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Abstract

Shape Dynamics (SD) is a new theory of gravity that is based on fewer and
more fundamental first principles than General Relativity (GR). The most im-
portant feature of SD is the replacement of GR’s relativity of simultaneity with
a more tractable gauge symmetry, namely invariance under spatial conformal
transformations. This Tutorial contains both a quick introduction for readers
curious about SD and a detailed walk-through of the historical and concep-
tual motivations for the theory, its logical development from first principles
and an in-depth description of its present status. The Tutorial is sufficiently
self-contained for an undergrad student with some basic background in General
Relativity and Lagrangian/Hamiltonian mechanics. It is intended both as a
reference text for students approaching the subject, and as a review article for
researchers interested in the theory.

1 Introduction

1.1 Foreword

The main part of this introduction is in Sec. 1.3 (Shape Dynamics in a nutshell),
which I have tried to make into a no-nonsense quick entry to the basic ideas
of SD. It serves a dual purpose: on the one hand, students interested in Shape
Dynamics will have a brief overview of what this theory is about and what
we hope to do with it; on the other, researchers curious about SD will find
in Sec. 1.3 a description of the theory that is short but, hopefully, complete
enough for them to decide whether these ideas are worth examining in depth.
The minimum of notions needed to understand the core ideas of SD will be
outlined with the aim of making the section as self-contained as possible. All
the concepts will be explained in detail in the rest of this Tutorial, taking
an ‘historico-pedagogical’ perspective and introducing them at the appropriate
points of the story. Sec. 1.3 includes an ultra-quick outline of basic concepts
needed to understand SD, which are not part of normal undergrad curricula (like
constrained Hamiltonian systems and gauge theories). However the Section is
limited to just a few pages so it can be read quickly by experts, and this outline
is by no means sufficient to understand properly those concepts. Its purpose
is to give the undergrad readers a flavour of the background knowledge that is
necessary to understand SD and get the overall drift. Everything will be fully
explained in the body of the text.

Part I shows where SD comes from: we consider it as the most advanced stage
of the relational program, which seeks to eliminate all absolute structures from

physics. With absolute structures I mean anything that determines physical
phenomena but is not determined by them. The chief example is Newton’s
absolute space and time (or, in modern terms, inertial frames of reference).
The battlefield of Newton’s absolutes has seen giants of science fighting the
absolute-vs-relative debate: Galileo, Descartes, Newton himself, Leibniz, Mach,
Poincaré and Einstein. Another example is scale, or size: Shape Dynamics tries
to eliminate precisely this absolute structure from physics. One could imagine
pushing this program further in the future: what determines all the physical
constants?

In Sec. 2 T will explain in detail the fundamental problem of Newtonian
dynamics: everything is based on the law of inertia, which in turn relies on
the concepts of rest and uniform motion, but these concepts are not defined
by Newton. Section 3 makes the problem with Newton’s construction precise.
Stating in a mathematically precise way the defect of Newton’s theory was an
incredibly hard problem; after more then two centuries Henri Poincaré did it.
But even Poincaré’s formulation (which we call the ‘Mach-Poincaré principle)
wasn’t recognized for what it is until the work of Barbour and Bertotti, in the
1960’s.

Part I deals with relational dynamics in the simpler framework of systems
of point particles. Relational dynamics is a reformulation of dynamics which
satisfies the Mach—Poincaré principle, as formulated by Barbour and Bertotti.
It uses specific techniques that were invented on purpose, in particular that of
‘best matching’. In Sec. 4 best matching is introduced at an intuitive level,
while Sec. 5 details it using the language of Principal Fibre Bundles, which are
introduced to the reader. Sec. 6 describes the Hamiltonian formulation of best
matching, and links it to modern gauge theory. The techniques developed by
Dirac for Hamiltonian constrained systems are needed in this section, and are
therefore briefly explained.

Part TII deals with the more advanced framework of field theory. The first
Section (A) contains useful background material on the Hamiltonian formula-
tion of General Relativity due to Arnowitt, Deser and Misner. This is helpful
to make connection, in the following sections, to GR. Section 7 details (in
my more modern language) a series of results due to Barbour, O’Murchadha,
Foster, Anderson, and Kelleher. These results are quite striking: they show
that the principles of relational field theory alone are sufficient to derive GR,
the general and special relativity principles, the universality of the light cone,
Maxwell’s electromagnetism, the gauge principle and Yang—Mills theory. Sec-
tion 8 is again background material: it presents York’s method for the solution
of the initial-value problem in GR. This provides an important input for the
formulation of Shape Dynamics. The last Section of this Part, 9, deals with
work I have done together with E. Anderson, and finally makes the connection



from relational field theory to Shape Dynamics, showing that it arises uniquely
from the principles of relational field theory and the Mach—Poincaré principle.

In Part IV Shape Dynamics is finally formulated in its current form. I start
with a brief account of the way the ideas at the basis of SD were developed in
Sec. 10, then in Sec. 11 I proceed to derive the equations of SD from the point I
left the theory in Sec. 9. In Sec. 11.1 I discuss the physical degrees of freedom of
SD, which are the conformally invariant properties of a 3-dimensional manifold,
and their conjugate momenta. In Sec. 11.2 I explain how SD represents a simple
solution to the problem of time of Quantum Gravity, and how one reconstructs
the familiar 4-dimensional spacetime description of GR from a solution of SD.
Finally, in Sec. 12 I describe a simplified regime of SD, namely that of asymp-
totically flat solutions, which can be understood as a good approximation of
proper (spatially compact) solutions of SD for a short interval of time and in a
small patch of space. This allows me to discuss a first physical application of
SD: the description of black holes in Sec. 12.1, which turn out to be ‘wormholes’
connecting two universes. This is a clear difference between SD and GR, and
it is particularly instructive of the inequivalence between the two theories. For
the moment I will stop here with applications, but many more are upcoming
and will be included in this Tutorial as soon as they reach a sufficient degree
of maturity and solidity.

