1,---, 2N
may be summarized by the sufficient statistic Z, and that this determines the
observed point 4 = Z in the space S of the exponential family. Testing usually
consists of choosing a function A(%) of Z, and then accepting the hypothesis Hy
if A(Z) is in some interval, say I, and rejecting the hypothesis otherwise. Within
the space S, those points 7 which satisfy A(n) € I form some region. We call
this the acceptance region A, and if Z is within this region we accept the
hypothesis, and otherwise if it is outside of this region (we call the outside the
critical region) we reject. The problem lies in properly selecting the region
A so as to elicit good testing performance. In general, the interval I and the
resulting acceptance region depend on the number of observations N, and we
denote them by Iy and Ay, respectively.

Let us now define the power function of a test T = {Ayx; N = 1,2,---}.
First let us normalize the parameter u, using the Fisher information g = ga(uo)
(a=b=1)and N, as .

up = —_

ST NG

The reason for this normalization is that as N grows larger, it should be possible

to detect smaller differences between u and up. Let the probability of reject-

ing the hypothesis when the parameter of the underlying distribution is u; be
denoted by

(4.61)

Pr {reject Hp | the underlying distribution is us}
Pr{Z ¢ An|z1, -, zn ~ p(z; us)}. (4.62)

Pr(t; N)

We call Pr (¢; N) when viewed as a function of ¢ the power function of T
When t = 0, Hp is true, and it would be undesirable to reject the hypothesis.
Hence we choose a (small) positive constant o, which is called the level of the
test, and fix
Pr(0;N) = a. (4.63)

For example, we fix a to values such as 5% (0.05) and 1% (0.01), being regardless
of N. Since A\(Z) converges to A(n(up)) in probability as N — oo when ¢ = 0,
the level condition implies that the interval Iy collapses into this point A(n(uo))
in the limit of N — oco. In addition, as a necessary condition for the power of
points for  # 0 to be greater than that for £ = 0, we require that

P4 (0; N) =0, (4.64)

where ’ denotes the derivative with respect to t. We call this the unbiasedness
condition. Under these conditions, the power function generally has the limit
limpy oo Pr (; N).

Among those tests which satisfy the conditions in Equations (4.63) and
(4.64), a good test is one whose power at points ¢ (t ¥ 0) is high. Unfor-
tunately, there does not in general exist a uniformly most powerful test,
which is a test more powerful at every point ¢ than any other test. Hence given
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Figure 4.4: Acceptance region A.

a test, it is necessary to consider for what values of ¢ it performs well and for
what values it performs poorly. To analyze this, let us first expand the power
function as ’

1 1 1
B (5 M) = Prs (04 = Pra 04 - Pra () + 0<m) . (469)
In the first-order asymptotic theory, it is assumed that N is large, and that
therefore only the term Pri(t) need be considered. In this case there exists a
test for which Ppi(t) is more (or at least equally) powerful for all ¢ than any
other; we call such a test a first-order uniformly most powerful test, or
an efficient test.

We begin our discussion of the geometry of tests by focusing on the boundary
of the acceptance region for a test T. As shown in Figure 4.4, the acceptance
region is bounded by either 1 or 2 hypersurfaces across M which also flank the
point 7(ug) on the curve M.

The hypersurfaces are of the form {r | A(n) = ¢}. For each u, let us denote
the hypersurface with ¢ = A(n(u)) by B(u). Then in general B(u) transver-
sally intersects with M at n(u). Furthermore, taking a (small) open subset of
B(u) including n(u) and renaming it B(u) if necessary, we may assume that
{B(u)} forms a family of disjoint submanifolds, just like a family of estimating
submanifolds defined for an estimator. Hence we can introduce a coordinate
system v = [v°] on each B(u) so that (u,v) forms a coordinate system of S
(or at least of a nejghborhood of n{up) in §). Then the observed point 7 is
transformed to (4,9) by Z = 5(4,9), and the joint probability distribution of
(@, D) is determined depending on the geometric shape of the acceptance region.

In the case of the first-order asymptotic theory, it suffices to linearize all the
relations around the point n(uo) and analyze within the tangent space To(uo) (S)-
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When the underlying distribution is u;, % is asymptotically distributed according
to a normal distribution with mean n(u;,0) and covariance N~1g,;. Now let
z.(a) be the two-sided 100a% point of the normal distribution; i.e., let z.(a)
be the point which satisfies R

2Zy (o)
/ n(z)dz=1-aq, (4.66)
—ze(@)
where )
n(z) def o exp {—-2-2:2}
Also, let

B(t) = /t " n(2)ds. (4.67)

Note that ®(z.(c)) = /2. The first-order efficiency of a test is characterized
by the following theorem (Kumon and Amari [132, 9]).

Theorem 4.9 The test T = {An} is first-order efficient when and only when
the bounding hypersurface of the acceptance region Ay is asymptotically orthog-
onal to M in the limit of N — oo, or in other words, when and only when
the hypersurface B(uo) = {n | A(n) = A(n(uq))} is orthogonal to M at the point
(o), i.€., gax(ug) = 0. In this case, its asymptotic power function is given by

Pry(8) = ® [z(c) — ] + & [z(a) + 1. (4.68)

We now give several examples of tests.

Example 4.3 (Wald test) This is a test based on the mazimum likelihood
estimator fim 1., and uses as its test statistic either

A@) = (8m1e.(Z) — uo)? g(uo)

or
M) = (@m.1e.(8) — 10)? 9(fimm 1. (Z)).

Then X s asymptotically distributed according to the x2-distribution. The bound-
ary of the acceptance region of this test is given by the constant Gm e (Z); i€, it
is an estimating submanifold of the mazimum likelihood estimator. This implies
that B(u) is orthogonal to M for all u, and therefore the test is efficient.

Example 4.4 (Likelihood ratio test) The likelihood ratio test is one which
uses the statistic ~
p(Z;uo)

ME) = —2log e @)
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This s also asymptotically distributed according to a x2-distribution. Rewriting
this into

Az) =2{D (& || uo) ~ D (Z || fum.1.6(2))}

where D is the Kullback divergence, we see that Blug) in this case coincides
with the estimating submanifold A(uo) of Gmye. Therefore the test is effi-
cient. Note that B(u) is not generally orthogonal to M for u # ug. However,
if M is an exponential family, by the Pythagorean theorem we have ME) =
2D (fim1.6(Z) || wo), and hence this test turns out to be essentially the same as
the Wald test.

Besides these, there are well known tests such as the efficient-score (Rao)
test, the locally most powerful test, and the conditional test, all of which are
first-order efficient and equally powerful if one considers only the term Pry(t).
However, when actually testing on a finite number of N samples, these tests
behave quite differently. In order to investigate how and where these tests differ
in quality, it is necessary to examine the higher-order terms Pro(t) and Prs(t).

The statistics of these first-order efficient tests are all distributed asymptoti-
cally according to the y2-distribution. However, for finite N, it is not reasonable
to simply consider the x2-distribution when determining the interval Iy with
which to define the acceptance region Ay : A(%) € Iy from the level a. Instead,
it is necessary to consider the difference between the distribution of A(Z) and the
x2-distribution, and correct the acceptance region given by the x2-distribution
so that the level « is correct up to order N~3/2 and the condition of unbiased-
ness is satisfied up to order N™1. This correction allows us to compare the tests
from a common base and to correctly compute the higher-order terms of their
power functions.

Examining the Pry(t) component of tests in this manner, it is possible, how-
ever, to prove that all first-order efficient tests have the same Pro(t). Hence
we say that “first-order efficient tests are second-order efficient.” It is neces-
sary, therefore, to examine Prs(t) for each test. As this term contains many
components other than such geometrically meaningful quantities as metric or
curvature, writing out the results of calculations can be rather tedious. Instead,
we introduce a function P(t; N), which does not depend on each test T, and
compute the difference of the power of T° and this function. For each ¢ and N ,
let

P(t; N) = sup Pr(s; N),
T

where the supremum is taken over all the efficient tests with the level o In
other words, P(¢; N) = Py, (t; N) where T} is the test which is most powerful at
the point ;. Note that there is no test T satisfying Pr(t; N) = P(i; N) for all
t in general. Now let -

APr(t) = Jim N {ﬁ(t; N) — Pr(t; N)} , (4.69)
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and call it the deficiency of T. This quantity measures the number of additional
samples which must be obtained in order for the test T' to have the same power

as Ty at each t. . . .

The computation of this quantity succeeded for the first time using differen-
tial geometric techniques ([132, 9]). From this the characteristics and differences
of a number of tests were clarified.

Tlgxeorem 4.10 The deficiency of an efficient test T is given by

1, (m KA —
APr (t) = §(t,0) [ 5(HE")” + 2 (2)g" g™
%{ Qi = TtV HG HQear — Tt ) B}, (470)
where
HEP = T HHe e, (471)
t
{ta) = 5i{n(ale) —1) —nlzla) +1)}, (4.72)
Qa.b;c = aagblw (473)
t
= - 4.74
Jte) = 1 2z, () tanh tz, (@)’ (4.74)
with g = gap, H‘Eebzc = ,(fa)eb,en> and H,(c';’i = <ng)e>\,ea>, all of which are
evaluated af ug. (Note that since M is 1-dimensional, the value of a,b,--- is
always 1.)

From this theorem, we find the following to hold.

(i) A test for which the embedding m-curvature H)(Bm) of Blug) at ug is 0
has higher power than those for which this is not the case. The tests
mentioned above all meet this condition.

(il) Since gax(ug) = 0 holds due to the efficiency of T, we asymptotically have
t
Gan(ug) = TNG

Then the theorem shows that, unless M is an exponential family, it is
better for the boundary surface of a test to not be exactly orthogonal to
M for finite N. Instead, it is better for it to be at an asymptotically
orthogonal angle depending on the embedding e-curvature H, (EZL of M.

Qabn- (475)

Let us call an efficient test which satisfies H)(Bm) =0 and

Qb = kHS) (4.76)

abk
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Figure 4.5: Deficiency of two-sided tests, with level o = 5%.

a k-test. In addition, let the scalar form of the squared embedding e-curvature
be given by

v =g B H (4.77)

abr

This v is called the Efron curvature.
Corollary 4.11 The deficiency of a k-test T(k) is given by

APpgy (t) = 22(@)é(t, @) {k - T (t, )} . (4.78)

From this corollary we see that in order to maximize the power at a point u;,
it suffices to choose a k-test which satisfies k¥ = J (¢, @). Note that when a(> 0)
is sufficiently small, tanh ¢z, (a) is nearly equal to the signature of ¢ and therefore
the relation k = J (¢, @) is approximately written as ¢t = +2(1 — k)2, (a). All of
the first-order efficient tests previously mentioned are k-tests for some k. We
summarize this information below. Also, Figure 4.5 graphs the deficiency of a
number of tests as a function of ¢, where the dashed line indicates a k-test for
which & achieves ming max, APT(k) ®).

If the level and unbiasedness are properly corrected, then regardless of the
model M used, the properties of the test are determined according to the scqlar
e-curvature . This means that there is no longer a need to analyze individual
models or to conduct simulations in pursuit of a test’s power characteristics. In
addition, although we have been discussing two-sided tests where ¢ can range
over both positive and negative values, one-sided tests, for which the alternative
hypothesis is H1 : u > ug and ¢ is restricted to ¢ > 0, may be correspondingly
analyzed in a similar manner.
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Theorem 4.12 Several first-order efficient tests and their form as k-tests are
given as follows: :

(i) The Wald test is a k = 0 test, and is most powerful at t = +2z, () when
o is sufficiently small. For a = 0.05, it is powerful when t =~ +4, i.e., at
a distance of around 4o.

(%) The likelihood ratio test is a k = 0.5 test, and is most powerful at t =
+z,(0) when o is sufficiently small; for instance, t ~ +2 for o = 0.05.
This test uniformly has relatively small deficiency.

(iti) The efficient-score test, which uses the test statistic
Mz) = g 8ab(%;u0)04(; uo),

is a k = 1 test. Since 1 = J(t,0) has no solution, this test is nowhere
most powerful, whereas the one-sided test using the same statistic turns
out to be third-order locally most powerful in the sense that the derivative
PL4(0) is the largest among those of all the efficient tests.

(iv) The conditional test, whose definition is omitted here, is a k = 0.5 test,
and is equivalent to the likelihood test up to the third-order term.

(v) The locally most powerful test, for which the second derivative PJ(0; N)
is the largest among all efficient unbiased tests with level o, is k = 1 —
1/{22%(a)} test.

4.8 The theory of estimating functions and fiber
bundles

4.8.1 The fiber bundle of local exponential families

Thus far our discussion has been in the context of curved exponential families,
i.e., distribution families M embedded within the space S of an exponential
family. This allowed us to rely on the existence of the sufficient statistic , define
the observed point 7} within S, and develop a closed theory wholly contained
within S, including the data. Of course, it is straightforward to generalize this
theory to models such as multivariate regression models and time series models
with correlated random variables.

It is possible, however, to generalize the asymptotic theory to the case of a
general distribution family M = {p (z;u)}, which cannot be embedded in an
exponential family, and, by properly defining the curvature, obtain the similar
results. This is done by augmenting each point in the model M with a high-
dimensional exponential family which osculates M in some order.
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Now fix a point up in M. Around this point, £(z;v) = logp (z; u) may be
expanded into
Yzyu) = Lz;u0) + (u* — ud)Bul(m; ug)

1
+§(u“ — ug)(ub — ub)B,068(; ug) + - - . (4.79)

Exponentiating the expansion we obtain

a a 1
P (x;u) = p(x;u0) exp {(u —ud)Xa + 5(14“ — ud)(ub — ug)Xab +oe

where (450

X, = aag(x§ uO) Xop = aaabg(x§ uO):

Now let us consider for the point 4y a new exponential family, parameterized
by 8, defined in the following way:

S(ug) {g(z,0;u0)} (4.81)
q(z,0;u0) = plz;up)exp {6°X, +6°°X 4, — ¥(0)}.

The n?tural parameters of this distribution family are given by the pair 6 =
_(9", 0%°). The point u = ug in the model M coincides with the point § = 0,0)
in S(uo). Now construct within S(up) the curved exponential family M (ug)
parameterized by u, defined by

H

0=0(u): g =ut—ug %= b_yl)

M(u) = {g (=, 0(v);up)}. (4.82)

(u® —ug)(u

N =

This M(uo) is a curved exponential family which is a good approximation to
M around wug. If we only consider the first component of the expansion, the
tangent spaces of M(uop) and M are the same at ug, and if we consider L;p to
the second component then the “higher-dimensional tangent spaces” including
the directions of e-curvature (see §4.6) are the same, and M and M (up) osculate
each other in the second-order. This may be continued to higher orders.

The augmented structure of M where each point v is supplemented by the
exponential family S(u) forms a fiber bundle with the base manifold M and the
fiber S(u).

. Given data points @, -+, zy, we may define within each S(u) the observed
point X (u) given by

X, = 0.8(Z,u), and X, = 0a0pl(Z, u). (4.83)

Performing statistical inference, say estimation, on S(u) determines for each
S(u) an estimator 4(u), and from among these we select the u* which satisfies

a(u*) = u* (4.84)
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as our estimate. The properties of this estimator may be analyzed through
the curved exponential families M (u) within each S(u). Then since the e-
curvature of M at point v is equal to the embedding e-curvature of M(u), the
theory developed previously for curved exponential families may be immediately
applied. See Amari [11] and Barndorff-Nielsen and Jupp [46] for more details.

4.8.2 Hilbert bundles and estimating functions

/
¢~ Given a family of probability distributions M = {p (z;u)}, suppose there exists
a vector-valued function f(z;u) = [fa(;u)] where the vectors have the same
dimension as u and the following holds for all u:

EJf(X;u)] = 0 and (4.85)
det E,[ £ (X;u)] # O (4.86)

Here, det B, [ f/(X; u)] is the determinant of the matrix whose components are

Eul8ufs(X;u)] = / B fols u)p (s ) da.

Given a large number of observations z1,---, %y, let 4 denote the solution to
the equation
N
S flasa) =0. (4.87)
=1

We would expect that the solution % to this equation is a good estimator of the
underlying distribution u satisfying Equation (4.85), since the left hand side of
the equation above divided by N converges to E,[f(X;4)]) as N — oco. Note
that the solvability of this equation is ensured by Equation (4.86) when N is
sufficiently large. In general, we call a function which satisfies Equations (4.85)
and (4.86) an estimating function, and call Equation (4.87) the estimating
equation. For instance, we call the derivative of the logarithm of the likelihood
function the score function; the score function s(z;u) = [0,4(z;u)] is clearly
an estimating function, and the estimator thus determined is the maximum
likelihood estimator.

Recently, much attention has been focused on non-parametric and semi-
parametric models. These models differ from classical statistical models in which
the candidate distributions are parameterized by a finite-dimensional parameter
u. A non-parametric model is one in which the shape of the distribution func-
tion is unknown, and a semi-parametric model is one in which the distribution
density of the random variable z is parameterized by not only the unknown
finite-dimensional parameter u, but also a parameter z which has a function’s
degree of freedom (i.e., an infinite degree of freedom.) In this case, the prob-
lem is still to estimate the parameter u given the observation zy,---,zy, but
in addition the unknown parameter z acts as a nuisance parameter. Let us
give an example. The location-scale model is widely used in the problem
of finding the mean and variance of the underlying distribution given N scalar
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observations zi,- -, %y, where the shape of the underlying distribution is un-
known (we let this be the unknown parameter z.) Letting u = (u, o2) be the
2-dimensional parameter representing the mean and variance, respectively, this
model may be written as

o

pmu,z) = ?i—z <x - #) . (4.88)

We would like to estimate y and o,while the function z remains unknown. Here
we only assume that z(z) a smooth positive function on R which satisfies

/z(ac)d:c = 1 (4.89)
/ zz(z)dz = 0 (4.90)
/a:zz(a:)da: = 1L (4.91)

When we consider a statistical model with a finite-dimensional nuisance
parameter z and if a sufficiently large number of data are available, then we
only need to estimate the joint parameter (u, z) by, for instance, the maximum
likelihood estimation, followed by discarding the estimate of z. Unfortunately,
this method cannot be applied to our case where z is infinite-dimensional in
general. Even in this case, however, if there exists a vector-valued function
F(z;u) = [fo(z;u)] of z and u which satisfles for all u and all z

Eu.[f(X;v)] = 0 and (4.92)
det By, [ f/(X;u)] # 0, (4.93)

where E,, , is the expectation with respect to p(z;%, z), then we may conve-
niently solve

N
Zf(l‘z',u) =0 (4.94)
=l
and obtain an estimator @ without explicitly addressing the unknown z.
Then the questions which need to be addressed are:
(i) Does such an estimating function exist?

(ii) If there exist multiple estimating functions, which would provide the op-
timal estimator 47

/

S

(iii) Does an estimating function which is uniformly optimal for all z exist? !

The differential geometric approach is particularly suited to the task of answer-
ing such fundamental questions (Amari and Kumon [29], Amari and Kawanabe
[27, 28]).

Returning to the general case, let p(z) be a probability distribution, and
consider a curve p (z;t) smoothly parameterized by a scalar parameter ¢ and
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satisfying p (z;0) = p(x) within the space P of all probability distributions.
Let a(x) be defined by

(@) = 3 108D (@:1) lewo, (495)

or equivalently
p(z;t) = p(x) {1+ ta(z) + o()}, (4.96)

where o(t) obeys lim;_, o(t)/¢ = 0. Since p(x;t) is a probability distribution,
a(z) satisfies

E,{a] = / a(z)p(e)ds = 0 (4.97)
(cf. Equation (2.9)). Assume in addition that
E[e*] < o0 (4.98)

Let H, denote the real (i.e., not complex) Hilbert space spanned by such func-
tions a(z) for all the curves passing through p, whose inner product is given for
all a(x),b(z) € Hy, by

{a,b) = Ep[ab]. (4.99)

Note that H, is a generalization of T,ge)(’P), the space of the e-representations
of tangent vectors at p (cf. Equation (2.41)), and the inner product corresponds
to the Fisher metric (cf. Equation (2.42)).

Let us augment each point (u,2) in the model M = {p(z;u,2)} with the
Hilbert space Hy,. = Hp, where p(z) = p(z;u, ), defined by all possible direc-
tions of change a(x) at p (x;u, z). Such a space has the structure of a fiber. The
distribution p (z;u, 2) changes with the value of the parameter u, and the di-
rection corresponding to this change may be expressed using the score function
as

So(x;u, 2) = O 8(z; u, 2), (4.100)
where 8, = % and

Uz;u,z) =logp (z;u, 2).

