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Abstract. With insight from linguistics that degrees of text cohesion
are similar to forces in physics, and the frequent use of the energy concept
in text categorization by machine learning, we consider the applicability
of particle-wave duality to semantic content inherent in index terms.
Wave-like interpretations go back to the regional nature of such content,
utilizing functions for its representation, whereas content as a particle can
be conveniently modelled by position vectors. Interestingly, wave packets
behave like particles, lending credibility to the duality hypothesis. We
show in a classical mechanics framework how metaphorical term mass
can be computed.

1 Introduction

The general idea to use physics, prominently both classical and quantum
mechanics, to model phenomena crucial to managing society has lately
made an interesting debut among significant research questions. To do
so, the calculus being the same as in quantum mechanics, the trick is to
switch the probability type from the variant pertinent in the subatomic
domain to the other one which works in the macroworld [1]. By this,
phenomena like financial market evolution (deterministic and stochastic
models of markets), language evolution, or digital repositories handling
term meaning fluctuations become available for extensive and application-
oriented, testable research with implementable results.

At the same time, currently this intellectual tightrope walking is
mostly theory development, with expected immediate practical implica-
tions. If one can show on new use cases such as e.g. media, health, and
part text, part signal based science data that quantum-like modelling
works, and yields at least as good or better results than the benchmark,
then one will have to ask for the reason of this success. One explanation
we have at this point is the metaphorically “energetic” nature of both
language [2] and learning (decision making) [3]. Since we perceive this
“energetic” nature based on macroworld observations also underpinned



by microworld calculation methodology, the phenomenon must be under-
lying both classical mechanics (CM) and quantum mechanics (QM).

With this caveat, as a next phase in an ongoing thought experiment,
below we will first cite arguments from linguistics to compare kinds of
coherence in language to types of forces in physics, and suggest the field
concept as a possible unifying metaphor to represent word and sentence
semantics both in the CM and QM frames of thought. Our first observa-
tion cites views calling for a regionally rather than exactly located kind
of semantic content to be considered [4]. Secondly, mathematical objects
with physical equivalents, such as sinusoids standing for e.g. electromag-
netic waves and wavelets for impulses (outbursts), can be used to model
the above regional distribution of semantic content [5, 6], also demon-
strated for the visible light part of the spectrum [7] – as if, in a sense,
terms and documents had a wave nature. Thirdly, we will postulate that
the same semantic content can be conceived both as a particle and a
wave-packet, arguing for this quasi-dual nature as an essential property
enabling new kinds of experiments.

The topic is heating up because of increasing interest in temporal
dynamics [8–11] and its anticipated connection with the Hamiltonian, a
typically quantum interaction (QI) consideration. As proposed earlier, in
both CM and QM, it is the Hamiltonian which describes the energy stored
in a system, and in order to approach it, finding a way to compute term
“mass” is the key.

This paper is organized as follows: Section 2 outlines the concept of
energy in machine learning, Section 3 interprets the Hamiltonian on the
constituents of a term-document matrix and in Section 4 we consider the
duality of semantic content representation. Section 5 is the discussion of
some immediate implications of our observations, with Section 6 offering
our brief conclusions.

2 Energy in machine learning

The metaphoric use of physics is based on the urge to find better mod-
els of text classification (TC) and information retrieval (IR) by means
of machine learning (ML). We start with arguments from linguistics to
compare kinds of coherence in language to types of force in physics.

As White suggests, linguistics, like physics, has four binding forces
[12]:

– The strong nuclear force, which is the strongest “glue” in physics, cor-
responds to word uninterruptability (binding morphemes into words);



– Electromagnetism, which is less strong, corresponds to grammar and
binds words into sentences;

– The weak nuclear force, being even less strong, compares to texture
or cohesion (also called coherence), binding sentences into texts;

– Finally gravity as the weakest force acts like intercohesion or interco-
herence which binds texts into literatures (i.e. documents into collec-
tions or databases).

Mainstream linguistics traditionally deals with Forces 1 and 2, while
discourse analysis and text linguistics are particularly concerned with
Force 3. The field most identified with the study of Force 4 is informa-
tion science [12–14]. As the concept of force implies, referring here to
attraction, it takes energy to keep things together, therefore the energy
doing so is stored in agglomerations of observables of different kinds in
different magnitudes, and can be released from such structures. A notable
difference between physical and lingustic systems is that extracting work
content, i.e. “energy” from symbols by reading or copying them does not
annihilate symbolic content, however.