The next and final Part of the Tutorial contains the appendices, which are
divided into a first, major Appendix, A, with a brief account of the Hamiltonian
formulation of General Relativity due to Arnowitt, Deser and Misner. This is
the main tool of Canonical General Relativity and is the theory we have to
compare classical SD to. In this appendix I give a standard derivation of this
theory starting from GR and the Einstein-Hilbert action. The same theory
can be deduced from the axioms of relational field theory without presupposing
spacetime and without starting from the Einstein—Hilbert action, as was done in
Sec. 7. This derivation assumes less and should be considered more fundamental
than that of Arnowitt, Deser and Misner, however I felt that the junior readers
should be aware of the standard derivation. Finally, Appendix B contains a
series of results and derivations that are useful and referenced to throughout
the text, but which are moved to the end of the Tutorial for the sake of clarity
of exposition.
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1.2 Notation

In the text we use a notation according to which the Greek indices u,v,... go
from 0 to 3, while the lowercase Latin indices from the middle of the alphabet
1,7, k,£,m... are spatial and go from 1 to 3. We assume a Lorenzian signature
(—,+,+,+). The lowercase Latin indices from the beginning of the alphabet
a, b, ¢, refer to the particle number and go from 1 to N. Three-dimensional
vectors will be indicated with Latin or Greek bold letters, q, p, 0, w, ..., while
three-dimensional matrices will be uppercase Roman or Greek Q,0,U,1,....
The spatial Laplacian ¢;;V¢V? will be indicated with the symbol A, while for
the d’Alembertian g, V#V" T'll use the symbol 0. The (spatial) conformal
Laplacian 8A — R will be indicated with the symbol O. The vector Laplacian
6% ;g1 VPV will be indicated with the same symbol for the scalar Laplacian A
without indices, while the symbol for the conformal vector Laplacian V;V* +
5 A — 2VIV; will be OF.

1.3 Shape Dynamics in a nutshell

Shape Dynamics (SD) is a field theory that describes gravity in a different way
than General Relativity (GR). The differences between the two theories are
subtle, though: in most situations they are indistinguishable.

SD is a gauge theory of spatial conformal (Weyl) symmetry

SD and GR are two different gauge theories defined in the same phase space
that both admit a particular gauge fixing in which they coincide. This does
not guarantee complete equivalence between the two theories: a gauge fixing
is in general not compatible with every solution of a theory, in particular due
to global issues. The equivalence between SD and GR therefore fails in some
situations.

What distinguishes SD from GR as a fundamental theory of gravity is its
different ontology.

First, SD does without spacetime: the existence of a pseudo-Riemannian
4-dimensional manifold with Lorentzian signature is not assumed among the
axioms of the theory. Instead, the primary entities in SD are three-dimensional
geometries that are fitted together by relational principles into a ‘stack’ whose
structural properties can be identified in some but not all cases with those of
a four-dimensional spacetime which satisfies Einstein’s field equations. The
closest agreement with GR occurs if the three-geometries are spatially closed,
when the relational principles of SD are fully implemented. However, there is



Figure 1: Conformal transformation of a 2-dimensional sphere. The triangle
defined by the intersection of three curves is transformed in such a way that
its area and the lengths of its three edges are changed, but the three internal
angles (in red) are left invariant.

also interest in partial implementation of SD’s relational principles in the case
in which the three-geometries are asymptotically flat.

Second, the spatial geometries which make the configuration space of SD
are not Riemannian. They are conformal geometries, defined as equivalence
classes of metrics under position-dependent conformal transformations (some-
times called ‘Weyl trasformations’ ; the fourth power of ¢ is chosen to simplify
the transformation law of the scalar curvature R) :

{gij ~gi; if gi; =" gij, o(x)>0Va}. (1)

Conformal transformations change lengths and preserve only angles (see Fig. 1).
Therefore a conformal geometry presupposes less than a Riemannian geometry,
for which lengths determined by the metric are considered to be physical. What
is physical in SD is the conformal structure, which is the angle-determining part
of the metric. Lengths can be changed arbitrarily and locally by a conformal
transformation, which is a gauge transformation for SD.

So SD assumes less structure than GR, but it is in one sense a minimalistic
lifting of assumptions: the next thing in order of simplicity after Riemannian
geometry is conformal geometry. Some of the other approaches to quantum
gravity are decidedly more radical as regards the amount of structure they
assume: either much more (string theory) or much less (causal sets).

SD is based on fewer and more basic kinematical first principles than GR
(see Part II):

Spatial relationalism: the positions and sizes of objects are defined
relative to each other. This determines what the physical configuration
space is (see Sec. 3.2).

Temporal relationalism: the flow of time is solely due to physical
changes (see Sec. 5.1).

The Mach—Poincaré principle: a point and a direction (or tan-
gent vector, in its weak form) in the physical configuration space are
sufficient to uniquely specify the solution (see Sec. 3.4).

There is no need for general covariance, the relativity principle, the existence of
spacetime, the existence of measuring rods and clocks. These concepts emerge
from the solutions of SD as characteristic behaviours or useful approximations.
In this sense SD is more fundamental than GR because it achieves the same
with less. See Part III for the full construction of SD starting from its three
first principles.

A common mistake is to regard SD just as a gauge-fixing of General Relativ-
ity. It is easy to see that this is not the case: there are solutions of SD that are
not solutions of GR, and vice-versa. A satisfactory understanding of the GR
solutions which SD excludes and of the SD solutions which GR excludes is still
lacking. At this point we have just studied some examples, but the results are
so far encouraging. For example the vacuum, asymptotically flat and spheri-
cally symmetric solution of SD is not Schwarzschild, it is instead a ‘wormhole’,
which is not a vacuum solution of GR and which does not have the singularity
that characterizes Schwarzschild’s solution at the origin. See Sec. 12.1 for the
derivation of the wormhole in SD. The equivalence between GR and SD also
breaks down in some homogeneous cosmological models, which in GR possess
a singularity at which spacetime ceases to exist, but in SD this singularity is
a sort of coordinate artifact (it’s a singularity of the gauge choice) and the
solution can be continued beyond it.

Let’s now have a brief look at what exactly SD looks like.