The distribution also changes with the value of z. Letting z(t) be a curve
parameterized by ¢ denoting the change in z, the direction of change in the
corresponding probability distribution is represented by

) d
r(z;u, 2, %) = az(f(a:;u,z(t))lho, (4.101)
where 2 = %ﬂ. Note that such r has an infinite degree of freedom in general.
The linear space T, . spanned by such functions {s,,r} is the tangent space of
M, and is contained in H, ,. We call the space spanned by {r} the nuisance
tangent space, and denote it by T,),.
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Now let us define, for each a € H,, 2, the e-parallel translation H(e)j’a and
the m-paralle} translation II™? 4 from point (u, z) to {(u, 2’) by

(H(e’§’a> () = a(@)-Eu»[a], and (4.102)
(H('“’zla> @ = If—((;—v;:’—zz,))a(x), (4.103)

where Ey,.s[a] is assumed to be finite. These clearly satisfy E, . [H(e)zla] =
Z,
Ey. [H(m)z a] = 0. However, they do not necessarily belong to H,, . becanse

Ey o [(H(e)z a)z] and Ey . [(H(m): a)z] may diverge. If they always belong to
H, ., then the parallel translations define linear mappings from the fiber H, , to
H,, .. These may also be written in the form of covariant derivatives, and inay
be considered to be a generalization of the e-connection and the m-connection
in the finite case (cf. Equations (2.39) and (2.43)). What is important is that
the following duality (cf. Equation (3.4)) holds:

@ 80s = (1070, 0) (4.104)
u,z’
where (, ), , is the inner product of the fiber at point p (z; u, 2).
Now fix u, and consider the m-parallel transfer of the nuisance space TV

to the point (u, z) for all points z/. We call the closed linear subspace of I}Luzzl

spanned by these transfers,

HY, = clspan {U H(m)j,T,{Yz,} , (4.105)
ZI

the nuisance fiber. In addition, we call the subspace spanned by the com-

ponent of s, orthogonal to Hf)”z (i.e., the orthogonal projection of s, onto the

orthocomplement of HIILVZ) the information fiber, and denote it by H. . Fi-

nally, we call the orthocomplement of H,fz ® HI , the ancillary ﬁbel", and

denote it by H{:z. Then the fiber H,, , may be decomposed into a direct sum
as follows:

Hu,=H,, 0 HY, @ H?,. (4.106)

Hfa,ving prepared this framework, let us return to the discussion of estimating
.functlons. Let f(z;u) = [fo(z;u))] be an estimating function. Then for any 2’
it satisfies ’

B[ fa(X;4)] =0, (4.107)

and hence is invariant under e-parallel translation. In addition, differentiating

Byl ful(X;0)] = / P (5, 2()) fulmw)dz = 0
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with respect to ¢ and letting ¢ = 0, where z(0) = 2’ is assumed, we obtain for
any ' € TN,

{r's fa)y,» =0 (4.108)
Since f, is e-invariant, it follows from the duality (4.104) that
<n<m>:,r', fa> =0. (4.100)

/ From this, we see that each component f, of an estimating function belongs to
(HY )+ = HI, ® HZ,. Conversely, if a function f, belongs to HL @ HZ, for
some z, then it satisfies Equation (4.107) for all 2. Thus the first requirement
(4.92) for an estimating function is geometrically characterized. On the other
hand, differentiation of

Byl falzu)] = /p(a;; u, 2) foz;u)de =0

with respect to u leads to
Eu,zlabfa] + (Sb, fa)u,z =0,

which shows that the second requirement (4.93) is equivalent to the regularity of
the matrix [(ss, fa),, |- Under the assumption that f. € HI @ HZ,, this means
that the result of projecting the components {f,} of an estimating function onto
HYL , must span Hﬁ,z. These considerations lead to the following theorem.

Theorem 4.13 (Amari and Kawanabe [27]) A necessary and sufficient condi-
tion for f(x;u) to be an estimating function is for its components {fo(x;u)} to
be contained in H,ﬁ’z ® H2, and for their orthogonal projections onto HI to

span H,{'z.

From this we see that if Hi,z is not degenerate and hence has the same
dimension as u, then there exists an estimating function. For many problems
which occur in practice, the following also holds:

o™, Ty, =T, (4.110)
In this case, we have HY, = T,f’rz, and hence Hi,z is spanned by the projection of
the score function s, onto the orthocomplement of ng, We call this projected
function the efficient score function. If the dimension of the efficient score
function is equal to that of u, then it is an estimating function, and the resulting
estimator is shown to be first-order efficient.

Recently, the geometrical theory of estimating function has been applied
to independent component analysis (ICA). See Amari and Cardoso [24],
Amari (20, 21], Kawanabe and Murata [120]. The theory will also play an
important role in non-parametric, semi-parametric, and robust estimation, as
well as a new statistics using generalized linear models and pseudo-likelihood
functions. It is expected that research in this direction, and in the corresponding
mathematical foundations, will continue to develop in the future.




Chapter 5

The geometry of time series
and linear systems

A linear system is a system which contains a memory structure to maintain
state, and linearly transforms an input time series into an output time series.
If we input white noise into a stable linear system, then the output time series
is stationary. Hence from this point of view, we may analyze systems and the
times series that they generate together.

Typically, in both control theory and the theory of time series, a single sys-
tem or a single time series is selected for analysis. Note, however, that since the
set of all n-dimensional linear systems and the set of all (p, ¢)-ARMA time series
are both finitely parameterizable, they both form manifolds of finite dimension.
In order to analyze the similarity between two systems or two times series, and
to consider the problems of approximation, estimation, and dimension lowering,
it is not sufficient to study single systems at a time, but it is necessary rather
to consider the space consisting of all such systems and analyze its geometric
structure. In this chapter, we survey the differential geometry of systems and
time series, and show the importance of dual connections in the analysis of their
properties. The first three sections are mostly based on Amari [12], while the
last section summarizes the results of Ohara et al. [172, 171, 173]. As the geo-
metric analysis of time series is a recent development, it is a topic which can be
expected to grow in the future.

5.1 The space of systems and time series

Consider a discrete-time linear system with one input and one output. Letting
{e:} be the time series of the input signal and {z;} be the output signal, where
t=..-,—-2,—-1,0,1,2,- ., the input-output relation of a stationary system is

115
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given by
(o]
Ty = Zhiat—i- (5.1)
i=0

We call the coefficients {fg, h1,- -} the impulse response of the system. Let-
ting z denote the operator which increments the time step so that

2y =z41  and  z7lm =myq, (5.2)

and using the transfer function of the system

H(z) =) hiz ™", (5.3)

i=0
the input-output relation may be rewritten as
zy = H(2)es. (5.4)

We assume below that the system in Equation (5.3) satisfies 322 [hi)? < oo.
We call such a system a stable system. Then H (z) may be viewed as a regular
complex function for |z] > 1.

If the input &; is white Gaussian noise independently distributed according
to the standard normal distribution N(0,1), then the output time series is a
(colored) stationary Gaussian time series. If we take the Fourier expansion (in
the wider sense) of the time series {z;}, we obtain

T
R 1
X(w) = Th_{noo \/—ZLT— t=Z_T Tie

—iwt, (5.5)
Then X (w) is a random variable whose power spectrum S{(w) = E [IX(W)?]
converges to .

S(w) = [H(e¥)[%. (5.6)
In addition, we have 0 < S(w) < 00, §(—w) = §(w) and

/ Jlog S(w)] dw < oo. (5.7)
-1
Conversely, given a stationary Gaussian time series {=zs}, if its power spectrum
satisfies Equation (5.7) then there exists a stable system H(z) = > hiz™t and
white noise {e;} such that {z:} may be written in the form of Equations (5.1)
and (5.4), and Equation (5.6) is satisfied. Although there are many such systems
H(z), the minimal phase system, i.e. a H(z) for which H(2) # 0 in the region
2| > 1, is uniquely determined from S(w).

In this way we may analyze the time series {z;}, the power spectrum S{w),
and the minimal phase system H(z) considered together. We assume below a
slightly.strengthened version of Equation (5.7 ):

/" [log .5'(¢Lz)|2 dw < o0,

-7
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and call the set of all § which satisfy this the system space or the space of
Gaussian time series L. )

It is possible to consider systems which are not minimal phase by le_ttmg the
input signal e; be white non-Gaussian noise, but we do not discuss this here'z.

Let us turn our attention to finitely parameterizable systems and time series.
Let £ = [£f] denote these parameters, where ¢ = 1,---,n. "I‘hen the power
spectrum of the time series defined by this system may be written as fS(w; ).
Under certain regularity conditions, the space formed by such time series may

¢ be viewed as an n-dimensional manifold for which £ is a local coordinate system.

Let us give several examples.

Example 5.1 (AR model) We call a system for which the output z; at time
t may be expressed in terms of the previous p values x;1, -+, Ti—p and the
current input €; as

i
agTy = — Z a;xTy_; +€;, ao#0 (5.8)
i1

an AR (autoregressive) model of degree p. The transfer function for this
model is

1
= —, 5.9
@) = s 59
and the power spectrum s
» -2
S(wia) = ae| (5.10)
=0
where @ = (ag, a1, -, ap) are called the AR parameters.

Example 5.2 (MA model) We call a system for which z: may be writien as
a linear combination of the previous q inputs as

q
Ty = Zbiat—i-H (5-11)
i=1

an MA (moving average) model of degree q. The transfer function is

given by .

H(z) =) bz, (5.12)
i=1

Example 5.3 (ARMA model) We call a system for which we may write

P q
Ty =— Z 03 Tgi + 21 bigt—iy1, (5.13)
i=1 qa=
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i.e., one in which, letting ag = 1, the transfer function may be written as

St bz

H(z) = ST g (5.14)
an ARMA model of degree (p,q).
Example 5.4 (Bloomfield exponential model [50]) Let
eo(w)=1, and ew)=+v2coswt fort=1,2,--- (5.15)
We call a system whose power spectrum may be written as
P
S(w; €) = exp {Zétet(w)} (5.16)
=0

o Bloomfield exponential model of degree p.

In general, a finite-dimensional discrete-time linear system may be written
using the input vector time series &, the state vector x;, and the output vector
Yy as

{ Tiy) = A(Et + BEt (517)

Y1 = Cziyr

for appropriately sized constant matrices 4, B, and C. For example, the ARMA
model may be rewritten in this form. The set of all such systems may be ana-
lyzed as a system space parameterized by {4, B, C}. We discuss this possibility
in the context of continuous-time systems at the end of this chapter.

5.2 The Fisher metric and the a-connection on
the system space

Let us define a Riemannian metric and a family of affine connections on the
system space L. Given a time series {z;} whose spectrum is S(w), it is possible
to compute the distribution of @7, where

r = (Zop, T-T41, ", 0,1, -, TT)-

This distribution is Gaussian, and for each w its frequency component /

T
1 —iw:
XT(w) = ﬁ E i€ t
t=—T

also has a Gaussian distribution. It can be shown that, when T is suffi-
ciently large, X7(w) and X7(w') are asymptotically independent for any dis-
tinct pair (w,w’) and the joint distribution of the family of random variables
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X7 = {Xr(w)}w is approximately (and rather symbolically) given by

1™ 1X(w))? N
p(X;S)zexp{—E/_’r | S((w))l dw—'gb(S)}. (5.18)
This family of distributions may be considered as an exponential family pa-
rameterized by the function S{w), which has an infinite degree of freedom, as
T — o0o. It is possible even in this setting to introduce the Fisher metric and the
a-connections in a manner similar to the case of distribution families of finite
dimension. -

Suppose that an infinite-dimensional coordinate system [¢%] is given on L.
For example, by expanding

log S(w) = Z &ier(w) (5.19)
=0

where {e;(w)} are the basis functions defined by Equation (5.15), we may take
£ = [£%,¢%,-- ] as the coordinate system. The probability distribution of the
truncated time series @ of length 27" + 1 is then a function of ¢ and is denoted
by p7 (zr;€). Now the set of the distributions {»" (wr;€)} forms a finite-
dimensjonal statistical model, with £ being a redundant parameter, on which the
Fisher metric g7 and the a-connection V{7 are defined. Let their components
with respect to [¢] be denoted by

9;1;‘ 3] Ee[ (aiZT)(ajZT)] and
e = E [ (fi-B#T + —lg—aaizTajo) (asz)J ,

I

where {7 = logp” (zr;£). Although these quantities themselves diverge as
T — 00, the following limits are finite:

def . 1
g (8) = A 95(¢)  and
o def . 1 a
T E im =TT,

These quantities define the Fisher metric g and the a-connection V(®) on L,
and are shown to be represented in terms of the power spectrum S = S(w;€) as

9:5(6) = % / i (B;log S)(B;log S)dw (5.20)

—T
and

1 "
T () = o / (8:8;10g S — ad;log S8, 10g 5) (B log S)dw.  (5.21)

A finite-dimensional model M may be construed as a submanifold of the
system space L. Hence we may induce the Fisher metric and the a-connections
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on M from those on L. Equations (5.20) and (5.21) may also be used to define
them when a coordinate system of M is given.
First, let us confirm that the a-connection and (—a)-connection are in fact
dual. This may be done by explicitly calculating
Orgij = FI(::)J + Fi}f‘) (5.22)
The following theorem states a remarkable property of the system space L.

Theorem 5.1 The system space L 'is a-flat for all o

Intuitively, we may understand this theorem as follows. Since each system S
in L is identified with the “product” of infinitely many independent Gaussian
distributions with mean 0 as seen in Equation (5.18), the space L is identified
with the direct product of infinitely many copies of the 1-dimensional statistical
model consisting of Gaussian distributions with mean 0 which are parameterized
by the variance alone. The a-connection on L is then the direct product of
the a-connections on these 1-dimensional component models. On the other
hand, every 1-dimensional manifold is fiat with respect to an arbitrary affine
connection as noted at the end of §1.7. Therefore L is a-flat.

Proof of Theorem 5.1: Define the a-spectrum by
1 _
R(@) (w) = _—&S(w) « (a # 0) . (5.23)
log S(w) (= 0)

Then, given a coordinate system ¢ = [¢7], by differentiating the a~spectrum with
respect to & we obtain

AR (w;€) = §7°8,10g S, (5.24)
and also
B:0;R*(w; ) = 87 {8:0;log S — c §;log S 9;log S} (5.25)

Hence the coefficients of the a-connection in Equation (5.21) may be rewritten
as

Ffz?c(f) = % 5%¢8,8; R“) 8, R dw
- L 8;0; R 8, R dw. 5.26
27 7

-1

Now, let {cga)} denote the coefficients of the Fourier expansion of the a-
spectrum:

ROW) = 3 ePew), (527)
t=0
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or equivalently -
4= o /_ R® (w)es (w)dw. (5.28)

Then c* = (c((,a),c(la), ...) forms a coordinate system for L. Call this the a-
coordinate system. If we take c(®) as the coordinate system &, then

8:8;R® =0, (5.29)
1
(and from this we obtain
I (e®) = 0. (5.30)
Therefore L is a-flat, and ¢(® is its a-affine coordinate system. u

In particular, the O-flatness of L means that L is flat with respect to the
Levi-Civita connection and is, in other words, a Fuclidean space. The 0-
coordinate system ¢(® provides a Euclidean coordinate system. In general,
the ta-coordinate systems c(® and ¢{~* are mutually dual with respect to g,
which may be seen from the relation

1 ™ —
056 = o /_ 8RR du. (5.:31)

Let us abbreviate the m-affine coordinate system (=) as ¢, and note that
¢ consists of the expansion coefficients of

S(w) = i ctet(w). (532)

t=0

Now, define the autocorrelations {r;} of the time series {x;} by

Ty = E[sts-)-t] 5 (5.33)
which provide the expansion
x, n
S(w) = Zrte"“‘". (5.34)
—o0
Then we have
Co =70, and Ct’-—-"\/i?"h t=12,---, (535)

and {r;} also give an m-affine coordinate system. Since c; anfi r¢ differ only
with a constant factor, we refer to {c:} as the autocorrelations in the se_zquel. .

Similarly, let us abbreviate the e-affine coordinate system ¢ as & This
consists of the expansion coefficients of

—8w) = iétet(w), (5.36)

t=0
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and gives the autocorrelations of the time series {Z;} generated by the inverse
of H(z):
= H(z)™!
For dually flat spaces there exist correspondlng potential functions as shown
in §3.3. Using the entropy per data

- 3 1 JogpT
H = Jim or g Bl-ler” (er)]
1 /" 1
= o log S(w)dw + 3 log(2me), (5.37)

—Tr

the potential function and the dual potential function of the system space L
with respect to the dually flat structure (g, V(®, V(=) is given, except for the
case when & = 0, by % = %(® and ¢ = (~® where

P = —H ~ 53" (5-38)

When a = 0, we have a Euclidean space and the potential function is
1 T
¥® = o | g S(w)}? dw, (5.39)

which is the L?-norm of log S.
Using these potential functions, the canonical divergence on the dually flat
space (L, g, V(®), V(=2)) may now be given by

D (8, || $2)
= (@(81) +pC(82) = Y el (S1)ef ™ (S2)

t=0
~ 2_7;_2/{(%) —l—alogg}dw (@#0) (5.40)
- 4-_7r/(1og52-1ogsl) dw (a=0)

which we call the a-divergence on L. Let pf(zr) be the probability dis-
tribution of the truncated time series @y generated by S; (i = 1,2), and let
D) ( || p) be the a-divergence between these distributions which is deﬁan
accordlng to Equations (3. 25) and (3.26). Then we have

o,
D (8 || 8) = lim = DV (o || p]), (5.41)

while for oo # +1 such a direct relation does not hold between D(®) (S1 1] S2)
and D@ (p} || o).
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5.3 The geometry of finite-dimensional models

Let us now analyze the finite-dimensional spaces corresponding to AR, MA, and
ARMA models. We chiefly focus our attention on AR models.
Let AR, denote the space of AR models of degree p. The AR parameters
a = (ag, a1, -, ap) form a coordinate system of AR;,. Models of a particular .
degree clearly contain those of lower deg‘ree, and hence the following inclusion
relation holds:
ARg CAR; CARp C -

Now since the inverse of the spectrum of a system in AR, is

) (5.42)

its Fourier expansion has only finitely many non-zero components, and hence it
may be written as a finite sum:

a) =) Gew). (5.43)
t=0

Therefore AR, is a p + 1-dimensional subspace of the system space L which,
with respect to the coordinate system &, satisfies the linear constraint

& =0, fort=p+1,p+2,---. (5.44)

This means that AR, is an e-autoparallel submanifold of I, and hence it is e-flat.
The e-affine parameters for AR, are &y, &1, -, &, and these may be written as
functions of the AR parameters aq, - - -, @p.

The m-affine parameters are the autocorrelations ¢g, ¢1,- -, ¢p. The higher
order autocorrelations cp.1,Cp42, - - - for a time series in AR, which are not 0 in
general, are determined as functions of ¢g, - - -, ¢p. These are not linear functions,
however, and hence although AR, is itself m-flat from duality, it does not form
an m-autoparallel submanifold within L.

As an example of a result which this geometrical theory allows us to obtain,
let us consider the problem of approximating a given system S(w) in L with a
system in AR,. In order to evaluate the quality of approximation, we use the
{—1)-divergence (Kullback divergence)

: 1 S S
D(81 1) =D (51]182) = 5 / (S; | —log Sl)dw (5.45)

Then, according to Corollary 3.9, the optimal approximation Sp(w) € AR,
achieving
A\ . ,
D(s]%) = jzin D518
is the projection of S onto AR, along the m-geodesic which is orthogonal to AR,
(Figure 5.1). Since AR, is e-autoparallel, this projection is uniquely determined.
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manifold of
stochastic
realizations

Figure 5.1: The stochastic realization of S(w) using AR models.

Let a =
o et @ = (ap,a1,-+,a,) be the AR parameters of a system S in AR, and
@ =aifap and 0% = (1/ap)%

Then we have §'(w) = 02/|1 + e~ 4 ..

shows that -+ @™ P2, and some calculation

1
D(S]8) = ;E[(xt FUTe-1 4+ Bpep)? ] + log o2

"

1 1
- _WlogS(w)dw,

where E denotes the expectation with res i
der : pect to S. From this ressi
see that S, is obtained by solving the least-squares problem o e

E[ (xt +a1ze-14+---+ ﬁpxt_p)z] — min,
and then setting o2 to the resulting minimum value. This procedure is called

the AR fitting of the time series S.