Looking now at the same problem from a different angle, in the above
and related efforts, energy inherent in all four types can be the model of:

– A Type 2, i.e. electromagnetism-like attractive-repulsive binding force
such as lexical attraction, a.k.a syntactic word affinity [15], also called
sentence cohesion, such as by modelling dependency grammar by mu-
tual information [16]. Once pointwise mutual information replaces mu-
tual information, the nickname of the effect is “infomagnetism” [17].
In a TC and/or IR setting, a similar phenomenon is term dependence
based on their co-occurrence;

– Decision making, such as in a classification process, both in a super-
vised and unsupervised manner;

– Information representation, such as conceiving documents as wave
interference patterns [7, 18].

Again from a different angle, the energy concept used in experiments
of the above types can be mathematical or physical. For mathematical
energy, at least three concepts are current:

– Signal energy in calculations, devoid of physical content (e.g. [6]. A
typical consideration runs like this: “Signals that arise from strictly
mathematical processes and have no apparent physical equivalent are
commonly considered to represent some form of mathematical energy”
[19];



– Loss functions in ML. These model the cost of a classification decision
as an energy minimizing process;

– Local density of values within a mathematical object: “Energy of a
(part of a) vector is calculated by summing up the squares of the
values in the (part of the) vector” [20]

For physical energy as a model of content or processes, the applicabil-
ity of the metaphor in ML pertains to all kinds of media, images included.
With a focus mainly on clustering, its range is already strikingly broad,
spanning the electromagnetic force [21], gravity [22, 23], spin [24], waves
[25], wavelets [26], and wave functions [27, 28]. At the same time, the uti-
lization of the energy concept in ML goes back to the use of potentials. In
the examples cited above, there are two kinds thereof, Coulomb potential
vs. gravitational potential, so that decision making (classification, catego-
rization) is minimum or maximum seeking by gradient descent or ascent
on a hypersurface, constructed from statistics describing the event space.
Whereas gravitational force assumes energy from the mass of particles
(i.e., documents) in a cluster, Coulomb potential presupposes the dipole
nature of entities such as belonging to vs. not belonging to a class.

We have to mention here the inherent eigen conjecture in latent se-
mantic methods, namely that terms have “mass”, i.e. word meaning be-
haves as if it had an energetic nature [2]. This conjecture is now reinforced
by the explicit consideration of mass in the kinetic part of dynamic quan-
tum clustering (DQC) as well [28].

3 The role of the Hamiltonian in evolving document
collections

Taking into consideration that H = T+V is the Hamiltonian equation we
want to interpret, where H is the Hamiltonian operator, T is the kinetic
energy and V is the potential energy of a system, respectively, we argue
that AAT = H, that is, we treat the term co-occurrence matrix as the
description of the total energy of the system. Thereby we also assume
that our system is a conservative one. The same assumption was made
by DQC [27–29].

Any update of AAT results in an A′A′T state with its corresponding
V ′ potential energy, whereas the difference between any two consecutive
V ′ goes back partly to changes in document collection content reflected
by different index term occurrence rates (a.k.a. term frequency), partly
to changes in the proportion of referential meaning added to H by sense



definitions and sense relations of index terms. Both T and V can be
analyzed by comparing consecutive spectral decomposition of the same
index term over periods.

It is key to the understanding of V to remember that the semantic in-
terpretation of both A and AAT goes back to term occurrences in context,
and thereby to the distributional hypothesis of word meaning [30]. How-
ever, taking a broader view of the issue, it is clear that at least one more
factor, i.e. referential meaning must play a role in interpreting the above
matrices as well. Namely the reason why terms in a particular context
co-occur goes back to their ontological meaning, in a referential relation
with their occurrences in sentences. This external, hidden contribution
can be measured e.g. by the inverse relationship between the number of
intensions (features) of a word vs. its extensions (cardinality of the set of
its examples) [31].

Next we bring arguments for the regional nature of semantic content.
We will focus on Euclidean space, i.e. the vector space IR model (VSM)
and its offsprings, where a natural concern is to ask, is semantic content
exactly or inexactly located, i.e. regional? The answer depends on what
one wants to model and by which mathematical objects; however, this
ambiguity, the potentially dual nature of semantic content will be key to
our conclusions.