Gauge theories are constrained Hamiltonian systems

SD is more naturally formulated as a gauge theory in the Hamiltonian language.
Gauge theories are theories with redundancies: one uses more degrees of free-
dom than necessary in order to attain a simpler and local description. In the
Hamiltonian picture, this translates into nonholonomic constraints: functions
of the canonical variables x = x(p, ¢) (with some dependency on the momenta
everywhere on phase space) which need to vanish on the solutions of the the-
ory x(p,q) ~ 0.' A single constraint identifies a codimension-1 hypersurface

1With ‘~’ we mean that the equation holds on the solutions of the equations of motion,
following Dirac’s notation.
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Figure 2: The constraint surface of a gauge constraint y = p; is represented in
phase space, where I put p; and ¢; on two axes, and all the other phase-space
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variables (¢n,pn), n = 2,3... are represented collectively on the third axis.
On the right, I show the vector field generated by p; through Poisson-brackets,
{p1,-} = 8%17 which points towards the ¢; direction. The vector field is parallel
to the constraint surface, and its integral curves (the gauge orbits) lie on it.

in phase space, the constraint surface, on which the solutions of the theory are
localized. For example, if a gauge constraint can be written as x = p; (one of
the momenta), as is always locally possible, the constraint surface is the hyper-
plane p; =~ 0 shown in Fig. 2. But p; also plays the role of the generator of
gauge transformations, which happen to be the translations in the ¢; direction:
through the Poisson bracket it defines a vector field on phase space {p1,-} = 6%17
which is parallel to the ¢; axis (see Fig. 2). This vector field generates infinites-
imal transformations on phase space (translations in the ¢; direction), and its
integral curves are the gauge orbits of the transformations. All the points on
these curves are gauge-equivalent (they are related by gauge transformations:
they have different representations but the same physical content). Moreover,
the vector field % is parallel to the constraint surface p; ~ 0 by construction,
and its integral curves lie on it. The physical meaning of a gauge constraint
X = p1 is that the ¢; coordinate is unphysical, like the non-gauge-invariant part
of the electromagnetic potentials A and ¢, or like the coordinates of the centre
of mass of the whole Universe.

Since the g; coordinate is not physical, we can assign it any value along the
solution without changing anything physical. It is often useful (and necessary in
quantum mechanics) to fix the value of ¢; by some convention. The standard
way of doing it is by choosing a gauge firing: we specify the value of ¢ as
a function of the other variables, ¢ = ¢1(q2,p2,...). This corresponds to
intersecting the constraint surface p; = 0 with another surface £(p,q) = 0
that specifies an intersection submanifold {p,q s.t. x = 0, ~ 0} (see Fig. 3).
The gauge fixing should specify the gauge without ambiguity: it has to form

Figure 3: The concept of gauge-
fixing surface: the wvariable ¢
is unphysical and its value can
be taken arbitrarily, therefore we
might choose a conventional value
for q1, to be determined by the
value of all the other phase-space
variables, g1 = q1(g2,p2,...). One
way to obtain this is to inter-
sect the constraint surface p; ~ 0
with another surface, £(q,p) =~ 0,
such that it is never parallel to
p1 =~ 0 or, at the intersection,
‘runs along’ the gauge orbits (rep-
resented by dashed lines on the con-
straint surface).

a proper intersection with p; =~ 0, and therefore cannot be parallel to it where
they intersect. Moreover, at its intersection with the constraint surface £ = 0
cannot ‘run along’ (be tangent to) any of the gauge orbits: in that case there
would be more than one value of ¢; that corresponds to the same value of
q2, D2, - - .- These two conditions define a good gauge-fixing surface. For details
on constrained Hamiltonian systems and gauge theories, see Sec. 6.2.

GR as a constrained Hamiltonian theory

Arnowitt, Deser and Misner (ADM) formulated GR in the Hamiltonian lan-
guage. They foliated spacetime into a stack of spatial hypersurfaces and split
the 4-metric g, into a spatial part g;; and four additional components go; and
goo- The spatial metric components g;; represent the canonical variables, and
their momenta p* are related to the extrinsic curvature of the spatial hypersur-
face with respect to its embedding in spacetime. The go; and gog components
(or better some combinations thereof) enter the action without time deriva-
tives, and are therefore Lagrange multipliers. They are associated with four
local constraints (meaning one constraint per spatial point). These constraints
are the so-called ‘superhamiltonian’ H and ‘supermomentum’ H* constraint.
Here 1 will call them the ‘Hamiltonian’ and the ‘diffeomorphism’ constraint.
The diffeomorphism constraint admits a simple geometrical interpretation: its
vector flow sends configuration variables into themselves (one says it generates
‘point transformations’ H’ : g;; — ¢;j), and there is no doubt about its being a
gauge constraint.



For the Hamiltonian constraint things aren’t that simple: it is quadratic in
the momenta, and its vector flow does not admit the interpretation of a point
transformation (it sends g;;’s into both g;;’s and p%’s). There is a large litera-
ture on the problem of interpreting H. If it is interpreted as a gauge constraint,
one would end up with the absurd conclusion that the dynamical evolution of
GR is just a gauge transformation. There are also huge problems with the defi-
nition of what people call Dirac observables: quantities whose Poisson brackets
with all the first-class constraints vanish on the constraint surface (meaning
they must be invariant under the associated gauge transformations). In GR’s
case, that definition would lead to observables which are constants of motion
and don’t evolve (‘perennials’, as Kuchaf called them). Kuchai advocated a
different notion of observables, namely ones which are only required to be in-
variant under diffeomorphisms. These would evolve, but they are too many:
they would depend on three polarizations of gravitational waves, while it is
widely agreed that gravitational waves have two physical polarizations.

The fact that H is quadratic in the momenta also causes major problems
in its quantization. It leads to the notorious ‘Wheeler—-DeWitt equation’, for
which there are many unsolved difficulties, above all its ‘timelsss’ nature, but
also ordering ambiguities and coincidence limits. The ADM formulation of GR
is detailed in Sec. A, and the problems with this theory which lead to the
introduction of SD are explained at the end of Sec. 7 and in Sec. 8.

As illustrated in Fig. 4, SD is based on the identification of the part of H
which is not associated with a gauge redundancy and takes it as the generator
of the dynamics. The rest of H is interpreted as a gauge-fixing for another
constraint C. This constraint is linear in the momenta and generates genuine
gauge transformations, constraining the physical degrees of freedom to be two
per point.