Let ¢ = (co, ¢1,- - -) denote the autocorrelati g
. : ,C1, ' tions of S(w). Then S,(w) € A
11 d(fa_itetmlned by the point in AR, whose m-affine coordinates are Z()go ) . c,ljf
tS' e ‘rst p+1 compox'lents of ¢. The proof is straightforward: connectir’lg S’ anc{
» With an m-geodesic, the tangent vector at point .§p is given by

oo

2]

=3 -2 (L) |
=0 acz S’P

where {2;} are the autocorrelations of S'p. On the other hand, the tangent space

& . E) s &
of AR, at S, is spanned by (H)s y8=0,1,---,p. Since S is the m-projection
P
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of S onto AR,, and since ¢ = {¢;) and & = (&;) are mutuaily dual coordinate
systems of L, we have

0=<t:i.> =Ci—éi7 i=0:1,"')p'
0¢; 3,

Note that the higher-order terms above ép4; differ from those of ¢, and are
inftead functions of cp, - - -, Cp.

Given a system S(w), with ¢ = (¢;) denoting its autocorrelations, we call a
system, say S', a stochastic realization of $(w) of degree p, or of the sequence
€0,€1, -+ * » Cp, When the first p+1 autocorrelations of S’ agree with ¢g,¢1,- -+, Cp.
The space of all stochastic realizations forms an m-autoparallel manifold which
passes through the stochastic realization S, in AR, and is orthogonal to AR,
at this point.

From Equation (5.45), the divergence between S(w) and the white series
So(w) = 1 (Yw) is written in terms of the entropy of S as

D (S || So) = —2H(S) + log(2me) + co — 1. (5.46)

On the other hand, since Sp belongs to AR,, we have the Pythagorean relation

D(815%)=D(s]5)+D(5 |50). (5.47)
which leads to )

: D (s,, “ so) = min D (S| So), (5.48)
where the minimum is taken over all the stochastic realizations of (co, ¢1," "+, ¢p)-
‘Hence we have .

H(S,) = max H{S). (5.49)

Note also that Equations (5.46) and (5.47) yield
D (s ” Sp) =2 {H(ép) - H(S)} , (5.50)

from which Equation (5.49) is straightforward. Equation (5.49) means that, of
all the possible stochastic realizations of a particular sequence of autocorrela-
tions, the realization Sp in AR, is the one which maximizes the entropy. This
fact is often referred to as the principle of maximum entropy (Burg [62]),
and now from the geometrical viewpoint we see that this is simply none other
than the generalized Pythagorean theorem.

Let S, 81, 95, - - - denote the stochastic realizations of S within ARy, AR;,
AR,,- -, respectively. Then as we increase the degree p of AR, the approx-

imation error D (S ” S'p of the realization decreases correspondingly. By the
Pythagorean theorem, the error satisfies the additive relation

p(s]5,)=p(s]3) + D (%] %) (551




i
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for ¢ > p, and is decomposed into
D (s H ép) = iD (ém ” s) . (5.52)
i=p

MA models constitute an m-autoparallel subspace within the system space
L, and a dual argument similar to. that of AR models can be made. Moreover,
we may extend the argument to its a-version for an arbitrary o as fqllows.
First, a system is called an a-model of degree p when its a-coordinates

e = (), Y. ..) satisfy
=0 for Vt>p+1,

or equivalently, its a-spectrum is represented by the finite sum
P
R®w) =Y e, (w).
=0

In particular, an AR model is a 1-model, an MA model is a (—1)-model, and a
Bloomfield exponential model is a 0-model. The space MZEQ) of all a-models of
degree p forms an a-autoparallel submanifold within L. Next, given a system
S, with ¢* = (c§“>) denoting its a-coordinates, a system S’ is called an o-
stochastic realization of S of degree p, or of the sequence (c(()a), c(la), . c‘(,a)),
when its first p + 1 a-coordinates coincide with (c((,a),cgo‘), ‘e ,c‘(,a)). A (-1)-
stochastic realization is a stochastic realization in the original sense. Now, we
have the following theorems.

Theorem 5.2 Given a system S, the a-model S, achieving

D(=e) (s H Sp) = min DC(S] 8" (5.53)
sreM§
is a (—a)-stochastic realization of S of degree p. The approzimation error sat-
isfies
D= (5] 8,) = pt== (s 8,)+ D (5| 5,) (5.54)

forq>p and o
, fyan (S “ gp) =3 D= (gm ” s) , (5.55)
= )

f
Theorem 5.3 Among all the (—a)-stochastic realizations of a particular se-
quence (c§™, 7%, -, &), the realization 8, in M has the minimum
(—a)-potential: )
$=0(8,) = miny~(8). (5.56)

In particular, when a > 0 it has the mazimum entropy, and when o < 0 it has
the minimum entropy.
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The space of ARMA models is not a-autoparallel for any «, and has prop-
erties which are interesting globally; however, we do not pursue this here.

5.4 Stable systems and stable feedback

Now let us consider the continuous-time linear system
&(t) = Az(t) + Bu(t), (5.57)

where z is an n-dimensional vector representing the state of the system, u is an
m~dimensional vector representing the input, A is an n x n matrix, and B is
an n X m matrix. We assume that the pair (4, B) is controllable, and that the
rank of B is m. For the system to be stable, the real parts of the eigenvalues of
A must all be negative.

In this section, we shall first show that the space S of n x n stable matrices
forms a fiber bundle and that it is possible to introduce a structure of dual
connections onto this fiber bundle in a natural manner. Then, by expressing the
input u as a linear function of the state z, we consider systems which control
their own state, i.e. self-controlling state feedback systems. Note that if the
input  is the sum of an external input v and the feedback Fz so that

u=Fz+uv, (5.58)
then the system in Equation (5.57) may be described instead as the system
&= (A+ BF)z + Bu. (5.59)

We shall study the set F(A, B) of feedback matrices F for which A + BF is
a stable matrix. Furthermore, we shall introduce the space S(4, B) of stable
matrices A + BF realized by feedback matrices F, and investigate the geometry
of S(4, B) as a submanifold of S.

First, let us begin by considering the structure of the manifold S consisting
of all stable matrices. S is clearly a simply connected open set within the Lie
group formed by the set of regular matrices GL(n). Let us fix an n x n positive
definite matrix Q. Then a stable matrix 4 may be decomposed using a positive
definite matrix P and an skew-symmetric matrix S into

A= —-;-QP‘1 +8P (5.60)

This decomposition is unique, and P is the solution to the matrix Lyapunov
equation

AP+ PA'+Q =0, (5.61)
where A* is the transposed matrix of A. Hence the pair of matrices (P, S) form
a coordinate system for S. Since P is symmetric it has ﬂnz—ﬂl independent com-
ponents, and since S is skew-symmetric it has ﬂ"z;l) independent components.
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Adding these we obtain n?, which is the dimension of S. If we decompose the
stable matrix A into

AR=—%QP‘1 and Ay =SSP,

then the eigenvalues of A are all negative reals, while those of A; are all purely
imaginary.

Following Ohara et al. [172, 171], let us view S as the direct product of the
manifold PD formed by the set of positive definite matrices P and the manifold
Skew formed by the set of skew-symmetric matrices S via Equation (5.60).
To investigate the geometric structure of S = PD x Skew, we rely on the
following invariance. Consider transformations of bases of the space consisting
of all state vectors. Letting T' be a matrix representing such a non-singular basis
transformation, this transforms x according to

T =Tz.
Then, in addition, 4, Q, P and S are transformed according to
A=TAT™', Q=TQT', P=TPT* and §=TST', (5.62)

respectively. We require that the structure of the manifold S remains invariant
under this transformation.

Let us first investigate the geometric structure of PD. It should be noted
that PD may be equivalently considered as the space formed by multivariate
normal distributions with mean 0 and covariance matrices P in PD. Letting =
be the random variable, the distributions may be written as

p(oiP) o {-1oPlo - wp)}. (5.63)

Identifying PD with the space of such normal distributions, we may intro-
duce the dualistic structure (g, V,V*) on PD by the Fisher metric,! the e-
connection and the m-connection. If we use this structure, then PD is a dually
flat space with ,—%P“l as its V-affine f-coordinate system and P as its V*-
affine 7-coordinate system (see Example 2.6 in §2.3 and Example 3.2 in §3.5).
Furthermore, the invariance of the structure (9,V,V*) under the transforma-
tion P = TPT* follows from the invariance of the Fisher metric and the e-,
m-connections under the one-to-one transformation % = Tz of the random vari-
ables.

Let us consider the space PD as an open set in the linear space Sym con-
sisting of all n X n symmetric matrices through the 7-coordinates P, so that
the tangent space Tp(PD) at each point P is identified with Sym. Let E,,
denote the 7 x n symmetric matrix whose (p, g)** and (g,p)t™" components are
1, and is 0 elsewhere. Then the natural basis of To(PD) = Sym corresponding

! Actually, we define g to be twice the Fisher metric for notational simplicity in this section.
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to the coordinate expression P = y.7P%E, , is represented by the set of ma-
trices {Epq; 1 < p < g < n}, whereby a tangent vector X € Tp(PD) may be
expressed as a matrix whose components are X, o

X = XpgFpq (5.64)

p<q

Similarly, the natural basis { £79} for the 6-coordinates —3 P! = %Zpep,pEm&
%zp <q9p,aEp,q 18 represented by

B = %PEp,qP {(p<gq) and EPP?=PE,P.
Then we obtain the following theorem.
Theorem 5.4 ([171, 175]) PD is a dually flat space with —%P‘l as its 6-

coordinate system and P its n-coordinate system. In terms of n-coordinates, the
Riemannian melric is given by

Ipa) o) = (Epy Bp ) = B¢ (P EpoP By q) - (5.65)
I other worts, (X,Y)=tr (PTIXPY). (5.66)
. In addition, the covariant derivatives of the pair of dual connections V and V*
are given by
Vi, Brs = 0 and (5.67)
Ve, Brs = —EpgP 'Ers— ErsP Epy. (5.68)
We also have
(BP,B,,) = 8263, (5.69)
Ve E™ = 0 ond (5.70)
Vi, BN = EPOPTIET 4 ErsplEpa, (5.71)

For any tangent vector X € Tp,(PD), the parallel transiations from Py to Py
with respect to the connections V* and V are given by

mx = X (5.72)

nx PPy IXPTR. (5.73)

For the space Skew defined as the set of skew-symmetric matlcices S, f:he
invariance under the transformation (5.62) does not suffice t.o provide us with
a means of obtaining a correspondence between the geometric structure _Of the
space and that of a family of probability distributions. Ohara and Amari [171]
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viewed S as the fiber bundle (vector bundle) with the base space PD and the
fiber Skew, and introduced the following inner product on the fiber over each
P ¢ PD:

(S1,82) = —tr (P71, P718,). (5.74)
They also defined two connections on this fiber bundle with the parallel trans-
lations

I

s
s

s (5.75)
P PylSPy P, (5.76)

I

which turn out to be mutually dual in the sense that
(I1* 81, 1183) p, = (81, S2) p, - (5.77)

Note that since Skew is not the tangent space of PD this duality is an extension
of the original notion introduced in §3.1.

Finally, we consider the feedback-stabilized manifold S(4, B). Fix an arbi-
trary positive definite matrix Q, and let PD(A4, B) be the set of positive definite
matrices P satisfying

(I -BB*)(AP+PA*+Q)(I- BB*) =0, (5.78)

where Bt denotes the pseudo-inverse of B. In addition, let Skew(B) be the
set of skew-symmetric matrices S satisfying

BB*S=8. (5.79)

Theorem 5.5 (172, 171]) PD(A, B) forms an ’W#ﬂl-dimensional v*-
autoparallel submanifold of PD and hence is dually flat, while Skew(B) forms

an T—@?Z—'—l—l-dimensional linear subspace of Skew. Those F for which A+ BF

is stable may be written using P € PD(A, B) and S € Skew(B) as

F=-BT(AP+ PA'+ Q) (I - %BB’f) Pl pBtgp-t, (5.80)
This equation gives a diffeomorphism between the space F(A, B) of stabilizing
feedback matrices F and PD(A, B) x Skew(B). In addition, the elements of
S(A, B) are given by

A+ BF = —%QP‘l +(So(P) — S)PY, (5.81)
!

where

So(P) = AP — BB* (AP + PA' + Q) <I - %BB’f) + %Q. (5.82)

The matriz So(P) turns out to be skew-symmetric, and Equation (5.81) shows
how S(A, B) is embedded in S = PD x Skew through Equation (5.60).
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We have not described the meaning of the geometric structure from the point
of view of control theory. In this context also, however, it is again possible to
introduce two potential functions and a divergence for which the Pythagorean
theorem holds. This can be used in designing systems and feedback. For exam-
ple, it can be helpful in designing feedback systems which best approximate the
properties of some underlying system. This is a topic for future research.



Chapter 6

/ iy
' Multiterminal information
theory and statistical
inference !

One of the principal problems motivating information theory is the faithful com-
munication of a message given the constraints of channel capacity; the standard
approach is to analyze the probabilistic structure of the message and from this
construct a code. In contrast, the goal of statistics is to infer the underlying :
probabilistic structure generating the message. Hence although these two fields i
share the foundation of probabilistic structures on which they build their theo-
ries, because of the differences in their objectives, their analyses tend to follow
separate theoretical paths. In multiterminal information theory, however, there
appears a problem which binds these two fields together.

We call an information source which has distributed terminals and produces
messages which are correlated across these terminals a multiterminal infor-
mation source. Let us suppose that each terminal independently encodes and
compresses its message, and that the task of the receiver is not to reconstruct b
the original message, but rather to infer the probabilistic structure of the under- :
lying multiterminal information source. The Shannon information is relevant !
to the task of information transfer, while the Fisher information is relevant to ‘
the task of statistical inference. Information geometry provides a fundamental !
framework within which problems that involve both the Shannon and the Fisher
information may be solved.

6.1 Statistical inference for multiterminal
information

Suppose we have the two information sources X and Y, and suppose that each
source generates a message over a finite alphabet. Let zN = 2125 -z be the

133




134 6. MULTITERMINAL INFORMATION THEORY

( ) zN | Ry my

statistical
inference

ad R my
: — ¥ 1

Figure 6.1: Statistical inference of a multiterminal information source.

sequence of characters of length N generated by X, and ¢V = g1y - yn be the
sequence of characters of length N generated by Y. Suppose that z and y are
correlated, and that for each ¢, the pair (%1, y:) is sampled independently from
the joint distribution p (z,y). When this distribution is parameterized over ¢,
we write p (z,y; £).

Each information source X and YV independently sends its message to a
common recejver, whose task is to infer the probability distribution p (z, y). If
zV and ¢y may be directly communicated to the receiver, then the problem
reduces to a standard statistical inference problem over the N observations
(N, yN ). Suppose, however, that the communication paths from X and YV
to the receiver have capacities limiting the messages to Rx and Ry bits per
character, respectively. Then it is not possible to send zV and yV , and it
is necessary to use compression. We wish to investigate, with respect to this
capacity (Rx, Ry), what quality of statistica) inference is possible and what the
appropriate corresponding coding techniques might be (see Figure 6.1.)

Suppose, for example, that z and y are signals which take one of the two
values 0 and 1, and that N = 1000, Rx = 0.3, and Ry = 0.4. Then although X
and Y both generates a sequence of 1000 bits, it is only possible for X to send
an encoded 300 bits of informations, and ¥ is limited to 400 bits. The problem
is to find the message which allows optimal inference of p (z, v).

This kind of problem is peculiar to multiterminal theory. In order to clarify
this, let us consider the case when there is simply a single information source X
which generates a sequence of characters according to the distribution p (z; &).
Then there is no need to send zV in order to estimate £. It suffices for the
generator to compute the estimator £ = £ (z1,---,zN), and send the value of
é . In fact, since é has an estimation error of order #, the actual message can

consist of only the first log N digits of £ represented in base 10. Then since the
information sent per character
log N
N

as N grows large, the information needed for statistical inference may be sent
asymptotically using 0 bits per character. When testing, only a single bit rep-

— 0

N
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resenting rejection and acceptance need be sent. In the multiterminal case,
however, X and Y do not know each other’s messages. Hence it is not possi-
ble for either to independently compute a good estimator £. In particular, it
is not possible to compute information concerning the correlation between the
two. Hence it is necessary for the receiver to combine the data from both ter-
minals. The problem, therefore, given that the information sent is limited by
the capacities Rx and Ry, is to investigate the possible quality of inference.

Let us begin by formalizing the coding problem. If we have Rx bits per
character, then we may send NRx bits over the entire message. Now let mx
denote the message communicated over the channel, and let My denote the set
of all possible messages. Let |Mx| denote the total number of such messages.
An encoding is a mapping from generated character sequences z™ to messages.
This may be represented using a coding function:

Thy : {xN} — Mx, where zN e ﬁzx(xN).
Then the information rate is
1
= lim = . 6.1
Rx = lm,_5 log M 3

Restating this simply, if the capacity is Rx, then there are
|Mx| = 2N Fx (6:2)

encodings from which we can choose. If we constrain |Mx/| to be only polynomial
in size with respect to N, then Rx is of order I%I\TAI, and hence Ry — 0 as N
grows large. In such a case we call this an asymptotically O-rate encoding. This
discussion applies equally to the information source Y.

The role of the receiver is to accept the messages rhx(z™) and iy (y?),
and perform statistical inference. When the inference problem is estimation, an
important goal is to obtain the Fisher information of the random variables m. X =
mx(z) and my = rhy(y"). Let ¢ denote the parameter of the probability
distribution. Then the joint distribution of the code is given by

p(mx,my;€) = > p(a",y";¢), (6.3)

N ’yN

where the sum is over all £V and y¥ which satisfy thx (&) =mx and fy (yV )=
my. . .

The Fisher information gn (fhx, hy) may be computed using the distribu-
tion over codes. In this case we would like to find

1
= li — ¥ a 6.4
9(Rx,Ry) = lim sup w9 (v ), (6.4)
where the sup is taken over all encoding functions (rhx,7hy) under the con-

straint that [Mx| < 2V8x and |My| < 2VEY. Then the estimation problem
becomes that of finding the value of this g and the corresponding encoding. If



136 6. MULTITERMINAL INFORMATION THEORY

this is done, then the maximum likelihood estimate £ obtained from the message
would be normally distributed with covariance {Ng(Rx, Ry)}™*.

Likewise, in the case of testing, letting the hypothesis Hy : ¢ = & have
as its alternative hypothesis H; : & = & + \/——%N_g, the Fisher information al-
lows us to compute its testing power. Now instead of letting the alternative
hypothesis vary with N, let us consider the problem of testing the hypothesis
Hy : p(z,y) = po (z,y) against Hy : p(z,y) = p1 (z,y). Then the test accuracy
may be increased by correspondingly increasing N. Here we impose the restric-
tion that the probability of a Type I error, i.e. the probability of rejecting Hy
when the underlying distribution is pg, should be less than a fixed value o. It is
known that in this case the probability Pg of a Type II error, which is when Hy
is accepted although the underlying distribution is p;, decreases exponentially
as 2~NP with respect to N (from the theory of large deviations). We call

. 1
B= Nh_x}.rloo {_N log PE} (6.5)

the exponent of error. It is also known by the name of Stein’s lemma (see
e.g. Dembo and Zeitouni [78]) that if we are sent the actual outputs V' and
v, then the exponent of error of the optimal test does not depend on «, and
is given by the Kullback divergence:

B=D(pol|lp) =DV (po | 1) (6.6)

Then the problem is now to find, given the capacities Rx and Ry, the exponent
of error
. 1
B(Rx,Ry) =1\}1.{n°°sup{—ﬁlogPE}, 6.7)

where the sup is taken over all encodings consistent with the capacities Rx and
Ry.

This problem has not yet been completely solved. Below, we examine the
problem from the point of view of information geometry, first in the special case
of a O-rate testing problem, and then in the case of a O-rate estimation problerm.
Lastly, we touch upon the general case.