4 Duality in semantic representation

4.1 The regionality of semantic content – Wave-like
representation

In linguistics, the regional nature of word semantics can be best observed
on the overlap between word senses displayed as semantic fields [32, 33].
Priss and Old model the underlying, language-independent conceptual
regions by neighbourhood lattices [34]. Further the very concern itself is
not new, IR and TC having assumed for a long time that the immedi-
ate neighbourhood [4] of relevant terms and documents contains related,
and therefore important, information, which can be used for e.g. rele-
vance feedback [35]. In a QI setting, Bruza and Woods ascribed word
sense disambiguation to the collapse of meaning superpositions due to
disambiguating local term context [36]. Further there is an argument in
[37] about support vector machines (SVM) linked to quantum disjunc-
tions, the link being regions, meant to solve the problem to be able to
say that apple is a kind of fruit (apple is part of the fruit region, i.e. its
hyponym), as opposed to modeling that apple and fruit have something



to do with each other. SVMs do this by finding the separating hyper-
plane, but more research is needed to understand whether the separating
hyperplane defines a region. Finally, instead of regions, [38] measure the
distance between subspaces spanned by documents by projecting them
into one another.

In vector models using position vectors content is usually exactly lo-
cated. However, reinforcing Dyvik’s and Priss and Old’s argument, e.g.
Erk also argues for the regionality of word meaning, i.e. its inexact loca-
tion [4]. She departs from the fact that many models of categorization in
psychology represent a concept as a region, characterized by feature vec-
tors with dimension weights, and offers two computational models, both
of which can host soft region boundaries. Using so-called type vectors as
central vectors, each type vector comes with a vector β which defines the
importance of each dimension, thus the type vector and its weight vector
define a region. Here, regionality implies gradually decreasing similarity
between document, query and term vectors. Another model, of sentence
formation and called lexical attraction [15], deals with the likelihood of a
syntactic relation decaying over distance like a force.

Regionality also manifests itself if term vectors are embedded into
an L2 space, assigning sums of sinusoids or wavelets to each term in
the function space [39, 40]. In these models the length of the period or
the length of the support controls the inexactness of semantic content,
and given that terms are arranged according to a semantic order, this
representation may lead to improvement in classification performance.

Hence both terms and sentence components can be considered as hav-
ing a regional interpretation or aspect as well. Interference (pattern) mod-
els using functions to represent semantic content implement this regional-
ity expectation [18, 7] – as do Erk’s token vectors for monosemous vs. pol-
ysemous words. By these means, the question has to remain undecided.
However, the applicability of the concepts of energy, the Hamiltonian,
and regional, “smeared out” content beg for a thought experiment which
compares exactly located content to particles, inexactly located content
to waves, and invokes the parallel with particle-wave duality in QM.

4.2 Meaning and mass – Particle-like representation

The attempt presented here goes back to CM with the implied argument
that if QI methods work on language, terms must have “energies” and,
in turn, related “mass” equivalents; but then, these must be observable
in the much simpler Newtonian environment as well.



Following this train of thought, given that in CM, force is the prod-
uct of mass and acceleration, F = ma in Newton’s 2nd law, we assume
that similarity is a “glue”, i.e. binding force, between entities in vector
space [41]: the more similar two vectors are, the better they attract each
other (which is different for example from electromagnetic attraction and
repulsion).

Thinking back of Salton’s dynamic library with its moving cluster cen-
troids due to collection update (expansion) [42], we leave the question un-
decided here if an updated system is a closed or open one. With a conser-
vative system in mind, we consider a vector space of many term-document
matrices, representing consecutive updates of the same database with a
fixed vocabulary over an increasing number of documents, so that all the
documents and the terms will have temporal indices as well. This way
term and document similarity can be computed as the cosine of two vec-
tors with the same temporal index, and the dislocation (i.e. distance, x)
of the same term due to database update will be the cosine of the two
respective vectors with consecutive temporal indices. Assuming updates
over units of time, term velocity (v) will be the same as the distance
between two consecutive positions of the same term. Calculating term
acceleration (a) equals the difference between term velocities over units
of time. Table 1 shows a toy example of a growing document collection
indexed by the same terms in three timesteps. Given this, we depart from
Ehrenfest’s theorem stating that the time-dependent expectation value of
the position operator

〈ψ(t)|x|ψ(t)〉 =

∫
ψ(x, t)∗xψ(x, t)dx

satisfies the equation

d2〈x(t)〉
dt2

= 〈ψ(t)|∇V (x)|ψ(t)〉.