Not every constraint corresponds to gauge redundancy

That this is the case is pretty obvious: think about a particle constrained on a
sphere or a plane, i.e., a holonomic constraint. Such a constraint obviously has
nothing to do with gauge redundancy. However, there are constraints which
Dirac [1, 2] argued can always be related to gauge symmetries: they are the
so-called ‘first-class’ constraints. Being first-class means that they close an al-
gebra under Poisson brackets with each other and with the Hamiltonian of the
system. If that is the case, Dirac showed that one has freely specifiable variables
in the system, one for each first-class constraint, and changing these variables
does not change the solutions of the theory. But Barbour and Foster [3] have
pointed out that the premises under which Dirac obtained his result do not
hold in the important case in which the canonical Hamiltonian vanishes. In

Figure 4: A schematic representation of the phase space of GR. In it, two
constraints coexist, which are good gauge-fixings for each other and are both
first-class with respect to the diffeomorphism constraint. One is the Hamilto-
nian constraint and the other is the conformal (Weyl) constraint. The Hamil-
tonian constraint is completely gauge-fixed by the conformal constraint except
for a single residual global constraint. It Poisson-commutes with the conformal
constraint and generates a vector flow on the Hamiltonian constraint surface
(represented in the figure), which is parallel to the conformal constraint surface.
This vector flow generates the time evolution of the system in the intersection
between the two surfaces. Any solution can then be represented in an arbitrary
conformal gauge by lifting it from the intersection to an arbitrary curve on
the conformal constraint surface. All such lifted curves are gauge-equivalent
solutions of a conformal gauge theory with conformally-invariant Hamiltonian.

that case the Hamiltonian is just a linear combination of constraints, but that
doesn’t prevent the theory from having sensible solutions. The solutions will
be curves in phase space, and will still possess one freely specifiable variable
for each constraint. But one of these redundancies will not change the curve
in phase space: it will just change its parametrization. Therefore one of the
first-class constraints of the system will not be related to any gauge redun-
dancy: there is not an associated unphysical ‘q;’ direction, like in the example
above. This counterexample to Dirac’s statement is very important because it



is realized in the theory we care about the most: General Relativity. One of
the (many) constraints of GR should not be associated with gauge redundancy.
The Barbour—Foster argument is explained at the end of Sec. 6.2.

SD reinterprets H as a gauge-fixing of conformal symmetry

Shape Dynamics identifies another constraint surface C & 0 in the phase space of
GR, which is a good gauge-fixing for the Hamiltonian constraint. This gauge-
fixing, though, happens to be also a gauge symmetry generator. It gener-
ates conformal transformations (1) of the spatial metric, with the additional
condition that these transformations must preserve the total volume of space
V= f dgw\/ﬁ. The constraint C, in addition, happens to close a first-class sys-
tem with the diffeomorphism constraint H*, therefore it is a matter of opinion
whether it is C that gauge-fixes the system (#H,H*) or it is H which gauge-fixes
(C,H"). If the real physics only lies in the intersection between C ~ 0 and H ~ 0
(which is the big assumption at the basis of SD, and doesn’t hold if spacetime
is assumed as an axiom), then the logic can be reversed and the Hamilto-
nian constraint can be interpreted as a special gauge-fixing for the conformal
constraint. Then gravity can be reinterpreted as a gauge theory of conformal
transformations, which admits a gauge-fixing that is singled out by some spe-
cial properties. These properties, as I will show, have to do with the fact that
it gives a ‘natural’ notion of scale and proper time, which agree (most of the
times) with those measured by physical rods and clocks.

SD’s Hamiltonian constraint

H and C do not entirely gauge-fix each other: there is a single linear combi-
nation of H(z) which is first-class wrt C. This linear combination, .. =
[ d3x Newo(z) H(z), is a single global constraint whose vector flow is parallel
to both the C ~ 0 and the H ~ 0 surfaces on their intersection. This vec-
tor flow generates an evolution in the intersection: it has to be interpreted
as the generator of time evolution. It is the part of our constraints which is
not associated with a gauge redundancy and is instead associated with time
reparametrizations of the solutions of the theory.

The ‘Linking Theory’

SD pays a price for its conceptual clarity: the generator of the evolution H ..
contains the solution to a differential equation, Ney o, and therefore is a nonlocal
expression. But one can recover a local treatment by enlarging the phase space.
SD can in fact be considered as one of the possible gauge fixings of a first-class

second-class

H(z) — Heaoba C(x)

T~

first-class first-class

| / i\ |

Hglobal He (513)

fist-class

Figure 5: Scheme of the constraints of GR and of SD. GR’s Hamiltonian con-
straint H has been split into the global part H,... which is first-class wrt the
conformal constraint C and the part that is purely second class, H(x) — Hiopa-
This second-class system admits two first-class subalgebras: the lower-left trian-
gle, which constitutes the constraint algebra of GR, and the lower-right triangle,
making the constraint algebra of SD.

theory which is local (its constraints are local) and lives in a larger phase space
than that of GR. This phase space is obtained from that of GR by adjoining a
scalar field ¢ and its conjugate momentum 7. The larger theory (called ‘Linking
Theory’) is defined by the constraints of GR, H and H?, but expressed in terms

of (volume-preserving-)conformally-transformed metrics 64‘$gij and momenta

e4® [pij — %(1 —€5%),/g9" fp/V}, where ¢ = ¢ — % log( [ d*z\/gexp(6¢)/V).
In addition, one has a modified conformal constraint which includes a term that
transforms ¢. The new constraint is @ = m — C and generates simultaneous
translations of ¢ and (volume-preserving) conformal transformations of m, so
that the combination e4¢gij, is left invariant. The constraint Q is now first-
class with respect to H and H’. By completely gauge-fixing Q, for example
with the condition ¢ ~ 0, one obtains GR. On the other hand, one can use a
different gauge-fixing, namely 7 ~ 0, which is first-class with respect to Q, but
gauge-fixes H almost entirely, leaving only the global part H,,.,. untouched.

One can then work with the Linking Theory, where all the equations of motion
and constraints are local (apart from the dependence on the total volume), and
work out the solutions in this framework. As long as the solution is compatible
with the gauge-fixing 7 = 0, it’s a legitimate SD solution.

All the details of the SD construction can be found in Sec. 9 and in part I'V.