6.2 O-rate testing

Let X and Y have as their respective alphabets the n +1 characters 0,1,---,n,

and the m + 1 characters 0,1,---,m, and let us write their distribution as
p(z,9) = ) pidi(z)5;(y), (6.8)
%J
where

piy = Pr{z =4,y =j},
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and &;(x) is a function whose value is 1 whenz =1 and 0 othe.rwise', a.nd sirflilaﬂy
for §;(y). Since there are (n + 1)(m + 1) possible pairs (i,7), this is a dls?rete
distribution over (n +1)(m + 1) elements, and the set of all such distributions,
say S, forms an exponential family of dimension (n+1)(m+1) 1 (see Example
2.8). By introducing the variables

Poj

O =log — & =log - and (6.9)
6%y =log§zf).—f$ (=1 mj=1,m)
we may write
&z,y) = logp(z,y)

L 8i(z) + 6% 85(y) + 03y 8:(2)85 (y) — %(6), (6.10)
where the sums for 4 and j range from 1 to n and 1 to m, respectively, and
¥(6) = —log poo- (6.11)

Then 0 = [93(,9{,,9’;,,} is an e-affine coordinate system. The corresponding
n-coordinate system is given by

2% =  El&@@) = p = YioPs
7 = E[&@)] = p; = Yiopy ond (6.12)
w5’ = El&@)5E)] = py-

Here 77 = [n{’] and 0¥ = [5}*] are probability distributions which focus atten-
tion on only z and only y, respectively. They are called marginal distributions.
On the other hand, 6xy = [0%7] expresses the correlation between 2 and y. As
can be seen from Equation (6.9), if z and y are independent, then there is no
correlation,
Pij = Pi-Pjs
and hence 8xy = 0.
For simplicity we shall omit the indices 7 and j and write

6 = (6x,0v;0xv) and = (n% 7 sn*Y).
Now if we consider combining parts of the coordinates above to form

¢= (", n":0xv), (6.13)

we find that this, too, is a coordinate system for S. This is an example of mixed
coordinate system described in §3.7.
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Now fix the marginal distributions 7% and ¥, and let us consider the set
of probability distributions whose marginals agree with these. Letting

M, n¥) = {distributions whose marginals agree with 7 and 5"}

denote this set, M(n*,nY) forms an m-autoparallel subspace of S. Since as we
vary 7 and 1Y this covers the entire space S, the set of all M is a foliation of
S. On the other hand, if we consider the set of all distributions whose values of
Oxy are the same,

E(6xy) = {distributions whose Gﬁgy coordinates agree with 6xy },

this is an e-autoparallel subspace of S. The set of all E is also a foliation of S.
These two foliations are mutually dual in the sense described in §3.7 (see Figure
3.3).

Now let Py = po (z,y) and Py = p; (z,y) be two probability distributions.
Let the mixed coordinate of Py and P; be

Po: (3 smg;0%v) and  Py:(nf,n);0%y),
respectively. Now let us define P by the mixed coordinate
P (g, mg 3 6xv)-

P is a distribution whose marginals agree with those of Py and whose correlation
agrees with P, (Figure 6.2). Now note that Py and P are in the same m-
autoparalle] space M (ng, 7Y ), and that P and P; are in the same e-autoparallel
space F(6%y), and hence since these two spaces are orthogonal, we have the
following from the Pythagorean theorem for the Kullback divergence D = D(-1);

D(R||P)=D (R ||P)+D(P|p). (6.14)

Returning to the original topic of discussion let us consider the problem of
testing the hypothesis Hy : Py against the fixed alternative hypothesis Hj :
P, when constrained to asymptotically O-rate encodings. Now the generated
outputs £V and yV determine an observed point

A= @%, 4", 7)

in S. More precisely, we have

1< 1<
A = NZ@'(%), GHE ﬁzéj(%), and
=1 =1 (6.15)

1 &
ﬁz‘)_']{'y = ‘ﬁza‘ij(xt:yt)y
t=1

where these are the 7-coordinates of the empirical distribution based on the
observed data.
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Now the information source X must determine the message m x as a function
mx(z) of 2V, without knowledge of the data . If we consider for mx (z)
symmetric functions of x;,---,zy, then the only possibilities are 7% = [{]
or a function of #X. If we send 7% as the message my, then since A% may
take the N 4 1 values {0, N~!,2N~%,... 1}, and the index ¢ runs from 1 to
n, the number |[Mx| of possible messages mx is at most (N + 1)”. Hence the
information transmission rate is

log|Mx| _nlog(N +1)
< ~ .16

N < Y L, (6.16)
and the encoding satisfies the asymptotically O-rate constraint. Similarly, let us
suppose that the information source Y sends the encoding my = 7}¥.

The only portion of the sufficient statistic # = (5%,4¥,7%Y) available to
the receiver in a O-rate encoding is the pair of marginal distributions (5%,#Y).
Since A*Y cannot be constructed without information being exchanged by X
and Y, it cannot be obtained in a O-rate setting. The receiver uses a function A
of (7%, 7Y) as its test statistic. The boundary of the acceptance region is given
by

A nY) =ec (6.17)

In other words, the boundary consists of the set of all M(n*, ") where (¢, Y)
satisfies Equation (6.17).

When P, is the underlying distribution, (#%,%") converges in probability to
the marginal distribution (ng,7Y) of the underlying distribution as N — co.
Now consider the acceptance region as a cylinder containing M (7, nd’) (Figure
6.2). If the acceptance region A contains an open neighborhood of M (78, nY),
then as N — oo, (4%,%") is contained in 4 with probability 1. Therefore the
probability of an error of Type I converges to 0. In other words, for any a, N
can be made sufficiently large so that an error of Type I occurs with probability
less than a.

Before deriving the probability of a Type II error, we give a result from
the theory of large deviations. The proof of this result for the problem we are
considering is straightforward using a combinatorial argument on multinomial
distributions.

Lemma 6.1 (Sanov’s theorem: e.g. [78]) Given N independent samples of
a random variable whose probability distribution is P, the probability that the
empirical distribution 7} falls in a region K is asymptotically

Pr{f € K} ~ exp{—-GN}, (6.18)
or more precisely )
I}i_anoo i logPr{ € K} = —3, (6.19)
where
=it DQIP). (6.20)
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E(6%)

Mg, %)

Figure 6.2: The acceptance region A of a O-rate encoding,

From this lemma we see that the exponent of error can be made arbitrarily
close to the supremum of

B(4)= inf D(P ]| Q) (6.21)

with respect to A. Since as long as A contains M (nf,7y) this can be made as
small as desired, we have

swpf)=__ imi  D(QIIP)=D(P|R). (6.22)
. We have derived the exponent of error for the case when we send #% and
A* for mx and my, respectively. The fact that this exponent is achievable was
first shown by Han [98], and the present differential geometrical approach was
studied by Amari and Han [26]. To show that it is not possible to do better
jby sending some other message of a O-rate encoding requires techniques from
information theory, which was carried out by Shalaby and Papamarcou [197]
and hence we do not prove this here. See also Han and Amari [100)]. ’

Tl"leorem 6.1 Th.e optimal ezponent of error when testing between the hypoth-
esis Ho : Py against Hy : Py under the assumption of O-rate encodings is
D (P|| P1).

6.3 O-rate estimation

Let M = {p (z,y;£)} be a statistical model parameterized by the scalar £&. Then
the Fisher information of a single data pair (z,y) is

9(6) = B[ iz, 5:6)?], (6.23)
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where we have let £ =logp and £ = Edgﬁ. This is the square of the length of the
tangent vector of the curve determined by the distribution M. If we have N
observations =V and g, then using the distribution of the sufficient statistic
7%, 7Y, #XY), the Fisher information may be computed to be

Uy
wote) = Be| {i @ 770} | (6.24)

which is N times the information of a single observation.

Suppose, using a 0-rate encoding, that only the information concerning the
‘marginal distributions mx = % and my = #* is sent, and that the information
lin 7%Y is lost, as in the previous section. Then Edg logp (mx, my; £) (the score
function), based on the distributions of mx and my, may be written as a
conditional expectation (see Equation (2.19)):

§mac, myi€) = Be[ £ (7,77 7736) | ma,my | (6.25)

The Fisher information of the statistic (mx,my) = (#%,%") is given by

Ngw(€) = Be [ {¢ (ﬁx,ﬁy;ﬁ)}2] : (6.26)

Let
& =VN@X -p), #=VYN(@ -ps), and

= VN (55" ~93)-

By the central limit theorem, these jointly distribute themselves according to a
multi-dimensional normal distribution when N — co. The score function based
on the whole data may be written as

7 7Y ) = VI (Bics+ 800 + 60 ) . (628)

(6.27)

On the other hand, since #% and 7" belong in the space of random variables '

spanned by (Z;,7;), the conditional expectation £ (ﬁx ,ﬁy;f) is the projection
of ¢ (ﬁx, 7, 7Y f) onto the linear space spanned by (%;,7;)- Since #;, §; and
W;; are not orthogonal, we may not obtain this projection by simply taking the
terms in £ which are linear combinations of #; and ;.

We compute the projection using a technique from linear algebra. Let us
re-index as 7, the portion [7¥,n)] of the 7-coordinetes of §, so that e = (,7)
is our new index. In addition, let [g.s] denote the corresponding portion of the
TFisher information matrix under the §-coordinate system, and let [7%°] denote

its inverse.

Theorem 6.2 The Fisher information of an asymptotically 0-rate encoding is

given by .
gri(€) = Mapd™ (6.29)
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Here, using the projected score function, the optimal estimator £ based on the
message (mx, my) is obtained as the solution of

E~[2(ﬁx,ﬁy,ﬁxy;é) \ mx,my] =0, (6.30)

£
and in addition, € is asymptotically distributed according to @ normal distribu-
tion with mean & and covariance gpr(€)~* N1,

The above result for the achievability of the Fisher information gar(£) .is due
to Amari [13], while its optimality was recently proven by Han and Amari {100]
based on a large deviation approach combined with the argument of [197].

6.4 Inference for general multiterminal
information

We have until now been considering testing and estimation within the context
of an extremely special case, i.e. that of O-rate encodings. And although we
have focused here on the relevant information geometric structures, both th'e
geometric structure and the encoding process are important components of this
problem. The problem in the general case when the coding rates R X and Ry are
unconstrained is still open. It is plausible, however, that informatlon‘ geometry
provides a means for solving this problem together with coding techniques 'from
information theory. The following outlines one idea. See Han and Amari [99,
100]‘}Ve first recall that the data (2V,y") is a sequence of N independent sam-
ples drawn from the joint probability distribution p(z,y) of correlat‘ed 'randf)m
variables X and Y. Now let U be a random variable whose domain is finite,
and assume that the three random variables U, X, and Y satisfy the Markov
relation U_x_v (6:31)
This is a notation common in information theory which means that U and Y
are independent given X. From the point of view of information geometry, this
means that if we consider the exponential family

plu,z,y) = exp{058:(u)+ 0%8;(x) + 056 (y) +
ngéij(u,x) + 08 (u, y) + 9¥Y6jk(x, y) +
0%y 0isk (1, 2,9)} (6.32)
then the following hold:
0%, =0 and 6%, =0, (6.33)
where we have used variables such as

DijkPi00P050P00k (6.34)

bk o ,
GUXY & P:50P05kP:0kP000

N

4
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which are generalizations of those in Equation (6.9). Next, let V be a random
variable similarly satisfying the Markov relation

V-Y-~X. (6.35)

Then, corresponding to the rate constraint specified by Rx and Ry, we may
consider a constraint imposed on U and V in terms of some information quanti-
ties like entropy or mutual information. Furthermore, this setting has a natural
Nth extension in which we consider random variables Uy and Vi satisfying the
Markov relations

Uv—XN-¥N  and  vy-YN_xV, (6.36)

where XV and YV are the Nth i.i.d. (independent and identically distributed)
extensions of X and Y, respectively.

Now, suppose instead of the codes 1 x (z™) and iy (yN), we send uy and vy
drawn from the sources Uy and Vjy which are correlated with =V and y" by the
Markov relations above. We may view uy and vy as noisy versions of 7 x (=)
and 7y (yV), and hence this is a stochastic encoding. Then, corresponding to
the original problem of finding the optimal encoding functions iy : {zV} >
Mx and iy : {yV} — My under the rate constraint, an optimization problem
for Uy and Vi is naturally formulated, which now we are to pursue.

This is a typical strategy in information theory, where for many classes of
problems it is proved that there in fact exists a deterministic encoding system
which has asymptotically equivalent characteristics to a stochastic one. The ad-
vantage of considering stochastic encodings is that, unlike the original problem
for deterministic encodings, the corresponding problem is often reduced to the
case when N = 1. This is called the single-letterization of the problem.

The questions we must address, then, may be decomposed into two parts:

(i) Is the multiterminal statistical inference problem single-letterizable?
If this is the case, then

(i) How do we solve the problem after single-letterizing?

A geometric consideration of the distribution family {p(u,z,y,v)} answers ques-
tion (ii). In other words, the solution can be obtained by decomposing the four-
fold empirical distribution into a communicable portion consisting of marginal-
ized distributions, and an uncommunicable portion consisting of distributions
such as #XY.

On the other hand, Ahlswede and Brunashev [3] have made a pessimistic
observation on the general single-letterizability of problems of multiterminal
statistical inference. However, it might be possible to apply single-letterization
to the conditional inference problem where we send (5%,7Y) at O-rate as a
supplemental message. It is expected that single-letterization or conditional
single-letterization provides a key towards new developments.



Chapter 7

! Information geometry for
quantum systems

From a mathematical point of view, quantum mechanics may be construed as an
extension of probability theory, and it is possible to generalize many concepts in
probability theory to their quantum equivalents. The framework of information
geometry for statistical models may also be extended to the quantum mechanical
setting. Although a variety of important works related to differential geometrical
aspects of quantum mechanics have so far been made by many researchers, we
restrict ourselves here to investigating the problem of how the dualistic structure
of the Fisher metric and the a-connections on statistical models is extended
to manifolds of quantum states. We should recognize, however, that study of
quantum information geometry has just started, and that we are far from getting
its whole perspective at present.

7.1 The quantum state space

Let us begin with a very brief introduction of quantum mechanics. (We do not
touch upon the quantum time evolution (dynamics) governed by the Schrodinger
equation or the state reduction caused by a measurement.) Quantum mechanics
describes the physics of a quantum system in terms of linear operators on a
complex Hilbert space H. Here we assume that H is finite-dimensional for
mathematical simplicity, and hence we may consider 7 as C*, where k = dim H, i

i

and operators as k X k matrices with no loss of generality. We denote the inner
product of vectors x and y in H by (z|y), and use Dirac’s notation in which
|z){z| means the operator which maps each element y of H to (z|y)x. The ;
Hermitian conjugate (or adjoint) A* of an operator 4 is defined by the property
(x]Ay) = (A*z]y) for all z and y. A quantum state of the system is then :
represented by a density operator p on H, which is a positive semidefinite .
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Hermitian operator of trace one:
p=p">0, and trp=1. (7.1)

We call p a pure state when p is of rank one and hence is representable as
p = |z){z| for some unit vector z, and a mixed state otherwise.

Now suppose that we perform a measurement, say II, to the quantum sys-
tem and that the possible outcomes of II form a finite set of events {e1, e, ..., €}
When the state of the system is represented by a density operator p, the prob-
ability that a particular event e; is observed is generally expressed in the form

Ple} = tr{pms), (7.2)
where {m;} = {m1,m2,...,m} is a set of operators on H satisfying
m=m>0, and Y m=I, (7.3)
i

with I denoting the identity operator (unit matrix). The set {m;} is determined
by the measurement II and does not depend on the state p. Hence we may
consider {m;} as a mathematical expression of the measurement II and write
as II = {m}. Note that Equations (7.1), (7.2) and (7.3) qualifies P to be a
probability distribution:

P{e}>0 and > Ple}=1 (7.4)

Note: More generally, a measurement taking its outcome in
a measurable space (X, B), where B is a completely additive class
(o-algebra) consisting of subsets of X, is represented by a mapping
which maps each measurable set B € B to a nonnegative Hermitian
operator n(B) = w(B)* > 0 on H satisfying n(X) = I and the
complete additivity: for any countable family of mutually disjoint
measurable sets {B1, Ba,...} C B we have

W(U B) = Zw(Bi).

Such a 7 is called a positive-operator-valued measure, prob-
ability operator-valued measure or POM in short. The prob-
ability that the measurement outcome lies in a set B is then given
by P(B) = tr(pn(B)). See [107] [110] for the detail. When X =
{1,2,...,1} and B is its power set, Equation (7.3) follows by setting

m, = m({i}).
When II = {r;} satisfies the additional condition

mi=m, and mm=0 if i#j, (7.5)
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or in other words, when {m;} consists of orthogonal projections onto mutually
orthogonal subspaces, it is called a simple measurement. This condition may
be considered to represent a kind of purity of the measurement.

When the possible outcomes ej, eg,... of a simple measurement {m;} are
labeled with distinct real numbers a1, as,..., we call the pair ({r;}, {a;}) an
observable. We may represent an observable ({m;},{a;}) by the Hermitian

operator
A=Y am. (7.6)

Note that {a;} are the eigenvalues of 4 and {r;} are the orthogonal projections
onto the eigenspaces, and that the correspondence between A and ({r;}, {a:}) is
one-to-one. Then we see that the expectation and the variance of the observable
A under the state p are given by

E[A] = Ztr(pm;) a; =tr(pA) and (7.7)

Vo[A] = 3 trlpm) (ai — B [A]) =te[p(A- B [4]],  (78)

where (and hereafter) a constant multiple ¢l of the identity [ is simply denoted
by c.

Given a finite-dimensional Hilbert space H, let us denote the set of all Her-
mitian operators on H by

A={A|A= A"}, (7.9)
and let
A ¥ IAlAe A and trA=1}. (7.10)
Then the totality of density operators

S {plp=p*>0and trp=1} (7.11)

forms a convex subset of A;. This set is partitioned into & = ULI S, where
Sy &f {p €$ | rank p = 1"} and k % dimH. In particular, the elements of &;
are the pure states and are the extreme points (i.e. points which may not be
represented as convex combinations of other points) of the convex set S, while
those of Sy, are strictly positive density operators and constitute the interior of
S.

Let U be the set of all unitary operators on H:

U={U|ut=u"}. (7.12)
This forms a Lie group and acts on S by

ng ——
(U,p) — UpU*. (7.13)
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Obviously each S, is closed under this action. When a state p, a measurement
{m:} and an observable A are transformed into :

p=UpU* # =UmrU* and A=UAU*

by a common unitary operator U, the probability distributions and the expec-
tations are kept invariant:

tr(pf;) = tr(pm)  and  tr(3A) = tr(pA).

The pure state space S; may naturally be identified with the complex projec-
tive space CP*~1 of complex dimension k—1. It is well known that a Riemannian
metric on this space which is invariant under the action of the unitary group i
is unique up to a constant. This unique metric is called the Fubini-Study metric
and is known to be a Kihlerian metric. From an information geometrical point
of view, it is important to recognize that the Fubini-Study metric is a quantum
version of the Fisher metric and plays an essential role in the statistical estima-
tion theory for pure state models, although we do not further discuss this topic
here; see Fujiwara and Nagaoka [92, 94] and Matsumoto (145, 146].

In the rest of the present chapter we focus on the geometry of Sy which is
now denoted by

S {plp=p*>0and trp=1}. (7.14)
This space is an open subset of 4; and hence is naturally regarded as a real

(not complex) manifold of dimension n %f dim A1 = k% — 1. The tangent space
T,(8) of each point p may then be identified with

A € {A)AcAand tra=0}. (7.15)
When a tangent vector X € T,(S) is considered as an element of 4, by this

identification, we denote it by X(™ and call it the m-representation of X,

reflecting that it corresponds to the m-representation in the classical case intro-
duced in §2.5.

For a simple measurement II = {r, ... , M}, let

i
Sn = Sﬂ{zaim (01,...,az)€Rl}
=1
! s
= {;t_rmm P=(p1,...,p[)€Pz}, (7.16)

where P; denotes P({L,...,1}): the totality of positive probability distributions
on {1,...,1}. This forms a (! — 1)-dimensional submanifold of S. Note that Sn
is commutative in the sense that arbitrary two elements p and o of Sy satisfy
po = op, and that any commutative model is a submanifold of Sy for some I
When all the projections ; in II are of rank one, we have

S={UpU* |p e Sy and U € U}. (7.17)

denotes the commutator:
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Within the tangent space T, = T,(S) = A at each point P let us consit}ler
the subspace T consisting of all the tangent vectors corresponding to the action
of U. Each element of T} is represented as

d
T Uy = Q:F H
dtUtp s €2, 0]

where U, is a curve in U satisfying Up = I, Q2 is its derivative at t =0 and [, ]

[A,B] = AB — BA.