This means that the expectation values of the position operator obey
their corresponding classical equations of motion, that is, the centre of
each wave packet rolls towards the nearest minimum of the potential
according to Newton’s 2nd law. Following this train of thought further,
with term similarities at different times as attraction between them in a
symmetric matrix, we insert term acceleration in the respective row and
column headings and see that |F |/|a| = m for every term at a given time,
i.e. for every term pair compute their time-dependent masses.

We derive term “mass” the following way. Assuming unit time steps,
we calculate term velocities between subsequent time steps based on the



t = 0 Doping Football Performance Skiing Training

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4

t = 1

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4
d6 2 3 0 1 1
d7 1 0 0 4 5

t = 2

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4
d6 2 3 0 1 1
d7 1 0 0 4 5
d8 5 6 1 1 0
d9 2 1 1 3 0

Table 1. Evolution of an indexing vocabulary over time



Euclidean distance between the term’s vector at the respective time steps.
We only care about the magnitude. The change in the velocity results in
an acceleration value. At every time step, we regard the force that acts on
a term as a sum of dissimilarities with every term except itself. This cal-
culation is similar to an interaction potential that considers n : n relations
between particles (or agents) [1, p.157]. This is a considerable simplifica-
tion as the force that changes the term distribution is at least partially
external to an existing distributional pattern. Based on the absolute value
of the acceleration and the force, term “mass” can be calculated (see Table
2).

Doping Football Performance Skiing Training

v1 9 9 0 25 36
v2 49 49 4 16 0
a 40 40 4 -9 -36
F 1.56 1.28 1.24 1.35 1.37
m 0.039 0.032 0.31 0.15 0.038
Table 2. Calculation of term mass over t0-t1

5 Discussion

Immediate consequences of term representation by wave packets include
the following:

– When describing the behaviour of index terms in a document collec-
tion expanding over time according to the CM frame of thought, all
the numerical results for variables like force, acceleration or mass, are
dimensionless, i.e. metaphoric. An explanation of the results can be
to ascribe constant mass to terms like in [41] where term occurrences
count as such, but variable density, ρ = mV . Here any word form
would count as a unit container, hence V = const., and variable term
density is the result of variable forces acting on the system in different
periods;

– In DQC, Gaussian wave packets model particles [28]. According to
Eq 6.4, ”the generalized Gaussian packet shows that the packet cen-
ter moves along the classical trajectory for a particle starting with
the given initial mean position and mean momentum”. A wave packet
(or wave train) is a short ”burst” or ”envelope” of wave action that



travels as a unit and can be analyzed into, or can be synthesized from,
an infinite set of component sinusoidal waves of different wavenum-
bers, with phases and amplitudes such that they interfere construc-
tively only over a small region of space, and destructively elsewhere.
Wave packets, while behaving as particles, can reversibly model sen-
tences as word sequences. If a sentence happens to be a definition of a
word sense, like in Wordnet, they model referential semantics charg-
ing words “from the outside”, i.e. adding extra meaning to words in
the term-document matrix whose only meaning this far was ascribed
to the distributional hypothesis [30];

– The total energy of a classical mechanical or a QM system is described
by the Hamiltonian operator, adding up its kinetic and potential en-
ergy. However, the Hamiltonian may or may not describe a quantum-
like system. Further there are some subtle issues here and we must
not jump to conclusions. Inexactly located semantic content suggests
a distribution as well as some kind of an uncertainty; in a QL con-
text both stem from the non-commutative nature of the operators.
We only conjecture that the use of such non-commutative operators
is an apt description for semantic content.

6 Conclusions

To further underpin the observation that language may be a quantum-like
system, we sampled arguments in favour of a metaphorical use of classical
and quantum mechanics to model the static and dynamic behaviour of
word meaning. With energy as a concept frequently used in some form in
text categorization and information retrieval, we contrasted two equally
valid approaches to the representation of semantic content, by its exact
vs. inexact location, and argued that they closely resemble particle-wave
duality in QM. One cited example, wave packets, interestingly behave like
particles, lending credibility to the duality hypothesis. Further we showed
on a toy example in a classical mechanics framework how metaphorical
term mass can be computed. Our future work will increasingly focus on
the interpretation and practical use of the Hamiltonian of evolving se-
mantic systems.
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