The present status of SD

Evidence of the inequivalence between GR and SD:

e Asymptotically flat, spherically symmetric vacuum solution of SD [4]: this
solution is not Schwartzschild’s spacetime, it is an wormhole connecting
two asymptotically flat regions, which does not satisfy Einstein’s vacuum
equations on the horizon. See Section 12 for details.

e Thin-shell collapse (work in progress): the region inside the horizon in this
case is compact, and it contains an expanding shell of matter which, as it
expands, decompactifies the region.

e Asymptotically flat, axisymmetric, stationary vacuum solution of SD [5]:
also this solution is not Kerr spacetime, it generalizes the wormhole solution
with an angular momentum.

e SD in 241 dimensions on the torus [6]: one can evolve the solutions past
a volume singularity (where det g;; = 0). That point marks the end of the
spacetime description, but SD is capable of continuing past singularities of
this kind.

e Compact, spherically symmetric solutions (work in progress).
Structural work on SD and search for a construction principle:

e Coupling SD to bosonic matter [7]: consistently done for the Standard
Model fields. The uniqueness of the lapse cannot be guaranteed for any
matter content: in particular, in the case of a massive scalar field there
is a bound on its density above which uniqueness is broken. The physical
interpretation of this is still under debate.

e Dirac observables of GR and SD coincide [8]: if SD is formulated as a
Hamiltonian theory on conformal superspace with a physical Hamiltonian
that is time-dependent, the problem of defining observables for Quantum
Gravity is formally solved.

e SD solves the problem of time [9]: interpreting the ‘York time’ (which
measures the expansion rate of the Universe in a particular foliation) as
an ‘internal’ clock, SD satisfies the Mach—Poincaré principle on conformal
superspace (see below). The problem of the ‘frozen formalism’ of Quan-
tum Gravity is absent in this formulation. SD also provides in-principle
Kuchai’s perennials (work in progress).

‘Symmetry Doubling’ idea [10]: in ADM/SD phase space there are two
BRST charges, associated with the symmetries of SD and GR, that gauge-
fix each other. This has likely deep implications for the quantum theory.

Simmetry doubling as a construction principle [11]: Hojman-Kuchai—
Teitelboim-style derivation of SD as the unique theory with two symmetries
gauge-fixing each other.

Conformal-Cartan formulation in 241 dimensions [12]: first-order formu-
lation of SD; if generalized to 341 dimensions, it could provide the key to
the coupling of fermions to SD (work in progress).

Path-integral quantization of SD (work in progress).

The N-body problem as the ‘harmonic oscillator’ of SD:

Interesting quantum mechanics of the scale-invariant particle model [13].

The N-body problem provides the intuition for the solution of the Prob-
lem of Time [9], the definition of in-principle Kuchai’s perennials and the
regularization of singularities (in the form of central collisions) (work in
progress).

Arrow of Time from friction on Shape Space [14].

Wavefunction spontaneously ‘classicalizes’ and produces quantum-driven
inflation [15].



Part 1

Historical motivation

2 Newton’s bucket

2.1 The defects of the law of inertia

Newton based his Principia [16] on the law of inertia (stated first by Galileo),
which he made into the first of his three laws of motion:

A body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed
upon it.

Assuming this law as a postulate, without first defining the notions of ‘rest’,
‘uniform motion’ and ‘right (or straight) line’, is inconsistent. In a Universe
that is, in Barbour’s words, like ‘bees swarming in nothing’ [17], how is one to
talk about rest/uniform motion/straight lines? With respect to what?

The problem is that of establishing a notion of equilocality: in an ever-
changing Universe, what does it mean for an object to be at the same place at
different times?

Newton anticipated these criticisms in the Scholium? at the beginning of the
Principia. He claims that rest/uniform motion/straight lines have to be defined
with respect to absolute space and time:

1. Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external, and by
another name is called duration: relative, apparent, and common time,
is some sensible and external (whether accurate or unequable) measure
of duration by the means of motion, which is commonly used instead
of true time; such as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space is
some movable dimension or measure of the absolute spaces; which our
senses determine by its position to bodies; and which is commonly
taken for immovable space; [...]

2A ‘scholium’ is an explanatory commentary.

These definitions make the Principia a logically consistent system, which how-
ever relies on the scientifically problematic concepts of absolute space and time.
These affect the motion of material bodies in a spectacular way - through the
law of inertia - but aren’t affected by them. Despite these shaky grounds, New-
ton’s Dynamics proved immensely successful over more than two centuries, and
this tended to hide its foundational problems.

2.2 Leibniz’s relationalism

The chief advocate for an alternative in Newton’s time was Leibniz. In a cor-
respondence with Clarke [18] (writing basically on behalf of Newton) he advo-
cated a relational understanding of space, in which only the observable relative
distances between bodies play a role

I will show here how men come to form to themselves the notion of
space. They consider that many things exist at once and they observe
in them a certain order of co-existence [...] This order is their situ-
ation or distance.

We can say that Leibniz lost the argument with Clarke, mainly because he
failed to provide a concrete, viable way of implementing a relational mechanics.
We'll see that he had no hope of doing that, because much more sophisticated
mathematics is needed than was available at the time.

Leibniz’s main argument against absolute space and time — that they are
not observable — was actually anticipated and countered by Newton in the
Scholium. He claimed one could prove the existence of absolute circular motion
in his famous ‘bucket experiment’ described as follows:

If a vessel, hung by a long cord, is so often turned about that the cord
is strongly twisted, then filled with water, and held at rest together with
the water; after, by the sudden action of another force, it is whirled
about in the contrary way, and while the cord is untwisting itself, the
vessel continues for some time this motion; the surface of the water
will at first be plain, as before the vessel began to move; but the vessel
by gradually communicating its motion to the water, will make it begin
sensibly to revolve, and recede by little and little, and ascend to the
sides of the vessel, forming itself into a concave figure [...] This
ascent of the water shows its endeavour to recede from the axis of its
motion; and the true and absolute circular motion of the water, which
is here directly contrary to the relative, discovers itself, and may be
measured by this endeavour. [...] And therefore, this endeavour does
not depend upon any translation of the water in respect to ambient
bodies, nor can true circular motion be defined by such translation.



Figure 6: Newton’s bucket experiment: on the left, both the bucket and the
water are at rest with respect to the room. On the right, they are both rotating,
and they have no motion relative to each other. Then to explain the concave
shape of the water in the picture on the right, one has to invoke something
external to the relative motions of water and bucket.

In this passage Newton was, besides making a serious argument, covertly at-
tacking the philosophy of Descartes [19], who had died in 1650 but whose ideas
were still widely accepted. Descartes had declared position and motion to be
relative and in particular had said that the ‘one true philosophical position’ of
a given body is defined by the matter immediately next to it. In the bucket
experiment, it is obvious that the relative state of the water and the sides of the
bucket is not the cause of the behaviour of the water: both at the beginning
and at the end they are at rest wrt each other, but in one case the surface of the
water is flat and in the other it’s curved. Therefore the curvature of the water
must be caused by something else, which Newton identifies with the circular
motion wrt absolute space. This argument largely settled the issue in the mind
of most scientists until the end of the XIX century.