" Hence we have

T = {X €T, | 30 = —Q° such that X = [Q,p]}. (7.18)

ding to the change of p in
Next, let T¢ denote the subspace of T, correspon ' of p
the c:)mmut‘f)ative direction. In other words, Ty is the totality of the derivatives

%Ptl g Of curves p; satisfying po = p and [p, p] = 0, and is represented as
TS = {X €T, ‘ [p,X(m)] = 0}. (7.19)

For a simple measurement II which diagonalizes p (i.'e. pE §n), it is clear
that T,(Sm) is a subspace of Tg and that if p has k distinct elgenvalues T,hen

C = ’.FP(SH). Now the tangent space T}, is always decomposed into the direct
sgm of these two subspaces:

T, =TT (7.20)

To see this, define the linear mapping A : Ag — Ag by A(A) = i[p, A]: It'then
turns out that A is skew-symmetric with respect to the Hilbert-Schmidt inner
product! (A, B)us &t tr(AB), and that T and T, are respectively the kernel
and the image of A. Therefore these subspaces are the orthogonal complements
of each other, which implies Equation (7.20). o

In the subsequent sections we shall introduce some dualistic structiures
(g,V,V*) on S which may be considered as quantum analogue.s c'>f the Fisher
me’ztri’c and the +o-connections. We shall see that these dualistic structures
satisfy the following common properties.

(i) For an erbitrary simple measurement II = {m1,..., 7r.1}, the res?;rlcin:i)riG 1(1)f
(9,V,V*) onto Sp coincides with the triple of the Flshe'zr mettrlc anN e
+a-connections on P; for some o under the natural identification Sy = P;.

(ii) The space Si is autoparallel in S with respect to both V and V*.

i i tors will be introduced, for which
1In the sequel, several kinds of inner products for_ operaf ¢ : i
we gI:ner:Hy c1115e the double bracket {, ), while the single bracket (,) is used for Riemannian
metrics on S and the inner product on H.
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(iii) g =(, ), V and V* are invariant under the action of . In other words,
for an arbitrary unitary operator U and arbitrary vector fields X and Y,

we have
(UXU*UYU*) = (XY}, (7.21)
VUXUtUYU* = U(VXY)U* and (722)
Vixy-UYU* = U(VLY)U*, (7.23)

where UXU* denotes the vector field? such that (UX U*)g;'[),, =UX™u*.

(iv) T5 and T are orthogonal with respect to g at every point p € S.

7.2 The geometric structure induced from a
quantum divergence

According to the discussion in § 3.2, every torsion-free dualistic structure is
induced from some divergence by Equations (3.9)-(3.13). In particular, the
dualistic structure consisting of the Fisher metric and the Za-connections is
induced from the f-divergence Dy for a smooth convex function f: R™ — R,

where R+ % {z € R|z > 0}, satisfying
fA)=0, f'(1)=1 and a=3+2f"(1), (7.24)

which includes the a-divergence D(®) as a representative example. Let us intro-
duce a quantum version of the f-divergence following Petz [182] and investigate
the induced geometry.

Let B be the totality of (not necessarily Hermitian) operators on H. Given
arbitrary strictly positive density operators p,o € S, the relative modular
operator A = A, : B — B is defined by

AA)=0cAp™!, VAeB, (7.25)

or equivalently by
(A(A),BY, = (A,B)f, VA,BeB, (7.26)
where ((,))7 and {, )} denote the inner products on B such that )
{4,BY; =tr(pA*B) and (A, B)F = tr(cBA"). (7.27)[‘

Then, since A is Hermitian and positive definite as an operator on the Hilbert
space (B, {,));), the ordinary operator calculus enables us to define the Her-
mitian operator f(A) on the same Hilbert space for an arbitrary function
f:R* — R, so that we have the implication:

A(4) =24 = f(A)A)=f(NA, VreRY vVAeB. (7.28)
2Letting @y : p+— UpU*, we have (d20)o(Xp) =(UXU*) gy (p)-
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Now the quantum f-divergence Dy is defined by

Dj(pllo) = (I, f(A)DN, =telp f(AND)]- (7.29)
Using the spectral representations
p= Zai,u.i and o= ijuj, (7.30)
i J

where {a;},{b;} are the eigenvalues® and {u;}, {;} are simple measurements,
we have

A(vgm)— Vam and f(A)(Vj#i)=f(%) T (7.31)

which leads to

Dy (ol @) Zalf ( ) tr(psvy). (7.32)

Let M = {M;;} and N = {Nj;} be the measurements defined by*
MijA= Hililbs and Nij = VjHiVj, (7.33)
and define the probability distributions p = {p;;} and ¢ = {¢;;} by
pij = tr(pMi;) = a;tr(uav;)  and g = tr(oNy;) = b tr(pavy).  (7.34)

Then Equation (7.32) indicates that Dy (p|| o) coincides with the classical f-
divergence of p,q. From this, we can observe that Dy for a strictly convex
smooth function f satisfying f(1) = 0 turns out a divergence on & in the sense
described in § 3.2.

Now assume that f is smooth and satisfies Equation (7.24), and denote the
dualistic structure induced from D; by (¢, V() vy = (g(Df) \WCDRvVCHIN
where we have used the notation of §3.2 in which D} = Dy holds. This
structure is a formal quantum analogue of the triple of the Fisher information
and the ta-connections. Since Dy restricted on Sy is identical with the classical
f-divergence on P; under the natural identification Sy & P, and since Dy
is unitarily invariant in the sense that Dj (UpU* |[|UcU*) = Dy (p|| o), the
induced structure satisfies the properties (i) and (iii) in § 7.1. Moreover, some
calculation yields that for any vector fields X,Y on Sy and any Z on S, we
have at every point p € Sp

(X,2), =tr[p X ™) Z(m)), (7.35)

3We do not care whether the elements of {a;} and {b;} are distinct.

4In the situation where the so-called von Neumann’s projection hypothesis is applica-
ble to the simple measurement g (and to v, also), which means that the state change
p — pippi/ tr(pp;) occurs when p is performed to the system in the state p to yield the
measurement result 4 with probability tr(pu:), the measurement M (N, resp.) may be physi-
cally realizable by consecutively performing two measurements p and v in this order (in the
reverse order, resp.).
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<V¥)Y, Z> = tr[p7 {X (Y™) ~ ! —’2_ o‘X(m)y(m)},Z(m)], (7.36)
P

<V¥‘)y’ Z> =tr [p—l{X(y(m)) 1 ; aX(m)Y(m)}Z(m)]’ (7.37)
p

where () is the inner product with respect to ¢t), and X (Y{™)) denotes the
derivative of the operator valued function Y™ : p s Yp(m) in the direction of
X,, while X0V (™) js the product of the operators Xf,m) and Yp(m). We can
see that the properties (ii) and (iv) follow from these equations. (Note that
V) — gim) _ 1—:‘2"5T according to Equation (2.27). ) This means that for
the commutative direction the induced structure (g, V() v(f ")) depends on
f only through the o determined by Equation (7.24) just as in the classical
case. As for the unitary direction, on the other hand, the dependence is more
essential. In fact, for X3, X, € T such that Xi(m) = [, pl, we have

(X1, Xz2), = 2Re {1, £(A, ) (D)) . (7.38)

Now, letting f be the f(® in Equation (3.24), we can define a quantum
version of the a-divergence, which is called the quantum o-divergence and
is denoted by D{®) as the classical one. Noting that®

(Ag o) (A) =0"Ap™" (VreR)
and
(log Ag,,)(X) = (log 0) X — X(log p),
we obtain

D (o] o) 1_4a2 {1-u (")} @z @a9)
DY (p]lo) = DM (0| p) = tr [p(log p — log )], (7.40)

which just correspond to Equations (3.25) and (3.26). In particular, D1 is
a quantum equivalent of the Kullback divergence, and is well known in math-
ematical physics as the quantum relative entropy. The general quantum
a-divergence was introduced by Hasegawa [101] together with the induced du-
alistic structure (g{® (= g(~2)), (@), V=) = (g(D(a)), V(D(a)), V(D(_Q))).
Parameterizing the elements of S as pe by a coordinate system [¢¥] and
letting

2 e
Pe (a#1)

(g L 1-e (7.41)

log p¢ (e=1),

SHere the logarithm and the power of an operator are defined in the usual way; when P
has the eigenvalues {p;} and the orthonormal eigenvectors {v;}, then log p and p" have the
eigenvalues {logp;} and {p}‘}, respectively, and the same eigenvectors {v;}

7.2. QUANTUM DIVERGENCE 153

the components of ¢g(® and V(%) are represented as

4 = & (a,-z<“>ajz(—a>) and (7.42)
1 = (800,60), (7.43)

which correspond to Equations (2.60) and (2.61). In particular, for X1, X, € T

such that Xi(m) = [§;, p], we have X;£(®) = [Qi,l("‘)] and hence ({101])

1 —4a2“ ([917/’%&] [92,,,1‘7“]) (a# 1)

tr ([Q1, log p] {Q2, p]) (o= =+1).

This follows also from Equation (7.38). )

It is not difficult to see that most of the geometrical arguments d(»:velopefl
for the Fisher metric and the o-connections in §2.6, §3.5 and §3.6 may immedi-
ately be applied to this (g(*, V(@) (=)} to yield several parallel results.' In
particular, S is dually flat with respect to (g(ﬂ), vy, zl(‘l)) and the canonical
divergence of this structure is the relative entropy D(. ). The elements of an
arbitrary V{-autoparallel submanifold M of S, including the case M = 8, may
be parameterized in the form

’ (X1, Xa), =

m
0p = €Xp [C +> 0°F - ¢(9)] , (7.45)
i=1
where Fy, ..., Fy,, C are Hermitian operators and 9(6) is an R-valued function,

and [6%] turns out a V()-affine coordinate system, while a V(~1-affine coordi-

; def .
nate system dual to [§*] is given by 7:(6) = tr(pgF;). The dual potential is
then represented as

p(0) = 6'm(8)—$(8)
= max {¢"n:(6) - (6}
= ~H(ps) - tr(peC), (7.46)
where H is the von Neumann entropy: H(p) &f —tr(plogp). The struc-

ture (g<i1>,v<1),v<*1)) will be revisited in the next section frt?m. a different
point of view. For an arbitrary o, on the other hand, the dualistic structure
(g, V(@) ¥(=2)) on S may naturally be extended to a dually flat structure
on the denormalized manifold

§¢ {rplp€S and 7> 0},

which is the set of all positive definite operators on H, and the. corresponding
canonical divergence gives an extension of D@ just like Equations (3.78) and

(3.79).




154 7. INFORMATION GEOMETRY FOR QUANTUM SYSTEMS

Finally, we briefly sketch out a result of Petz [182] concerning how the mono-
tonicity of the classical f-divergence in Equation (3.22) is extended to the quan-
tum f-divergence. In order to state the result, we need two new notions: com-
pletely positive maps (CP maps for short) and operator convex func-
tions. As for the former, we skip the definition here and only note that the CP
property is widely believed to characterize the physical realizability of a process
of changing quantum states; see Stinespring [203], Kraus [126] and Lindblad
[144]. A real valued function f defined on an interval in R is said to be operator
convex when Af(A) + (1 — A)f(B) — f(AA + (1 — \)B) is positive semidefinite
for any 0 < A < 1 and any Hermitian operators whose spectra lie in the domain
of f. The operator concavity is also defined similarly. Every operator convex
(or concave) function is a convex (or concave, resp.) function in the usual sense,
but the converse is not always true. For instance, it is known that z logz is
operator concave, while x + e® is not operator convex. In addition, the power
function z = 2" (z > 0) is operator convex iff 1 < < 2o0r —1 <7 <0, and is
operator concave iff 0 <~ < 1. See e.g. Bhatia [48] and its references.

Now Petz’s theorem claims that if f is operator convex, then the quan-
tum f-divergence Dy satisfies the monotonicity: Dy (p| o) > D; (Tp| To)
for any (trace-preserving) CP map I'. As pointed out by Hasegawa [101], the
£ used for defining the quantum o-divergence D(® is operator convex iff
~3 < a £ 3, and therefore the theorem implies the monotonicity of relative
entropy DU (Lindblad [144], Araki [33], Uhlmann [209]). Note also that the
so-called Wigner-Yanase-Dyson-Lieb concavity (Lieb [143], Uhlmann {209]) is
closely related to the monotonicity of D® for —1 < o < 1. Special but im-
portant cases of the monotonicity of Dy are the joint convexity (cf. Equation
(3.23)):

Dy (Aor+ (1= Np2 [ dor + (1~ Moe)
SADs(p llo) + (1= A)Dy (p2 lon), 0< ALY, (747)
and the monotonicity with respect to an arbitrary measurement I = {m;}:

Ds(pllo) 2 D¢ (plla), (7.48)

where the RHS denotes the classical f-divergence between p; = tr(om;) and

g; = tr(om;).

7.3 The geometric structure induced from a 7
generalized covariance

In the classical case we have seen that the dualistic structure (g, V(1) v(=1))
= (g, vV, V™)) is particularly important in most applications among other
(g, V(@), V(=) In this section we make an attempt to develop a general theory
for quantum analogues of (g, V{®), v(m)},

Suppose that we are given a family {({ , }), | p € S} of inner products on
A, where {(A, B)), € R depends smoothly upon p for all A, B € A, and that it
satisfies the following properties:
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(a) For all A,B € A, pe S and U € U, it holds that
(UAU*, UBU* Yypu» = (A, B),- (7.49)

(b) If {p, A] = 0 then
{4, BY), =tr(pAB). (7.50)

This may be regarded as a quantum version of the L2-inner product
(A, By = Bp[AB]

of real-valued random variables A and B with respect to a probability distri-
bution p. Reflecting that E,[AB] is the covariance of A and B when their
expectations vanish, we call {, ) = {{, )), | p € S} satisfying the conditions
(a) and (b) a generalized covariance.

Two important examples of generalized covariances are the symmetrized
inner product

1
{A,B), = 3 tr(pAB + pBA) (7.51)
and the Bogoliubov inner product (also called the Kubo-Mori inner prod-
uct or the canonical correlation [127])
1
{A,BY), = / tr(p* Apt > B)dA. (7.52)
0

These examples are unified in the general form ([186])

1
(A, BY, = /0 tr(p* Ap' B)u(dn), (7.53)

where v is an arbitrary probability measure on [0, 1] satisfying v(d)\) = (1 —
d)). Note that the direct analogue (A, B)), = tr(pAB) (VA,B € A) of the
classical L?-product does not yield a generalized covariance, because it may
take imaginary values.

Now let us fix a generalized covariance { , )), and define the e-representa-
tion of a tangent vector X € T, as the Hermitian operator X{®) € A satisfying

tr (X<m>A) = (X, A4),, VAecA (7.54)
From the condition (b) we see that if X belongs to T then
X© = p-txm) (7.55)

which corresponds to Equation (2.40), ie. the relation between the m- and
e-representations in the classical case. When a coordinate system [£?] is given
on S (or on a submanifold of S) so that each state is parameterized as p = p¢
and that the m-representation of the natural basis vector is written as

(8:)™) = dip, (7.56)
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we denote the e-representation by

(8:)® = L. (7.57)

When (, )) is represented as Equation (7.53), we have

1
8¢p=/0 P Lip A (d)). (7.58)

For instance, when th i i i
. » When the symmetrized inner product is adopted as (( , ), we
1

which shows that L; is the symmetric logarithmic derivative, or the SLD
for short, introduced by C.W. Helstrom [107] to formulate a. qua;ﬁ:um version
of Cramér-Rao inequality (see Theorem 7.5 in the next section). On the other
hand, adopting the Bogoliubov inner product as {, ) leads to

L; = 8;log p, (7.60)

or, in other words, we have

1
Bip = /0 (8 log p)p*~*d. (7.61)

This follows from the general formula,

1
P-Q= /O @ (log P — log Q)P'~*d) (7.62)

which holds for arbitrary positive operators P and Q- To prove the last equation

;t suffices to verify the following identity by differentiating the both sides with

13
1-Qtpt= /0 Q*log P — log Q)P~*d). (7.63)

Equatio‘n (7.60) shows a direct analogy with the e-representation in the classical
case which was defined as the derivative of log p.

Usi . .
Spacesgig ;;e e-representation, we define the inner product (,) » on the tangent
(X,Y), = (X©,y©y, =t (X<m)y<e>) . (7.64)

Then g = (, ) forms a Riemannian metric on & which may be regarded as a

quantum version of the Fisher metric (cf. Equation (2.42)). Th
the metric are given by 4 (2:42)). "he components of

9i5 = (L, Ly)) = tr [(8:p)(L;)] - (7.65)
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We also define quantum versions of the e- and m-connections by

Ik = <V§f—)3j»3k>=tr[(3iLj)(3kp)]=<(aiLJ"L’=»’ (7.66)
i = (VE8;,0.) = tr[(8:9;0)Lal (7.67)

Obviously, V(® and V(™ are mutually dual with respect to g. In addition,
it is not difficult to see that the properties (i)-(iv) described in §7.1 hold for
this (g, V(®), V(™)) due to the conditions (a) and (b) on {, )). As observed
from Equation (7.60), when the Bogoliubov inner product is adopted as &N

' the resulting dualistic structure coincides with (gD, v®, V1)) which was

defined in the previous section through the quantum relative entropy DED,
Most of the arguments of §2.5 for the classical e-, m-connections may be
extended to the present setting in a straightforward manner. First, the m-
connection V™) is independent of the choice of generalized covariance, and is
the flat affine connection induced from the affine structure of .4;. The parallel

translation Hf,f?,) : T, — T of V(™) is given by
e (X) = X' = X' = x™, (7.68)

Next, although the e-representation depends on what generalized covariance is
adopted, the set T,Se) o {X®© | X € T,} is simply written as

T ={Ae A|E,[A]=0}. (7.69)

This is shown as follows. For an 4 € A, let E[ A] denote the function p +— E,[A]
defined on S. Applying a tangent vector X € T}, to this function as a differential
operator, we have

X (E[A]) = tr (X<m>A) = (X©, 4),, (7.70)

where the first equality follows from X (m) = X p and the second from Equation
(7.54). On the other hand, from the condition (b) on {{, ) we have

(B, 1), = tx (pB) = E,[B] (7.71)
for all B € A including B = X(®). Combining these equations we obtain
E,,[X(e)] = X (E[I])=X(1)=0, (7.72)

which proves that LHS C RHS in Equation (7.69). Since LHS and RHS are both
linear spaces of dimension n = dim A — 1, they must coincide. Now, tracing
the proof of Equation (2.43), we see that the parallel translation with respect
to V(®) is represented as follows:

e, (X) = X' <= X'® =X© - E, [X (e)] : (7.73)
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We have seen that the parallel translations II¥™ and 15 are both inde-
pendent of the choice of curve connecting two points p and o, and hence V™)
and V(®) have vanishing curvature tensors. In addition, the mixture connection

V{m) s always symmetric and hence is flat. How about the e-connection, on

the other hand? It should be noted that the symmetry of V(€ is equivalent to
the dually flatness of (S, g, V{®), V(™)) and is also equivalent to the existence of
a divergence D on S which induces (g, V{?), V(™)) in the manner described in
§3.2. We have already seen that the e-connection induced from the Bogoliubov
inner product is symmetric, and the corresponding canonical divergence is the
quantum relative entropy. This is, however, exceptional. In fact, we have:

Theorem 7.1 The e-connection induced on S from a generalized covariance
{ » ) is symmetric if and only if { , ) is the Bogoliubov inner product.

We shall give a proof after observing some fundamental aspects of the torsion
tensor of V(%) which we denote by Torl® to avoid confusing it with the space
T,SE) of the e-representations of tangent vectors.

First, from the definition of the torsion tensor we have

<Tor(e)(8i, ), ak> = 1§ 1
P

i, jik

{8 L; — 05 L, L)) p. (7.74)

In addition, the operator 8;L; — 8;L; belongs to T,Se) at each point p, or in other
words, it holds that
E,[0:L;] = Ep[8;Ls], (7.75)

and therefore the e-representation of Tor(® (8;, 8;) is given by
(e}
{mor®(0;, 8} Y = o,L; - o,L:. (7.76)
Equation (7.75) is seen by differentiating E,[L;] = 0 to obtain

tr ((8;0)L;) + tr (o(8:L;)) = 0,
)

which leads to /
E [0L;] = —gis. (7.77)

Note that the last equation is an analogue of Equation (2.8).
For each p € S, let us define the mapping ®, : A — A by

(A, BY, = tr(AD,(B)), VA,BeA (7.78)

Then the relation between the e- and m-representations of a tangent vector X
is written as X(™ = &,(X (), and in particular we have

Byp = By(Ly).
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Operating 0; on the both sides of this equation, we obtain
8:0;p = @o,(Ly) + ®p(8;:L;),
where ®5,(A) for an operator A denotes the derivative of the mapping p
®,(A) by 8;. Noting that 8;,8;p = 8;8;p, we see that the m-representation of
Tor® (8, 8;) is given by
© (m)

{Tor90,0)} " = @,8iL; - 8,Ly)

®o,(Ls) - ®,(Ly). (7.79)

When {, )) is the symmetrized inner product, we have &,(A) = LA+ 4p)
and

it

g, (Ls)

1
3 {(8;p)Ls + Li(8;0)}

1
= 7aLip+ LipL; + LipLs + pL;Ls),

which leads to -
{Tor@,0)} " = 2 l1L0 L), 0] (7.80)

This shows how the nonvanishing torsion appears as a consequence of the non-
commutativity of operators.

Now let us prove the ‘only if’ part of Theorem 7.1, while the ‘if’ part has
already been shown. Assume that Tor® = 0. From Equation (7.76), the
assumption is equivalent to the existence of a smooth mapping F : S — A such
that 8;F = L;. Now let II be an arbitrary simple measurement, p a point in
S, and X a tangent vector of Sip at p. Then, since Xlogp = o HXp) =
p "t X and [p, X log p] = 0, it follows from the the condition (b)on {, )) that
(X log p, A), = tr (X A) for all A € A. Therefore we have X logp=X® =
X F(p), from which we see that the difference F(p) —log p is a constant, say Cf,
on Sp. Moreover, since %I (k = dim ) is a common element of Sy for all II,
the constant Cn cannot depend on I1. Hence we have F(p) = log p + C, which,
combined with Equation (7.60), completes the proof.

7.4 Applications to quantum estimation theory

Using the dualistic structure (g, V(®), V(™)) induced from a generalized covari-
ance, we may immediately translate some results in statistics into their quantum
versions. Here are the translations of the Cramér-Rao inequality and related
results (Theorems 2.7, 2.8, 2.2 and 3.12).

Theorem 7.2 Let A be an observable (Hermitian operator), M a submanifold
of 8, and p a point in M. Then we have

(A—B,[A], A= B [Al), > [(AE[A]lm)oll} (7.81)
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where the equality holds if and only if

A~ By[A] e TO (M) {X@

Xe T,,(M)} . (7.82)

In particular, if M = S then the equality in Fquation (7.81) akways holds.

Th:orem 7.3 Let M = {p¢ | £ € E} be an m-dimensional submanifold of S
with a coordinate system ¢ = [¢] ranging over & C R™ Ifanm 3

= . -tuple F' =
(FY,---,F™) € A™ of observables is unbiased in the sense that

Ee[F'] ¥ tr(peF) =¢', VEeg Vie{l,...,m}, (7.83)

or more generally, if it is locally unbiased at a point & € = |7 ;
in the sense that ? ¢ (6 the note in §2.5)

E[F]=¢  and O E[F] =di, (7.84)
then we have
Wel F] > G Y, (7.85)

where Gg_’is the component matriz [g;;(£)] of the metric g with respect to (€1,
and We[ F] 4s the matriz whose (4, ) element 4s

wé]‘ = (F*— ¢ Fd Ej»& (7.86)

Theprem 7.4 G’iveq (M, [¢), there exists an unbiased F = (F1,... , F™) sat-
z.sfymg WelF) = G’g' for all & if and only if M is e-autoparallel in S and (€]
s an m-affine coordinate system. (Note that an e-autoparallel submanifold is
always m-flat, even though it may have nonvanishing e-torsion.)

From a purely mathematical point of view, all thése theorems are natu-
ral extensions of the original statistical theorems, whatever generalized covari-
ance may be chosen as { , ). However this does not ensure that they are as
meamngdfgfl as the original theorems. We should first note that the quantity
W,olA] = ((A = Ep[A],A— E,[A]), in Theorem 7.2 is not equal to the vari-
ance V,[A] in general. Indeed, W,[A] = Vu[A] holds for all A € A when
and only wh(.an the underlying generalized covariance is the symmetrized inner
product. It is 1.10{: clear whether W,[ A] has any statistical significance when
fmothe.r g.enerallze.d covariance is adopted, although a certain kind of equations
in stac,ltlztlcal physics concerning perturbation from equilibrium states may be
regarded as special cases of Theorem 7.2 for the Bogoliubov i ;
e.g. Kubo et al. [127]. ® et product; see
. Fr?m DOW on, we assume {» )} to be the symmetrized inner product and
Investigate the meaning of Theorems 7.3 and 7.4. When the dimension m of M
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is 1, the setting of these theorems properly represents the physically meaning-
ful situation where the unknown value of the scalar parameter & is estimated
by an observable F and the estimation accuracy is measured by the variance
We[F] = V¢[F]. This, however, is not the case when m > 2. In the classical
(usual) probability theory, there is no difference between “m R-valued random
variables” and “an R™-valued random variable”. On the other hand, in the
quantum case, m observables may not naturally be regarded as an R™-valued
measurement unless the observables are commutative, as is well known as the
uncertainty principle. Therefore F = (F',...,F™) in the theorems does not
represent an estimator of the vector parameter [€1,---,&™] in general, even

. though each F? may be regarded as an estimator of the scalar parameter & In

order to elucidate the estimation theoretic meaning of the theorems, we need
some basic arguments on quantum multiparameter estimation.

As a general representation of estimators for £ = [€%], we consider a pair
(IL, €) of a (not necessarily simple) measurement IT = {7(z)} on a finite set
X and a mapping £ = [§] : X — R™, which corresponds to the situation
where the unknown value of £ is estimated by é(z) based on the result z of the
measurement II.

Note: Since an estimator for an m-dimensional parameter is an
R™-valued measurement, it should be represented by a POM (see the
note in § 7.1), say #, on R™, which determines the probability distri-
bution of the estimate under the state p as Pr {£ € B} = tr[p#(B)].
Indeed, the property of a pair (II, &) concerning the estimation may
be described in terms of the POM # defined by

z:£(z)EB

In view of generality, an arbitrary POM on R™ should be called
an estimator. Nevertheless, our elementary and a little redundant
representation (II, ) is sufficiently general for the later arguments
and has the advantage of being consistent with the description in
the previous chapters.

- Then, since the é(z) may be regarded as an estimator for the classical model

M(I) = {p(z;£) | € € E} consisting of the probability distributions p(z;&) =
tr [pe ()], we are naturally led to the following definitions; the estimator (IL, ¢)
is said to be unbiased if

E: [H, é’-‘z] def Zéi(z)tr lpem(x)] =&, VEeg vie{l,...,m}, (7.87)

it is said to be locally unbiased at a point & € & if

Fg[mé]=¢ and 8B [E] =8, Vije{l..,m}, (7.89)
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and the variance-covariance matrix V¢ [H,f } = [véj of (11, €) is defined by
of =3 {€@ -} {#) - ¢} trlpemia)]. (7.89)
T

Now, let
F' S a)n(z) € A (7.90)

Then we see that the unbiasedness and the locally unbiasedness of (II, é) are -

equivalent to those of F' = (F?,-.., F™) in the sense of Equations (7.83) and
(7.84). In addition we have

Ve[ €] > we [F]. (7.91)

To see this, choose ¢ = (¢;) € R™ arbitrarily and let

Ec(:z;) def ¢ {é"’(z) — §’} and
Fe & Ci {Fi = §i} = Zﬁ_c(z)"r(z)
’I_‘hen we have
0 < Z {Ec(:z;) —- F’c} w{z) {E_c(:z;) - Fc}

3 {Ee@) nle) - {Fe)?

and hence

3 (e o lpen(@)] 2 tr [p {Fe}?]

which leads to Equation (7.91). Combining this with Theorem 7.3, we reach the
following result.

Theorem 7.5 (Helstrom [107]) Let (I1,€) be an estimator for (M, [¢¥]) which is
unbiased or, more generally, locally unbiased at £. Then its variance-covariance
matriz satisfies

Vs[H,E] >agt (7.92)

It can be shown that the bound in the above theorem is “the best” in the
following sense ([162]): given a point £ € E and a vector ¢ = (c1,++ -, cm) € R™
arbitrarily, we have

ctGglcz inf ctVE[H,E] c, (7.93)
(IL,¢)
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where the infimum is taken over all (TI, £) which are locally unbiased at £. This
suggests that it is meaningful to investigate the condition for the existence of an
unbiased estimator which achieves the equality in Equation (7.92). Obviously,
the equality holds if and only if

Ve [H,é] We [F] and (7.94)

we [ F]

Ggh. (7.95)

Tracing carefully the derivation of Equation (7.91), we see that Equation (7.94)
is equivalent to _ N

Fr(z) = &(z)n(z), Vi, Vz. (7.96)
This equation implies that the {F i} are commutative (i.e., [F", Fj] = (), that
II = {x(z)} is a simple measurement (when & is assumed to be injective with no
loss of generality) and that {é’(z)} are the eigenvalues of F?. On the other hand,
as seen from the proof of Theorem 3.12, Equation (7.95) implies that {F* — £*}

form a basis of Te(e) (M) at each £, or more specifically, that F¢—¢% = g¥(£)(L;)¢
where {(L;)¢} are the SLDs at ¢ defined by Equation (7.59). Consequently,
besides the condition given in Theorem 7.4, it turns out that the additional
condition

[(Li)ﬁﬂ (Lj)E’] = 01 Vi,j, v§7§Ia (797)

is necessary for the equality in Equation (7.92) to hold for all £. In general, we
say that a manifold M of positive definite density operators is quasiclassical
if its SLDs satisfy Equation (7.97). Now we have:

Theorem 7.6 Given a submanifold M of S with a coordinate system ¢ = [£],
the following three conditions are equivalent.

(i) There exists an unbiased estimator (II, E) for (M, £) satisfying Ve [H, ¢ } =
Gg_l for all €.

(i) M is quasiclassical and e-autoparallel in S, and £ is an m-affine coordinate
system.

(i) There exist mutually commutative observables {Fy,---,Fn}, a positive
definite operator P (which may be taken to be an arbitrary element po
of M), a coordinate system [6%] of M and a function 1(8) such that the
elements of M are parameterized as

09 = exp B{Z G F; ~p(0)}| - P-exp [%{Z 6'F, — 1/1(9)}} (7.98)
i=1 =1

and that & = tr (pe F).
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We have written F; instead of F* above for the purpose of emphasizing the
similarity of Equation (7.98) to Equation (2.31) (i.e. the definition of expo-
nential families). It is also interesting to compare this with Equation (7.45)
which is the general form of e-autoparallel submanifolds when the Bogoliuboy
inner product is chosen to define the e-connection. The statement (i) = (ii)
has already been shown, while (iii} = (i) can be verified in a similar manner to
the proof that an m-affine coordinate system of an exponential family has an
efficient estimator (see §3.5). We shall prove (ii) = (iii) later.

In order to elucidate the meaning of the quasiclassicality, we need some
preliminaries. Given a submanifold M = {p;} of S and a measurement II =
{m(x)} on X, let M(II) = {p(z;&)} be the statistical model on X consisting
of the probability distributions p (z;¢) = tr[pe(2)], and let GF = [g]}(¢)] be
its Fisher information matrix. Assume further that II is a simple measurement;
ie., m(z)? = n(z) and 7(z)n(y) = 0 if  # y. Then letting

LI < 3" 0 logp (x:€) m(x), (7.99)
we have
(s m(@e = 5 rl(osLa + Lipgi(a)]
= tr [(Bipe)m(@)] = Bip (5€) = (LT, m(2))e (7.100)
and
(L&, LM = 953(8).- (7.101)

Equation (7.100) means that LT is the orthogonal projection of L; onto the
linear subspace

A = Y a(ein(z)|a: ¥ > R} c A

This, combined with Equation (7.101), leads to
Ge > Gf. (7.102)

This matrix inequality holds for nonsimple measurements, also. Indeed, using
the so-called Naimark extension (see e.g. [110]), an arbitrary measurement II
can be realized by a simple measurement, say II, in a wider Hilbert space, and
the inequality for II is reduced to that for fI. Another proof is as follows. Let IT
be a measurement on a set X for which G? is strictly positive. Then, applying
Equation (2.54) to the model M(II), we can construct a locally unbiased esti-

mator £ : X — R™ at £ which satisfies Ve [H,é ] = (G?)‘l. This implies that
(GH™ > GE_I by Theorem 7.5 and that Gf' < G¢. When G is singular, a
limiting procedure is applied to show the inequality.

Now it is not difficult to verify the following propositions.
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(1) For each point £ and each column vector ¢ = (cty---,c™)* € R™, we have
c'Gee = max c'Gile, (7.103)

where the maximum is attained by a simple measurement II s?,tisfy.ing
¢t(L;)e € A(II), or in other words, by the spectral decomposition (ie.,

the family of orthogonal projections onto the eigenspaces) of a*(Ly)e or its
refinement.®

(II) For each point &, there exists a (simple) measurement II such that Ge =
G? if and only if [(L;)e, (Ls)e] = 0 for all 4, 5.

(IIT) There exists a (simple) measurement I such that G¢ = G? for all ¢ if and
only if M is quasiclassical.

Suppose that M is quasiclassical and that a simple measurement II sat.isﬁes
Ge = G? for all £, In other words, we assume that (L;)¢ € A(II) for all i and
all £. Then from Equations (7.76) and (7.80) we have &;L; = 8;L; and hence
we can define

1t ;
K * e /0 (Loedg] € Aqm).
This satisfies [K¢, K¢/] = 0, and we see that
pe = KepoKe, (7.104)

because both sides of the equation obey the same differential equation with the
same initial condition at £ = 0. The converse is also true, and we obtain:

(IV) M is quasiclassical if and only if there exist mutually commutative positive
Hermitian operators {K¢} for which Equation (7.104) holds for all £.

Given a simple measurement II = {n(z)} on a set X and a state po in S, let
S(po; ) = {KpK | K € A(TT), K >0 and tr(poK?) = 1}. (7.105)

This is the maximal quasiclassical manifold which contains po and whose SLD
Fisher information matrix is preserved by IL. Note that S(po;I) = Sn (see
Equation (7.16)) if and only if pp € A(Il). We have:

(V) S(po;II) is e-autoparallel in S.

(VI) The mapping p — p from S(po; II) to P(X) defined by p(z) = tr (pqr(a;))
turns out to be a diffeomorphism, and the inverse mapping p — p is given
by p = Kp po K, where

K, dzef; Z—:%ﬂ'(z), po(z) & tr(pom()). (7.106)

6A measurement {v(y)|y €Y} is celled a refinement of another measurement
{n(z) |« € X} when there exists 2 mapping f: Y — X such that n(z) = Zyef-l(z) v{y) for
all z € X,
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Under this diffeomorphism, the dualistic structure on S (p0; IT) coincides
with that on P(X) consisting of the Fisher metric and the e-, m-connec-
tions. In particular, S(po;II) is dually flat.

Now we see that the condition (ii) in Theorem 7.6 implies that M is e-
autoparallel in S(pp, II) for some II and forms an exponential family when it is
transformed into a statistical model by the diffeomorphism given in proposition
(VT). This observation leads to a proof of (ii)=>(iif) in the theorem.

In the present section we have shown some statistical results as applications
of the dualistic geometry based on the symmetrized inner product. It should
be stressed, however, that by them we have only visited an entrance to the
world of quantum statistical inference. Indeed, a main concern of gquantum es-
timation theory lies in treating models with noncommutative SLDs. A common
approach to the parameter estimation problem for such a model M = {pe} is to

look for a good lower bound of tr(QVe [H, é ]) for a given positive definite real
matrix Q € R™*™. The right logarithmic derivatives (RLDs) {L;} defined by
8;p¢ = peLs have been introduced for this purpose (Yuen and Lax [227]; see also

Helstrom [107] and Holevo [110}). However, the problem of finding an explicit
representation of the best bound

ciQ) & min{tr_(QVg[H,éD 1 (IL, ) : locally unbiased at 5} (7.107)

is a hard one, and has been solved only in a few special models, among which
are the quantum Gaussian model ({227, 110]) and the simplest nontrivial case
where both the number of parameters m and dim M are 2 (Nagaoka, [157, 159]).
In the latter case we have

Vdet @
det G¢

Ce(Q) = tx(QGY) + tr abs (pe [(L)es (o)), (7.108)
where tr abs (A) = [A1] + |A2] for an operator having the eigenvalues {A1, A2},
See the references cited in the guide to the bibliography for other important
results in quantum estimation theory.

Chapter 8

Miscellaneous topics

The field of information geometry developed from the investigation of the nat-
ural structures inherent in spaces of probability distributions. The structure of
Riemannian spaces with dual connections which emerged from this investigation
gives insight not only into flelds directly related to probability theory, but also
into a wide range of fields by providing a framework within which to analyze
the underlying structures of the field. It is expected that new theoretical devel-
opments will arise from the application of information geometric ideas to these
disparate areas. In particular, problems involving convex functions and Legen-
dre transformations have natural geometric structures as dually flat spaces. In
this way, it is meaningful to reconsider such fields as information theory and
statistical mechanics from the point of view of dualistic geometry. The same can
be said for the field of large deviations in probability theory. In this chapter we
present several such topics relevant to the development of information geometry
and describe the key mathematical problems which remain to be solved.

8.1 The geometry of convex analysis, linear
programming and gradient flows

Let M be a convex region in R". Let 8 denote coordinates in R”, and suppose
we have a smooth convex function (). This setting allows us to trace the
argument of §3.3 in a reverse way. First, a Riemannian metric on M is defined
by

915 (8) = 8:0;9(6). (8.1)
¥f, in addition, we perform the Legendre transformation
n; = 8 (6), (82)

then this gives a one-to-one mapping from 6 to 7, and it defines a dual convex
function

p(n) = max [6'n; —(0)] = & (mm: — w{6(n)}- (8.3)

167
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The inverse transformation is

8" = 0%p(n), (8.4)
and the two function 9 and @ satisfy the relation
P(0) +o(n) - ', = 0. (8.5)

Using these two convex functions % and ¢ we may introduce on M an analog
of the a-connection as follows: letting

Tjk = 8;0;06(6) (8.6)
be defined with respect to the f-coordinate system, we define the o-connection

by .
-« » e
T5a(6) = ~5= Ty = [ig; K] = S i, (8.7)
where [ij; k] denotes the coefficients of the Riemannian connection given in
Equation (1.69). Then the triple (g, V{®), V(=) forms a dualistic structure. In
particular, this space is flat for o = +1, and has § and 7 as its affine coordinate

systems. In addition, the canonical divergence between the two points P and @
is given by

DP|Q) P(P) +0(Q) — Obnqs
B(P) ~ p(Q) + (85 ~ 62)0:9(Q). (8.8)

Now, if the point Py minimizing 1(P) is contained in M , then its n-coordin-
ates are

it

Mot = Oip(Po) = 0. (8.9)
In addition, if 4 is normalized so that PY(Py) =0, then
D (P Po) = ¢(P). (8.10)

It is important to realize that underlying all such problems involving convexity

and Legendre transformations is a fundamental structure described by geometry
of dual connections.

The problem of finding a point # which minimizes the linear function
V(8) = ;6" (8.11)

within a closed convex region M appears frequently in numerical programming.
Let us consider this problem in our framework. Suppose that a convex region
M in R™ is given in terms of a piecewise smooth convex function () as

M =1{0]f(6)>0}.

Letting w denote the (n — 1)-dimensional position vector on the boundary 8M
of the region M, define the function v on M by

D(O) =~ [ log|> 8:f(0(w)){6' 6 (w)}| dw. (8.12)
aM 1
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1t then turns out that 4/ is a convex function on M, from wh.jch the dually flat
structure is introduced on M. In particular, when M is a region bounded by m
hyper-planes so that the definition of M may be written as

M:{()‘iAffei—b“>0, ,u=1,-~-,m}, (8.13)

7=1

then the convex function above may be rewritten in the form

P(0) = — i W, log <i Abgh— b“) , (8.14)
pe=l i=1

where W, are some positive constants. The problem of minimizing a linear
function ¥ ¢;8* on M is called a linear programming problem.
Now consider the gradient flow

6 = —g"(0)0;V (0) = —g7 (O)cs, (8.15)

where §° = £6%, which moves a point § in the OppOS.ite directi?n (;:o Shgfg;af;il:
(see Equation (2.45)) of V(#) and hence decreases its value. Indeed, i
6(t) obeys the above differential equation, we have

Lviom) = -0 <o.