2.3 The Scholium problem

Newton was aware of the difficulties inherent in his tying the first law of motion
to unobservable entities like absolute space and time. Towards the end of the
Scholium he comments
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It is indeed a matter of great difficulty to discover, and effectually to
distinguish, the true motions of particular bodies from the apparent;
because the parts of that immovable space, in which those motions are
performed, do by no means come under the observation of our senses.

But he believed that experiments like that of the bucket provided a handle on
this problem:

Yet the thing is not altogether desperate; for we have some arguments
to guide us, partly from the apparent motions, which are the differences
of the true motions; partly from the forces, which are the causes and
effects of the true motions.

Newton then concludes the Scholium with the grand words

But how we are to obtain the true motions from their causes, effects,
and apparent differences, and the converse, shall be explained more at
large in the following treatise. For to this end it was that I composed
it.

Thus, he considers that deducing the motions in absolute space from the observ-
able relative motions to be the fundamental problem of Dynamics, and claims
that he composed the Principia precisely to provide a solution to it. Remark-
ably, he never mentions this Scholium problem again in the Principia and cer-
tainly doesn’t solve it! What is more, nobody else attempted to for very nearly
200 years.

Further reading: Newton’s “Principia” [16], The Leibniz—Clarke correspon-
dence [18], Barbour’s “The Discovery of Dynamics” [19].

3 Origins of the Mach—Poincaré principle

3.1 Tait’s partial solution of the Scholium problem

In 1884, Tait [20] provided a solution to the Scholium problem in the simplest
case of non-interacting, i.e., inertial, point masses. I give here my personal
account of it.



Say we have N point masses that don’t exert any force upon each other (like
a perfect gas), and we are given only the succession of the relative distances®
between those particles rqp, a,b = 1,..., N, taken at some unspecified intervals
of time. Those are N (NN —1)/2 numbers, but they aren’t all independent of each
other. Newton would say that the absolute space in which they move is three-
dimensional, and this constrains the 7,;’s to satisfy certain relationships. The
simplest one is the triangle inequality between triplets: 713 < r1s 4+ r23. Then,
if N > 5, there are true equalities they have to satisfy, which reduce their
independent values to just 3N — 6. To convince yourselves about that just
consider that if the particles were represented as points in R? they would have
3N coordinates, but two configurations that are related by a rigid translation
of the whole system (3 degrees of freedom), or a rigid rotation (3 further d.o.f.)
would be equivalent, because they would give the same r4;’s. So we’re down
to 3N — 6 degrees of freedom.” This is huge data compression, from something
quadratic in N to something linear. M. Lostaglio [21] convinced me that this
data compression should be taken as an experimental fact, to which our senses
are so used that it has become an intuitive truth. Geometry, in this case
three-dimensional Euclidean geometry, is a synthesis of all those relationships
between observables.

To come back to the Scholium problem, we have to determine the unobserv-
able positions in absolute space of the N particles. These will be N vectors
r, € R3 (3N numbers), which must be determined from the 3N —6 independent
observables that can be extracted from r,;, given as ‘snapshots’ obtained at cer-
tain unspecified times. Following Tait, we assume for the moment an external
scale is given. Tait’s solution exploits the assumption that the particles are
not interacting, and therefore according to Newton’s first law they will move
uniformly in a straight line in absolute space. In a more modern language one
is looking for the determination of an inertial frame of reference,’ in which the
first law holds. By Galilean relativity, there will be infinitely many such inertial
frames of reference all related to each other by Galilean transformations. Tait’s
algorithm exploits this freedom and is as follows:

1. Fix the origin at the position of particle 1: then r; = (0,0,0).

30mne could include relativity of scale in the picture. If the whole universe consists only of
those N point particles, there is no external ruler with which we can measure sizes, so there
is absolutely no meaning in concepts like ‘the size of the universe’. Then, in this case, the
only truly observable things in such a universe are rqp/7cq, the ratios between rqp’s.

43N — 7 if we include relativity of size.

5With rescalings (1 d.o.f.) we go down by a further degree of freedom to 3N — 7.

6In 1885, Lange [22], using a construction principle far more complicated than Tait’s,
coined the expressions ‘inertial system’, in which bodies left to themselves move rectilinearly,
and ‘inertial time scale’, relative to which they also move uniformly. The two concepts were
later fused into the notion of an inertial frame of reference.
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2. Fix the origin of time ¢ = 0 at the instant when particle 2 is closest to
particle 1. At that instant, call r1o = a.

3. Orient the axes so that y is parallel to the worldline of particle 2, and the
unit of time is given by the motion of particle 2, so that ro = (a,t,0) (using
the inertial motion of a particle as a clock is an idea due to Neumann [23]).

4. The motions of the remaining N — 2 particles remain unspecified. All one
knows is that they will move along straight lines uniformly with respect to
the time t read by Neumann’s inertial clock. Their trajectories will there-
fore be r4 = (T, Ya, 2a) + (Ua, Vo, Wa) t, Where (o, Ya, 24) and (Uq, Vo, Wa)
together with a will be 6N — 11 unspecified variables.

The conclusion we can draw is that one needs 6N — 11 observable data to
construct an inertial frame. Each ‘snapshot’ we are given contains only 3N —7
independent data (3N — 6 independent relative data minus the time at which
each snapshot has been taken, which is unknown). Therefore two snapshots
aren’t enough. They provide only 2(3N — 7) = 6N — 14 data. We're short of
three numbers in order to fix a, (Z4,Ya, za) and (U, Ve, w,). We need a third
snapshot” to determine the inertial frame. This is especially puzzling if one
considers that IV can be as large as wanted, say a billion, but one would always
need just three additional quantities.®

The additional 3 numbers that we need to specify through a third snapshot
are the direction of the rotation vector of the system (which accounts for 2
degrees of freedom) and the ratio of the relative rotation to the expansion of the
complete system as captured in the two snapshots. The point is that the values
of r4p in the two snapshots are unaffected by a rotation of arbitrary magnitude
of one snapshot relative to the other about an arbitrary direction. (Since the
scale is assumed given and the centroid of the points can be determined in each
snapshot, the overall expansion can be deduced. The difficulty is in the relative
rotation.”