The use of a discrete solution to this differential equation in finding t}_le minimum
of V is one variant of the Karmarkar’s interior point method, and is c.alled the
method of affine projections. Rewriting this in terms of the dual coordinates we

have P (8.16)

and hence its trajectory is a v(~D_geodesic. In other words, the solution to the
interi i (=1)-geodesic
interior point method follows a V geo .

Other important examples of gradient flows on the dually flat space are
derived from functions of the form

U(6) = 9(6) + c:i8"- (8.17)
The gradient flow .of U is represented as
6t = —g"(0)8;U(8) = —g" (6){m;(0) + ¢s}, (8.18)
ivalently as
or equivalently e 4 50, ©.19)
whose trajectory is a V(=Y_geodesic, too. In the particular case when ¢; = —7g;

for a given point @, the gradient flow minimizes the divergence D (9| Q) along
m7:(t) = ngi + ({0} — ngs)e™®. In addition, we can see from th? Pythagorean
r:alation for D that, when the range of 8 is restricted to a V(_autoparallel
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submanifold M, the gradient flow of D (@ || Q) streams into the V{~-projection
of Q onto M along a Vﬁ;l)—geodesic in M, where Vﬁ;l) is the projection of V(-1
onto M with respect to g (see §1.9). This type of gradient flow is often useful
in computing the maximum likelihood estimate® for an exponential family (e.g.
Amari et al. [30]).

There is an attempt to view such gradient flows as completely integrable
dynamical systems. See Nakamura [163, 164] and Fujiwara and Amari [91].
This relates to other problems such as the QR decomposition of matrices, and
the attempt to solve combinatorial problems dynamically by embedding a rep-
resentation of the problem in a continuous domain (Brockett [57, 58]). Such
attempts have the potential to develop and unify completely integrable dynam-
ical systems and the geometry of dual connections.

8.2 Neuro-manifolds and nonlinear systems

Consider a nonlinear system which transforms an input signal = into an out-
put signal y, and suppose that this system is parameterizable by the finite-
dimensional parameter £. Then the input-output relation may be written as

y = f(=z;¢). (8-20)

If the system is stochastic, or if there is noise in the system, then the input-
output relation is stochastic, and the probability distribution on the output Yy
for an input & may be written as the conditional probability

pyla;€). (8.21)

If, in addition, the probability distribution of the input signal is given by q(x),
then the distribution of the entire system may be written in terms of ¢ as
q{(=)p (y| x;¢). Hence it is possible to investigate using the techniques of infor-
mation geometry the structure of the manifold created by this noulinear system.

A typical example of such a nonlinear system is the multilayer perceptron
consisting of stochastic neurons, where ¢ denotes the parameters of modifiable
weights of connection. The space of all such perceptrons is called the neuro-
manifold of perceptrons. It is equipped with the Riemannian metric given by
the Fisher information.

Another example is a recurrently connected neural network model called the
Boltzmann machine (Ackley et al. [2]). This is a fully connected network of
n stochastic neurons. Each stochastic neuron N; (i = 1,.-. ,n) has the state
x; which is either 0 or 1, and this state is communicated to the other neurons
as the output of this neuron. The neuron N; takes the outputs z; of the other
neurons N; (j # %) and computes the linear combination

Uy = Zwijzj — hi‘ (8.22)
J#i

!Note that the divergence D in the present context turns out D(®), the dual of the Kullback
divergence D(‘“), when V(1) and V(-1) are the e- and m-connections, respectively.

8.2. NEURO-MANIFOLDS AND NONLINEAR SYSTEMS 171

Here w;; is a measure of the strength of the influence which neuron N has on
neuron IV;, and is called the weight of the synaptic connection, while h; is called
the threshold of V;. Let us assume that w;; = wy; and that w; = 0. Bach
neuron N; stochastically determines whether in the next time step it will be in
the excited state of z; = 1 or the dormant state of z; = 0 using the probability

exp{u;}
Pr{z; =1} = T+ eplu] (8.23)
Let us also assume that at each time step only one neuron updates its state.
Let @ = (21, -, %) represent the state of the network. The state changes
stochastically through the interaction of the neurons. Clearly, this forms a
Markov chain on the 2" element state space X = {x}. The stationary distribu-
tion of this chain is easily computed to be

p(x) Z lexp{-E(x)} where (8.24)
E(x) = "';‘ Z WigTi%5 + Z hizs, (8.25)

where Z & S sexp{—E(z)}.

Let us consider the Boltzmann machine as a device which generates its state
according to the stationary distribution given in Equation (8.24). Generalizing,
we may divide the state into observable neurons and hidden ones, and given a
particular input, consider the queried states as behaving stochastically according
to a conditional distribution.

The set of all stationary probability distribution corresponding to Boltzmann
machines forms an exponential family M parameterized by 8 = (w;;, h;). Since
a given stationary distribution corresponds to a particular Boltzmann machine,
M may be considered to be the manifold of all Boltzmann machines, where it is
now possible to introduce the geometric structure of metric and dual connections
(Amari et al. [30]). Let S be the manifold of all probability distributions on
the state space X = {a}. This forms a (2" — 1)-dimensional dually flat space
with respect to the e-, m-connections, and M is a n(n + 1)-dimensional e-
autoparallel submanifold embedded in this space. M itself is also a dually flat
subspace.

The problem of approximating the given distribution g(z) of § using M,
and further, to do so adaptively by learning the parameter ¢ is a topic discussed
within the field of neural networks. An elegant solution is provided by geometry
of dual connections. However, when hidden units are included, the space of
distributions is no longer dually flat. In this case the EM algorithm (Dempster
et al. [79]) from statistics may be usefully applied, and in addition, it is possible
to provide this algorithm with the differential geometrical foundations. See
Amari [16] and Byrne [63]. An interesting topic for future development is the
analysis of the dynamics of networks not in equilibrium. Yet another would be
the analysis of composite neural networks consisting of local expert networks.
See the guide to the bibliography at the end of this book for several recent topics
related to neural networks and information geometry, including independent
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component analysis (ICA), the natural gradient method and learning around
singularities.

8.3 Lie groups and transformation models in
information geometry

A Lie group is a manifold with an algebraic structure, and it has a long history of
careful and extensive study. However, here too there exists the structure of dual
connections, and from this point of view new possibilities for development may
be considered. This viewpoint allows an analysis, for example, of Lie groups as
completely integrable dynamical systems, and also of the differential equations
of the Lax type which have attracted attention from many areas of application.
In this section, we discuss a family of probability distributions which forms a
group.

We begin by discussing a family of probability distributions whose structure
admits characterization as a Lie group. Let S = {p(z;¢)| £ € E} be a family of
distributions for a random variable z parameterized by ¢, and suppose that the
parameter space Z forms a Lie group with £ = [¢?] as its local coordinate system.
‘We denote the group operation by (£,&') = £ - ¢ and the identity element of
by e. In addition, suppose that = acts on the range X of the random variable
z from the left, and let us denote the action of £ on z by £ o z. When for all
&, &' € E the probability distributions in S satisfies

p(z;§)dz=p(§oz; ¢ -¢)d(€ox) (8.26)
or equivalently

/pm€Mz=/ pz; € &) de (8.27)
A £oA

for any measurable set A C X, we say that S is a transformation model which
admits the group structure of Z. Then since

9k(¢, x)

p(z;8) =p(k(£,7); €) .

, (8.28)

where

k(€,2) ¥ gz, (8.29)

the distribution is completely determined by the distribution at the identity
element and the group structure. Let us give an example.

Example 8.1 (Location-scale model) Let ¢ = (u,0) with ¢ > 0, and con-
sider the affine transformation on the real line X = R defined by

fox=0zx+p and k(g,z)=§_1oz=z;“. (8.30)
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The operator ¢ translates a probability distribution by p aqd scales zts variance
by a factor of o. The range E of & forms a Lie group acting transitively on R
with the operations

(e1,01) - (u2,02) = (p1 + peo , 0102) (8:31)
(o) t=(-£, L (8.32)

and the identity element e = (0,1). Note that this group has a matriz represen-

tation:
me(g“)-

A distribution family {p (z;£) | € € B} which admits this group structure is called
a location-scale model, and letting

p(z;e) = f(z) (8.33)
we have 1
Y= {TTE 8.34)
po =17 (2). (
Negt, let © = (x1,...,2n5) € AN 9t RN and suppose that z1,...,TN are

independently distributed according to the same distribution. Then we have

Lo (mzp) p(En =) 8.35
p(w;£)=a—,\,f< p ) f( . ) (8.35)

In this case, the group E acts on RY by
melogpe= (BLTHE L INTHY 8.36
ea) =gt om= (2K, (8.36)

When N > 2, the isotropy group {&| & o @ = x} of each ppint z = (z1,. S zN)
consists only of the identity e unless x1 = --- = TN, which means that & acts

freely on X}\, def RY\{(z,...,z) |z € R}.

Let us now investigate the natural geometric structures possessed by su'ch
statistical models which admit group structure. In particular, it would be in-
teresting to see the relationship between the geometric structure ax}d t‘;he .L1e
group structure, and also between the geometric structure and the distribution

= p (z; ) at the identity element.
f(z%get 2,75'( _ ){p (z;¢)]| €€ Ey} be a statistical model which admits‘ the (ir)ouP
structure of =, and consider the Fisher metric g and the. a—connectl.on vie) on
S. Then these geometric quantities are uniquely determined by their values at
the origin e; we state this more precisely in the theorem below.
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Theorem 8.1 The components of g and V() satisfy

0:i5(§) = BHE)BI(€)gem(e) and (8.37)
TLE) = BHEBIEOBUOTE (o)
+C (&) BR(€)gem(e), (8.38)
where
¢ = O ey nd 8.39
BH(¢) Y o (8.39)
82

(8.40)

£ =1, ¢ne .
O = g€ 8|
In other words, g and V(®) are invariant under the left action of the group E
on itself.

On the other hand, the Fisher metric and the a-connections at the origin are
determined by both k(£, z), which represents the action of the group = on X,
and also the shape of f(z). These may be computed by introducing a coordinate
system [z°] of X and using

0 log p (z; €) = r{ (z)0q log f(x) + Buri (z) (8.41)
and
Bidjlogp (zie) = ri(a)r(a)dedslog f(x) + sfy(a)da log £ (@)
— {827 (2)} {Bor2(2)} + Basy (2), (8.42)
where
ri(z) = ——@-k“@ z) and (8.43)
i = 65"’ ) e
: P e 8.44)
silz) = W’C (& =) e (8.

From the invariance shown in Theorem 8.1, we see that the scalar curvature
of the Fisher metric is constant on S. In particular, every 2-dimensional statis-
tical model which admits a group structure, a location-scale model for instance,
turns out to be a space of constant curvature (see §8.4) with respect to (the
Riemannian connection of) the Fisher metric. The corresponding result in the
case of normal distributions was found by Amari in 1959 by means of a direct
calculation.

We also note that an existence condition for (exact) ancillary statistic (i.e.
statistic whose distribution does not depend on the parameter £) is related to
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the group invariance of a statistical model. To illustrate this, go back to the
previous example and let

rw) = (25, o),

[

where N

L& 1 & 2
flzx) = i Z z; and &(z)= (N Z(zt ~ ﬂ)2> .
t=1 t=1

Then F : X;{, — RY is invariant under the group action and is an ancillary
statistic for every location-scale model. The orbits Zox = {foz|¢ € E} for
Te X,’:, are completely indexed by F(z); i.e. Sox = Zoy iff F(z) = F(y). On
the other hand, the position of « in the orbit = o x; is specified by the statistic
Glz) & (i), 6(x)), which is equivariant in the sense that G(z) = G(y)
implies G({ o ) = G(£ 0 ). See Barndorff-Nielsen et al. [42] for the detail.

8.4 Mathematical problems posed by
information geometry

The differential geometry of dual connections arose from the consideration of
the natural geometric structure of a family of probability distributions. How-
ever, dual connections also naturally emerge from affine differential geometry,
in particular the study of hypersurfaces in an affine space as begun by Blaschke
[49]. Recently Nomizu, Kurose, etc. have been researching this topic, and the
interest among mathematicians for the field of dualistic differential geometry
continues to deepen. We briefly touch on this topic.
We first observe how a pair of dual connections arises in the framework
of affine geometry, following Nomizu and Simon [168]. Suppose that an n-
dimensional manifold M is mapped into the (n + 1)-dimensional vector space
Rn+1.
fiM - R (8.45)

Here we assume that f is an immersion and that the image f(M) forms a
hypersurface within R™*". Take a (local) coordinate system [¢7] of M and let
e; = 0; be its natural basis. Then each e; is naturally mapped to the vector
€; = 0,f in the tangent space of the hypersurface by £, or more precisely, by the
induced mapping f. = df from the tangent spaces of M to the tangent spaces
of f(M) in R*L.

(£edp : To(M) — Typ) (f(M)) C R, (8.46)

Now suppose in addition that we are given for each point p of M a nonzero
vector 1, € R™*! which is not contained in the tangent space Ty (F(M)).
Then m : p +— n, defines a mapping from M into R**! as well as f, and
{(es)p,np} forms a basis of R™*! at each point p. We call such a pair (f,n)
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an affine immersion of M. Since R**! is flat, it allows parallel translation
and differentiation. We may express the change in the tangent vector &; as we
move the point f(p) in the direction of & on f(M) by the partial derivative
0:&; = 0;0; f- Expanding this vector with respect to the basis {&;,nn} we obtain

8ig; = TF;ex + giym. (8.47)

Now let us consider the components {I‘fj , which ignore the change in the
direction of n, as determining the coefficients of an affine connection on the
original space M. Then this introduces the covariant derivative

Ve.e5 =Tex (8.48)

on M. Note that this connection is necessarily symmetric (torsion-free). In
addition, let us introduce the metric defined by

(es, €5) = gij- (8.49)

Although this metric g;; is symmetric, it is not in general positive definite.
Here we only assume that the matrix [gi;] is nonsingular everywhere on M.
Reflecting that the decomposition R+ = T, (f(M)) @ span(n,) induces a
projection from R™! onto the tangent space T, (f(M)) at each point p, we
may observe that V is a projection of the natural connection of R**! and g is the
corresponding embedding curvature (see §1.9). This g is also called the second
fundamental form or the affine fundamental form of the immersion.

Let us consider the dual connection V* of V with respect to g, which is
uniquely defined by Equation(3.1) as in the case of positive metric. When
the vectors {n, i =1,---,n} consist only of the components in the tangent
direction of f(M), or in other words, when they are written using n? functions

(4] =

we say that the affine immersion (f,n) is equiaffine. Then it may be seen
that this property is necessary and sufficient for the dual connection V* to be

symmetric. Noting that the components of the dual connection is represented
as

ain = s]&;, (8.50)

Tk =ik + Tige, (8.51)

where T is the covariant tensor of degree 3 defined by
Tiji = (Ve 9)jk = 8igjk — Tijk = Tang, (8.52)

we see-that the equiaffine property is also equivalent to the symmetry of 7'
When (f,n) is equiaffine, the dual connection may also be obtained in a

similar manner to Equation (8.47) within the dual linear space (R**1)* of R*t1,

An element y* of (R™+1)* is an R-valued linear function on R”+1, and we denote
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the value y*(x) of the function for the argument = € R™! by .(:z:, y*)_. Now for
each point on M we may choose an element n* in (R™+1)* which satisfy

(n,n*) 1 and (8.53)
<éi7 Tl,*> = 0 Vi=1,.-+, 7 (854)

We call this n* : M — (R™")* a conormal vector field. Then {8n*,n*}
constitute a basis of (R™1)*, and the dual connection may be obtained by the

expansion X
8jain* = I‘;fakn* + 8570 . (855)

Note, in addition, that the coefficients si; are related to 5! in Equation (8.50)
— kg,

> Sljg,uris;gf[l?,s] in a more intuitive manner, takes two Ir.mtually dual linear

spaces and investigates the fundamental cause of the dualistic sf:ructure. Let M

be an n-dimensional manifold, V an m-dimensional (m > n) linear space, and

V* its dual, We denote y*(x) by (x,y*) for z € V and y* € V™ as above. Now

suppose that we are given immersions of M into V and V*:

f:M =V (8.56)
k:M — V- (8.57)

Then f(M) and k(M) form n-dimensional curved su?spmes within the m-

dimensional spaces V and V*, respectively. In additu_)n, the tangelnt space

T,(M) of M maps naturally to the tangent spaces of the images f(M) in V and
in V*.

k(AQonsi:l/er apoint p in M. Now map the basis e; = 8; of T,(M) to thej:angent

spaces of f(M) and k(M) by the induced mappings f» and k., and let & = 8;f

and &} = 8;k denote the results, respectively. Let

9 (&80, (8.58)

and assume that g;; = gj- Then an indefinite inner product on M is defined

by (e, e;) = gi;- In addition, let us define two connections by

Fij,k: = <Ve{6]‘,6k) = (8iéj,é’,g) and (8.59)
<ek, V;{ej> = <ék, 814"3;‘) B (860)

ik

Then these provide M with the dualistic structure (9,V, V*).. B
Now let us consider the case when M = {p(z;¢)} is a family of Qrobablhty
distributions on a set X. Let V be a linear space formed by functxons on X
satisfying certain regularity conditions, and V* be the set of 51g.ned m(?a.sures
on X. Note that these spaces are infinite dimensional unless r*Y isa finite set.
The inner product of an element a of V and an element 4 of V* is given by the

integral

(o, = [ a@)au(@) (8.61)
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We see then that the geometry of the e-, m-connections and the Fisher metric
on M is obtained by the mappings

f:& > logp(z,¢) (8.62)
k:& — p(z¢)da. (8.63)

The dualistic geometry of general +a-connections may also be seen in this frame-
work by Equations (2.60) and (2.61).

It is known that an arbitrary Riemannian space may be realized as a sub-
manifold of a Euclidean space of sufficiently large dimension. Since this is the
case, it is natural to ask whether there is g space into which an n-dimensional
space equipped with a dualistic structure may be embedded. Although hyper-
surfaces in R™+! admit dualistic structures through Equation (8.47), it is not the
case that all spaces with dualistic structures be realized in this manner. Kurose
[133, 134] and Dillen, Nomizu and Vrancken [80] have studied this problem of
realization, and have obtained the following results. .

Let M bea simply connected n{> 2)-dimensional manifold on which a dualis-
tic structure (g, V, V*} is given, and assume that both V and V* are symmetric.
We say that (M, g,V)is a-conformally flat if there exist a coordinate system
[6*] and a function ¢ on M such that

[e1

14
Tijr = 5
In particul.ar, the (~1)-conformally flatness is a property for the connection V
alone‘and is independent of g. Note that (M, g,V) is a-conformally flat if and
only if (M, g, V*) is (~a)-conformally flat, Next, we say that (M, g, V) has
constant curvature c if the curvature tensor R of V satisfies

RX,Y)Z=c{{Y,2) X - (X,2) Y} (8.65)

Ou)as — 52 (oo + Opdant. (860

for any vector fields X,Y and Z. When V is the Riemannian connection of
g, this definition turns out equivalent to the classical one that the Riemannian
manifold (M, g) has a constant sectional curvature (see, for instance, Chap.V
of Kobayashi and Nomizy [122], vol.1). Obviously (M, g,V,V*) is dually flat if
and only if (M, g, V) (or (M, g, V*) equivalently) has constant curvature 0. In
general, (M, g,V) has constant curvature ¢ if and only if so does (M, g, V*).

Theorem 8.2 (/134/, [80]) The following conditions are mutually equivalent.

(i) (9, V) can be realized by an affine immersion (f,n) of M into R™!
through Equation (8.47).

(#4) (M,g,V) is 1-conformally flat.
(#1) (M, V*) is (=1)-conformally flat.

’I‘heorem 8.3 ([133]) The Jollowing conditions are mutually equivalent. (n > 3
s assumed in (1) (i) = (ii).)

P
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(i) Both (g, V) and (g,V*) can be realized by affine immersions.
(i) (M, 9,V) (or equivalently (M,g,V*)) is (£1)-conformally flat.