For what follows, the important thing that emerges from Tait’s analysis is
not so much that Newton’s Scholium problem can be solved but the fact that

"In fact a fourth as well if N = 3 or 4. With only two particles, nothing can be done.
Relational dynamics requires at least three particles. The Universe certainly meets that
requirement!

81f the scale is not given, then each snapshot carries only 3N — 8 independent data. But
the unspecified variables in this case aren’t as many as before: we are free to fix the scale so
that @ = 1, and therefore we only need to find (za, Ya, 2za) and (ta, Va, wa) which are 6N —12.
Two snapshots then fall short of 4 data.

91n the scale-invariant case, we do not know the direction of the relative rotation vector,
the rotation rate and the expansion rate. These are the four missing quantities. Note that
the particle masses do not enter the law of inertia and can only be deduced in the presence
of interactions.



two ‘snapshots’ are never enough to do it. This, and the number of extra
data needed due to the factors just identified, remains true in the much more
realistic case of, say, N point particles known to be interacting in accordance
with Newtonian gravity.'" Of course, the task is immensely more difficult, but
in principle it is solvable.

3.2 Mach’s critique of Newton

Ernst Mach was a great experimental physicist who was also convinced one
needed to know the history of science in order to make real progress.!! Being
true to that belief, in 1883 he wrote a book on the history of mechanics [24]
which later proved immensely influential in the development of Einstein’s Gen-
eral Relativity (and more recently in that of Shape Dynamics). In this book
Mach criticizes Newton’s absolute space and time.

Mach’s critique of absolute time

It is utterly beyond our power to measure the changes of things by
time. Quite the contrary, time is an abstraction at which we arrive
through the changes of things.

Richard Feynman quipped “Time is what happens when nothing else does.”
Even if meant humourously, this does rather well reflect a deeply-rooted, fun-
damentally Newtonian concept of time that is still widespread today. Mach
would have answered to this: “If nothing happens, how can you say that time
passed?” Feynman’s words express a view that is still unconsciously shared by
theoretical physicists, despite being seriously questioned by GR. According to
this view, in the words of Barbour [25] “in some given interval of true time the
Universe could do infinitely many different things without in any way changing
that interval of time.” The Machian point of view is that this is correct only if
one speaks about a subsystem of the Universe, like the Earth or our Solar Sys-
tem. In that case it is true that all the matter on Earth could do many different
things without changing the interval of time. But the whole Universe has to
do something in order for that interval of time to be defined. It is actually the
other way around: an interval of time is defined by the amount of change that
the state of the Universe undergoes.

One has to ask the following question: what do we mean when we say that
one second passed? Thinking about it, it becomes pretty clear that we always

10Tn fact, one more datum is needed to determine the ratio of the kinetic to the potential
energy in the system at the initial instant. Also, to determine the mass ratios of the particles,
N — 1 extra data will be needed.

HThis is part of the reason why I’'m putting so much emphasis on these historical notes
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refer to physical things having changed. Be it the hand of a watch that has
ticked once, or the Earth rotated by 1/240th of a degree, we always mean that
something has changed. The modern definition of a second is “9 192 631 770
periods of the radiation corresponding to the transition between the two hy-
perfine levels of the ground state of the caesium 133 atom” [26]. These are a
lot of oscillations. The notion of a second (or, in general, duration) is useful,
but it is obviously not fundamental: one can always do without it and make
direct reference to comparisons of changes in the Universe. Instead of saying
a car “travels a quarter of a mile in 5.78 seconds” one can equivalently say
the car “travels a quarter of a mile as the Earth rotates through 0.024°”. The
same holds for any other possible measurements of duration. One can imagine
representing the history of the Universe as a curve on some space, each point of
which represents a unique configuration (e.g., one point might represent the car
on the start line and the Earth with the Sun on the Zenith above Indianapolis,
IN, and another point might correspond to the car on the end line, and the
Sun at an angle of 0.024° from the Zenith). The Universe passes through all
the points of the curve, which contain information about everything: from the
position of the car to the psychological state of our brains. Then the speed at
which this curve is traversed doesn’t make any difference: in this representa-
tion, if the car covers its quarter mile track twice as fast, also the Earth would
rotate and our brain states will evolve at double the speed. Nothing measur-
able will have changed. What counts is the sequence of states the curve passes
through, not the parametrization of the curve. I have here anticipated the pre-
cise mathematical realization of temporal relationalism that will be advocated
in this tutorial: the history of the Universe can be represented by a curve in
some configuration space, independently of its parametrization.

We'll see later that the relationalist approach allows us to completely dis-
pose of Newton’s absolute time, and to describe Newtonian Dynamics as a
reparametrization-invariant theory, where there is no notion of time at all, there
is just a succession of configurations without any notion of duration. Then the
requirement that the equations of motion take the particularly simple form of
Newton’s second law allows us to deduce a notion of time, called ephemeris
time, which is a sort of average over all the changes in the positions of the
particles in the Universe. This is the realization of Mach’s “abstraction of time
from change”.

Mach’s critique of absolute space

Mach, like Leibniz and the other advocates of relationalism, was opposed to vis-
ible effects admitting an invisible cause. This is why he disagreed with Newton’s
interpretation of the bucket experiment. Being a good experimentalist, Mach’s
intuition told him that the thin bucket wall couldn’t possibly be responsible



for the macroscopic concavity of the water’s surface, it should admit a different
cause. And here came an observation which relied on the knowledge of the
centuries-old practice of astronomers: Newton’s laws had not been verified rel-
ative to absolute space but to the fized stars, with the rotation of the Earth as a
clock (‘sidereal’ time). Since antiquity astronomers noticed that the fixed stars
(those that, unlike the wandering planets, do not change their observed relative
positions on the sky) provide a reference frame with respect to which all the
motions are simpler. This practice had proved to be fruitful to such an extent
that, when a discrepancy was observed, it was attributed to non-uniformity of
the rotation of the Earth or failure of Newton’s law of gravity as happened in
the 1890s when astronomers observed an anomalous acceleration in the motion
of the Moon.'? The possibility that the fixed stars didn’t identify an inertial
frame of reference was never taken seriously. But this is actually the case, even
if only to a microscopic degree, as we’ll see in a moment.