(i) (M,g,V) (or eguivalently (M, g,V*)) has constant curvature ¢ for some
ceR.

Kurose [134] has also shown that a divergence D is canonically defined on
a space of constant curvature ¢ and that it satisfies the following modification
of the Pythagorean relation; given three points p, q,7 in M , if the V-geodesic
connecting p and ¢ and the V*-geodesic connecting ¢ and 7 are orthogonal at
g, then

Dlr) =Dl +Dllr)-cD (@l q)D(g|r). (8.66)
When ¢ # 0, this may be rewritten as
(1=eD(p|r) =1 ~cD (| 9)A-cD(q|r), (8.67)

which indicates a structure similar to “spherical geometry.”
These results are closely related to the discussion in §2.6 and §3.6. Suppose
that M = {p¢} is an n-dimensional a-family for a # 1 which is represented as

Equation (2.75):
£ (z;6) = 0NE)Fa(a),
A=0

and let 7, (¢) & J Fu(x)€-9) (z;¢) dz. Then we have

A2

8¢8j9* = Fg?)kake)‘—l @ gije)‘, and (8.68)
_ 1~a?

80m = Pz('j B — 79, (8.69)

where §; = 5‘—9-;. These equations imply that (M, g, V&) satisfies the condition
(i) in Theorem 8.3 and hence has constant curvature ¢ by (i)=-(iii), while another
observation leads to ¢ = 1—_4‘"—2. The corresponding Kurose’s divergence turns
out to be the a-divergence; see Theorem 3.16 in §3.6.

We have seen that the realizability of (9, V) by an affine immersion of codi-
mension 1 does not imply that of (g, V*). This “breakdown” of duality is also
indicated in Equation (8.55) where the second fundamental form 845 is different
from g;;. Recently Matsuzoe [149] has studied immersions of codimension 2 of
the form

0,8, = F?jék + i f + giyn, (8.70)
where f and n are mappings from M into R*+2 and {&1,---,8x4,f,n} are
assumed to form a basis of R™*2 at every point on M. He proved that (9,V) is
realized by such an immersion of codimension 2 if and only if so is (g, V*). He
also showed that a necessary and sufficient condition for the realizability is given
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by the conformally-projectively flatness: we say that (g, V) is conformally-
projectively flat if there exist a coordinate system [£%] and two functions ¢
and 9 on M such that

Tije = (Okp) g — {(8:9)gix + (B59) girc } - (8.71)

Conformal dualistic geometry, in which dualistic structures are transformed
conformally, was developed by Okamoto, Amari and Takeuchi [175] from the
theory of sequential estimation. In this variant of the estimation problem the
number of observations are sequentially decided based on the information con-
tained in what is already known. In a manner similar to the importance of
curvature in statistical inference, conformal curvature plays an important role
in sequential estimation. Conformal dualistic geometry also plays an important
role within mathematics.

We see, then, that in addition to its applications, information geometry poses
interesting mathematical problems. We enumerate several of these below.

(i) Find the condition(s) necessary for a given n-dimensional space with a
dualistic structure to be realizable as an n-dimensional submanifold in
R™. Also, find the condition(s) necessary to be realizable as a pair of

n-dimensional submanifolds in two m-dimensional mutually dual linear
spaces V and V*.

(ii) Find the condition(s) necessary for an n-dimensional space with a dualistic
structure to be realizable as a submanifold of an m-dimensional dually flat
space.

(iif) Let (M, g) be a Riemannian space. We say that (M, g) can be flattened if
there exist a pair of affine connections V and V* such that (M, g, V, V*) is
dually flat. Show whether this is always possible. If not, find the invariant
which characterizes those spaces which may be flattened.

(iv) Develop the theory of infinite-dimensional spaces with dualistic structures.
Two examples are: the geometry of the set consisting of all (or most) ab-
solutely continuous probability density functions p(z) on R (as given, this
is not a manifold), and the geometry of the infinite-dimensional space of
stochastic processes. See §2.5, §4.8.2 and §5.2. Recently a nice mathemat-
ical foundation based on the theory of Orlicz space has been given to the
first example by Pistone and his coworkers [189, 97, 188].

(v) Analyze the global structure of spaces with dualistic structures.

(vi) Extend the notion of dualistic structure to the case when a Finsler metric
is given instead of a Riemannian metric, and analyze spaces with such
structures. This relates to non-regular families of probability distributions
for which the central limit theorem does not work, and corresponds to
stable distributions other than normal distributions. See Amari [8].

Guide to the Bibliography

There are a lot of good textbooks on general differential geometry. Some of
them are Kobayashi and Nomizu [122], Spivak [202], Lang (137} and Helgason
[106]. Chapter 1 of the present book is a digest of some elementary parts of
these textbooks. _ . N

Although there does not yet exist & standard text. cov.ermg the entllrety of in-
formation geometry, the fundamental ideas and apphca:txons to Fhe hlgher—ord;afr
asymptotic theory of statistical inference are found in Amari {9], Barndorff-
Nielsen [41], Murrey and Rice [153] and Kass and Vos [119]. The last two aie
expository textbooks. In addition, Amari et al. [23] and Dodson ((.ad.) [81]
are collections of papers focusing on information geometry, and Amari 15, 17],

rff-Nielsen [44] and Kass {118] are expository papers.
Bar;-ll(ilsotorically spe[akgng, Rao's p[aper [190] was the one vsfhich ﬁrsF suggested the
idea of considering the Fisher information as a Riemar}max} metnc_: on the space
formed by a family of probability distributions. This Riemannian structure,
the Fisher metric in our terminology, was studied further' by many researchers,
among which are Akin [4], James [114], Atkinson and Mitchell [34], Skovgaard
[201], Oller [176], Oller and Cuadras {178} and Oller and Corcuera 1.

The a-connections were introduced in [65] by Chentsov. Althoug.h somewhz?,t
difficult to read, it is an extremely interesting book, in which the Fisher met;.nc
and the o-connections were characterized by the invariance u.nd.er Mark9v1an
morphisms. The invariance of geometrical structures on st.atxstlcal mam.folds
was discussed also by Lauritzen [139], Campbell [64], Dawid {76, 77], Picard
(187], Li [142], Corcuera and Giummole [68] and Burbfaa (60]. .

The statistical meaning of curvature was first clarified by' Efron [83]. This
work became a trigger for the later developments of information geometry; see
the historical remarks in §2.4. We should also note that the theory of expo-
nential farnilies is an important background of information geor}'letry. The book
{37] of Barndorff-Nielsen is a comprehensive work on .thi.s subJ'ect. These pre-
ceding works inspired Amari to pursue a new idea of information geome_try }1111
5, 6], where the a-connections were introduced and proved to be useful m.E e
asymptotic theory of statistical estimation. One can see that several manifes-
tations of the ta-duality already appeared and played important roles in these
papers. The essence of the duality was elucidated b?r Nagaoka and Amari uﬁl},i
This paper introduced the notion of dual connections, developed the gener
theory of dually flat spaces, and applied it to the geometry of a-connections.
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Sections 2.6, 3.1, 3.3, 3.4 and 3.6 of the present book are mostly based on
this paper. Although these results are now well known through [9] and later
publications, the paper itself was never published in a major journal. The ed-
itors or reviewers of some major journals were reluctant to accept new ideas
of combining statistics and differential geometry. Theorems 3.18 and 3.19 were
shown in the master thesis [155] of Nagaoka, but were not dealt with in [161]
nor [9] for the reason that the authors could find little significance in replacing
the definitions of expectation and variance with their a-versions. The attempt
made by Curado and Tsallis [74] and Tsallis et al. [208] has encouraged the
authors to revive the results.

The dualistic geometry of general divergences (contrast functions) was de-
veloped by Eguchi [84, 85, 87], to which §3.2 is essentially indebted. The yoke
geometry of Barndorff-Nielsen [39, 40, 41] is a natural generalization of the di-
vergence geometry. Important examples of divergences on statistical models are
given by the f-divergences which were introduced by Csiszdr [70]. He made
several pioneering works related to information geometry such as [71, 72, 73].
A comprehensive study of the f-divergences is found in Vajda [214].

There are slightly different or more general frameworks for information ge-
ometry. Barndorff-Nielsen {38, 41] used the observed Fisher information and the
observed a-connections instead of our definitions, which he called the expected
Fisher information and the expected a-connections, to construct the observed
geometry. Barndorff-Nielsen and Jupp [47] studied a symplectic structure of a
dualistic manifold. Critchley et al. [69] proposed the preferred point geometry,
and Zhu and Rohwer {229, 230] investigated a Bayesian information geometry.
See also Burbea and Rao [61], which treats a situation where the entropy H(p)
in Equation (3.57) is replaced with a more general form of functionals.

Statistics has constantly been the primary field for applications of informa-
tion geometry. Sections 4.1-4.6 are mostly based on Amari [5, 6, 7, 9], while
the source of §4.7 is Kumon and Amari {132] and Amari [9]. The idea of lo-
cal exponential family bundles described in §4.8.1 was discussed by Amari [11]
and further pursued by Barndorff-Nielsen and Jupp [46]. The subject of §4.8.2
— the theory of estimating functions for semi-parametric and non-parametric
models using dual connections on fiber bundles — was developed by Amari and
Kumon [29] and Amari and Kawanabe [27, 28]. This theory was applied to ICA
(Independent Component Analysis) by Amari and Cardoso {24], Amari [20, 21}
and Kawanape and Murata [120].

Besides these, there are lots of works related to statistical inference and dif-
ferential geometry. The book [9] contains a comprehensive list of references,
which would be helpful for those interested in the applications to statistics. In

addition, many new developments were made after the publication of this book,
among which are as follows. As mentioned in §4.5, the higher-order asymp-
totics of statistical estimation and prediction were further discussed by Eguchi
and Yanagimoto [88], Komaki [123] and Kano [116]. The relationship between
sequential estimation and conformal geometry was established by Okamoto et al.
[175]. Geometrical aspects of the EM algorithm (Dempster et al. [79]) were stud-
ied by Csiszér and Tusnédy [73], Amari [16] and Byrne [63], while Matsuyama
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[147, 148] proposed the o-EM algorithm to accelerate convergence. Myung et
al. {154] applied a geometrical idea to give a foundation to Rissanen’s MDL
and to generalize it. Conformal geometry was used by Amari and Wu [32] to
improve the kernel support vector machine. Amari [22] studied an invariant de-
composition of higher-order correlations in order to elucidate the correlational
structure of an ensemble of neurons. See also Eguchi [86], Kass [117], Pace and
Salvan [181] and Vos [216, 217, 218, 219]. The last author pointed out that the
dually flat structure of an exponential family is applicable to a quasi-likelihood
in the theory of generalized linear model.

In Chapter 5 we have surveyed some topics from differential geometrical
studies of dynamical systems and time series, chiefly based on Amari [12] and
Ohara et al. (172, 171, 173]. Related works are found in Brockett [56], Kumon
(131], Ravishanker et al. {193], Komaki [124], Zang et al. [228], Brigo et al. [55]
Kulhavy [128, 129, 130] and Xu [223]. See also Sekine [195, 196] for geome—’
try of some infinite-dimensional spaces consisting of continuous-time stochastic
processes.

The geometrical framework connecting multiterminal information theory
and statistical inference was given in the papers of Amari and Han [13, 26
99, 100]. Chapter 6 is an overview of this subject which is also indebted to’
such information theoretical works as Han [98], Ahlswede and Brunashev (3]
and Shalaby and Papamarcou [197]. A comprehensive survey is found in [100].

In Chapter 7 we have discussed some ideas for extending the framework
of information geometry to quantum systems. Among the materials of the
quantum information geometry, the quantum relative entropy has been studied
so far mainly in mathematical physics and operator algebras; see e.g. Umegaki
[212], Lindblad [144], Araki [33], Uhlmann [209], and Ohya and Petz [174].
Reflecting that its classical counterpart {ie. the Kullback divergence) is one of
the key concepts in the classical information geometry, it seems a natural idea
to use the relative entropy to define a geometrical structure on the quantum
state space. Ingarden et al. [112] pointed out that the relative entropy induces
a Riemannian metric on the quantum state space. Nagaoka [158] introduced the
dualistic structure from the relative entropy and showed that it is dually flat
Just like the classical e-, m-connections on the space of probability distributions.
Petz [183] and Petz and Toth [186] studied the same geometrical structure from
a different point of view, elucidated its relation to the Bogoliubov inner product
(or the canonical correlation), and derived the Cramér-Rao inequality in this
geometry which is a special case of our Theorem 7.3. The quantum version of
Csiszdr’s f-divergence treated in §7.2 was introduced by Petz [182] (see also
(174]), extending the approach of [33] where the relative entropy was defined
via the relative modular operator. The quantum a-divergence and the induced
dualistic structure were introduced by Hasegawa [101] and further studied by
himself and Petz [102, 185]. These geometrical structures may be regarded as
formal quantum analogues of the a-connections and the Fisher metric, and are
discussed in §7.2 of the present book in the light of the general theory of dual
connections developed in Chapter 3.

We should note, however, that it is by no means clear whether the geomet-



184 GUIDE TO THE BIBLIOGRAPHY

rical structure induced from a divergence is relevent, as in the classical case,
to statistical problems such as parameter estimation and hypothesis testing.
Statistical inference problems on quantum states were actively studied by Hel-
strom, Holevo, Belavkin, Yuen, Lax, Kennedy and others around the 1970s; see
the books of Helstrom [107] and Holevo [110] and their lists of references. We
cannot find the relative entropy nor any divergence in these works, but instead
there are some analogues of the score functions (i.e. the derivatives of the log-
arithmic likelihood) such as the symmetric logarithmic derivatives (SLDs) and
the right logarithmic derivatives (RLDs). Nagaoka (158] showed that a dualistic
structure can be induced from the SLDs and elucidated some relations to the pa-
rameter estimation of quantum states. He also pointed out that the e-connection
in this structure has a nonvanishing torsion, which forms a remarkable contrast
to the dualistic structure induced from a divergence. The geometry of relative
entropy and that of SLD were unified as the geometry of generalized covariance
in Nagaoka [160]. The content of §7.3 and the first three theorems in §7.4 are
mostly based on [160] except that Theorem 7.1 is new. The notion of quasi-
classical model and the propositions (I) through (VI) in §7.4 are basically due
to Nagaoka [156], whereas Young [226] obtained similar results to (I)~(IV). See
also Nagaoka and Fujiwara [162].

Let us take a brief look at other approaches related to quantum extensions
of information geometry, although we do not intend to give a comprehensive list
of references. The monotonicity of a Riemannian metric on the quantum state
space with respect to completely positive maps was studied by Morozowa and
Chentsov [152], Petz [184] and Lesniewski and Ruskai {140]. A mathematically
rigorous foundation was given to the a-connections on the infinite-dimensional
quantum state space by Gibilisco and Isola [96] as a noncommutative extension
of the work of Gibilisco and Pistone [97] mentioned below. A connection on a
fiber bundle on the state space was studied by Uhlmann [210, 211], Dabrowski
and Jadezyk {75], Hiibner [111], among others, in connection with the Berry
phase, and its relation to the geometry of SLD was discussed by Fujiwara [89,
90] and Matsumoto [146]. The future of the quantum information geometry
will essentially depend on the development of the theory of quantum statistical
inference. For recent studies on the parameter estimation of quantum states, see
Nagaoka [157, 159], Fujiwara and Nagaoka [92, 93, 94], Matsumoto [145, 146}
and Hayashi (104, 105]. The theory of hypothesis testing of quantum states
is also important. For example, a statistical meaning of the quantum relative
entropy is elucidated by the quantum version of Stein’s lemma, which was proved
by Hiai and Petz [109] and Ogawa and Nagaoka [169]. See also Wootters [222],
Braunstein and Caves [51, 52|, and Brody and Hughston [59] for geometrical
study of quantum statistical inference.

Besides gqhantum mechanics, there are several topics in physics related to
information geometry. Geometrical aspects of statistical physics were discussed
by Balian {36] and Streater [204]. Recently, the Tsallis entropy (207, 74, 208]
has been highlighted in the field of statistical physics. This subject seems to
have close relation to the theory of a-connections discussed in Sections 2.6
and 3.6. See also Tanaka [206], where the information geometry was applied to
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elucidation of the method of mean field approximation. .

As pointed out in §8.1, a dually flat structure naturally arises when a smooth
convex function is arbitrarily given. This observation enables us to apply the
framework of information geometry to several new fields. Note that the idea
of introducing a divergence D from a convex function 1 via Equation (88)
was already studied by Bregmann [53] without noticing the inherent.duahstlc
geometrical structure. See Azoury and Warmuth [35] for a relat(.ad subject. The
application to linear programming is found in Amari’s unpublished n?te [10]
See also Tanabe and Tsuchiya [205]. The idea was extended to semidefinite
programming problems by Ohara [170]. Gradient flows on dually flat spaces
and their relations to completely integrable systems were discussed by Nakamura
[163, 164] and Fujiwara and Amari [91). See also Onishi and Imai [179, .180],
where V- and V*-Voronoi diagrams in computational geometry were studied.

The gradient of a function depends on the choice of the underl}fing Rie-
mannian metric as in Equations (2.45) and (2.46), and when a gradient ﬂov,s’r
is applied to an optimization process, it is often important tg choose a “goqd
metric in order to achieve a good performance. The learning methoc.l using
the gradient flow based on such a natural metric as the Fisher metric on a
statistical model or the invariant metric on a Lie group is called the n'atl_zral
gradient method, which is applicable to wide range of learning and optimiza-~
tion problems. The invariant Riemannian metric on the genera:I linear group
GL(n)} was used for the natural gradient method in ICA by Amari [18, 19]. Thl_s
approach was extended to linear dynamical systems for the purpose of multi-
terminal deconvolution problem by Zhang et al. [228]. See also ‘Edelman.et al.
[82] for geometry of gradient algorithms on Grassmann anfl Stiefel manifolds.
The natural gradient method for multilayer perceptrons, which works much bet-
ter than the conventional backpropagation method, was studied by Yang and
Amari [224] and Amari et al. {31], for which Rattray et ‘al. [101, 192] proved
the optimality in learning by means of a statistical-physical a‘pproach. Some
extensions of the natural gradient method are found in Amari et al. [25] and
Kivinen and Warmuth [121]. ‘

Neural networks bring up several interesting problems related to both sf,ans-
tics and geometry, some of which were briefly explained in §8.2. Nel.zro—mam.folds
of Boltzmann machines and higher-order neurons were discussed in Amari [14]
and Amari et al. [30]. The EM-algorithm and the natural gradient method men-
tioned above are important tools for learning procedures of neural networks; see

in particular Amari et al. {16, 31], Byrne {63], Rattray et al. [.191, 19?], and Yang
and Amari [224]. Study on neuro-manifolds has revealed an interesting fact t}_lat
a hierarchical system such as multilayer perceptrons, ARMA 1:110del§, Gauss¥an
mixtures, etc. in general includes singularities at which t}{e Fisher information
degenerates. Singularities have serious influence on learn{ng speed ar.1d rnod.el
selection. Watanabe [220] has given an algebraic-geometrical foupdatlon to .1t.
Fukumizu and Amari [95] shows an interesting behavior of learning dynamics
at singularities. These are new subjects to be studied further. )
Transformation models on which some Lie groups are acting ‘have many
special properties, which were extensively studied by Barndorff-Nielsen et al.
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[42, 43]. In §8.8 we have briefly touched upon the dualistic structure of such
transformation models, although the subject has not fully been investigated yet.

The notion of dual connections naturally arises in the framework of affine
differential geometry as seen in §8.4. Mathematical studies on this subject are
found in Nomizu and Pinkall {166], Nomizu and Simon [168], Nomizu and Sasaki
[167], Dillen et al. [80], Kurose [133, 134, 135], Abe [1], Lauritzen [138], Matsu-
zoe [149], Noguchi [165], Li et al. {141} and Uohashi et al. [213]. On the other
hand, Shima [198, 199, 200] studied a Hessian manifold which is a Riemannian
manifold with the metric given by the second derivatives of a convex potential
function ¥(f) in a local coordinate system as in Equation (3.34). This is es-
sentially equivalent to the notion of dually flat space. He investigated this kind
of manifolds including their global structures from purely mathematical points
of view. Infinite-dimensional statistical manifolds were studied by Kambayashi
[115], von Friedrich [215] and Lafferty [136], and a mathematical foundation was
given to this problem in the framework of Orlicz space by Pistone and his group
in [97, 188, 189].
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