So Mach, in The Science of Mechanics, claimed that the cause of the con-
cavity of the water’s surface in Newton’s bucket could be due to the distant
stars. This would have remained a rather bizarre claim had it not been for the
incredibly suggestive insight that followed:

No one is competent to say how the experiment would turn out if
the sides of the vessel increased in thickness and mass till they were
ultimately several leagues thick.

It is then clear that Mach had in mind a sort of interaction between distant
massive objects, and the local inertial frames. This observation made a great
impression on several people, most notably Einstein, for whom it represented a
major stimulus towards the formulation of General Relativity.

3.3 Hoffman’s experiment

In a 1904 book Wenzel Hoffman proposed a real experiment to test Mach’s
idea.'® In the absence of buckets whose sides are “several leagues thick”, he

120ne possibility was that the Earth’s rotation speed was decreasing, givng rise to a spuri-
ous apparent acceleration of the Moon. However, it was also suggested that gravity could be
absorbed by matter. Then during eclipses of the Moon the presence of the Earth between it
and the Sun would reduce the gravitational force acting on the Moon and could explain the
discrepancy. This possibility was only ruled out definitively by observations in 1939, which
showed that the planets also exhibited the same anomalous acceleration as the Moon. Mean-
while, the creation of General Relativity in 1915 by Einstein had explained the longstanding
anomalous advance of Mercury’s perihelion as due to failure of Newton’s gravitational law.

131n fact, Hofmann’s proposal had been anticipated in 1896 by the brothers Benedict and
Immanuel Friedlaender (see [27]), one of whom actually did experiments with flywheels to
text Mach’s idea. I discuss Hoffmann’s proposal because, more realistically, it uses rotation
of the Earth.
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Figure 7: Hoffman’s proposed experiment: according to Mach’s conjecture, the
plane of oscillation of a Foucault pendulum (for simplicity here at the North
Pole) should be ‘dragged’ by the Earth’s rotation, and consequently should not,
relative to the distant stars, complete a rotation in 24 hours, lagging slightly
behind.

proposed to use the Earth as the ‘bucket’, and a Foucault pendulum as the
water (let’s put it at one pole for simplicity (Fig. 7). If Newton is right, the
rotation of the Earth should have no influence on the plane of oscillation of
the pendulum, which should remain fixed with respect to absolute space. But
if Mach is right, the large mass of the Earth should ‘drag’ the inertial frame
of reference of the pendulum, making it rotate with it very slowly. One would
then see that, relative to the stars, the pendulum would not complete a circle
in 24 hours, but would take slightly longer.

This experiment, as it was conceived, had no hope of succeeding. But it
was actually successfully performed in the early 2000’s, in a slightly modified
version. One just needs the longest Earth-bound pendula that humans ever
built: artificial satellites. The Lageos and Gravity probe B satellites did the
job, and they detected a rotation of their orbital plane due to Earth’s ‘frame-
dragging’ effect. After more than a century, Mach has been proved right and
Newton’s absolute space ruled out.



3.4 Poincaré’s principle

The rather vague idea that Mach sketched in his Mechanics was not sufficiently
precise to make an actual principle out of it. It has nonetheless been called
‘Mach’s principle’ (Einstein coined the expression). Einstein, despite being
a strong advocate of Mach’s principle for years, never found a satisfactory
formulation of it, and towards the end of his life even disowned it, claiming
that it had been made obsolete by the advent of field theory.'*

In fact, a precise formulation of Mach’s principle had been there in front of
Einstein’s eyes all the time, but nobody recognized it for what it was until Bar-
bour and Bertotti did in 1982 [29]. This formulation is due to Henri Poincaré,
in his Science and Hypothesis (1902). The delay in the identification of this
important contribution is due to the fact that Poincaré himself never thought
of it as a precise formulation of Mach’s principle. In fact, although Poicaré can
hardly have been unfamiliar with Mach’s work, he did not cite it in Science and
Hypothesis.

What Poincaré did ask was this: “What precise defect, if any, arises in New-
ton’s mechanics from his use of absolute space?”. The answer he gave can be
understood in the light of our discussion of Tait’s note: from observable initial
configurations and their first derivatives alone one cannot predict the future
evolution of the system.

The cause of this is, according to Poincaré, angular momentum. There is no
way one can deduce the total angular momentum of the system one is consid-
ering from the observable initial data r,;, and their first derivatives alone. This
can be achieved by looking at the second derivatives, as was demonstrated by
Lagrange in 1772 [30] for the 3-body problem, but this remedy is unnatural,
especially for the N-body problem when N is large: one needs only 3 out of
the 3N — 6 second derivatives.

Poincaré found this situation, in his words, “repugnant”, but had to accept
the observed presence of a total angular momentum of the Solar System, and
renounce to further his critique. Interestingly, it didn’t occur to Poincaré that
the Solar System isn’t the whole Universe, it is instead a rather small part of
it as was already obvious in 1902.

Barbour and Bertotti therefore proposed what they called Poincaré’s princi-
ple: The law of the Universe as a whole should be such that for it specification

14In his Autobiographical Notes [28], p.27, Einstein declares: “Mach conjectures that in
a truly rational theory inertia would have to depend upon the interaction of the masses,
precisely as was true for Newton’s other forces, a conception that for a long time I considered
in principle the correct one. It presupposes implicitly, however, that the basic theory should
be of the general type of Newton’s mechanics: masses and their interaction as the original
concepts. Such an attempt at a resolution does not fit into a consistent field theory, as will
be immediately recognized.”
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of initial inter-particle separations r,, and their rates of change should deter-
mine the evolution uniquely. There is a natural generalization of this law to
dynamical geometry.

Further reading: Mach’s “The Science of Mechanics” [24], Barbour’s essay
“The nature of time” [25], Poincaré’s “Science and Hypothesis” [31]. The
great conference proceedings “Mach’s Principle: From Newton’s bucket to
quantum gravity” [27].




Part 11

Relational Particle Dynamics

4 Barbour and Bertotti’s discovery of best
matching

As T said, Julian Barbour and Bruno Bertotti in 1982 [29] recognized that
Poincaré had effectively given a mathematically precise formulation of Mach’s
principle and dubbed it the Poincaré Principle (Barbour now calls it the Mach—
Poincaré Principle:)

Physical (or relational) initial configurations and their first derivatives
alone should determine uniquely the future evolution of the system.

In the paper [29] Barbour and Bertotti implemented this principle through what
they called the intrinsic derivative and Barbour now calls best matching, which
allows one to establish a notion of equilocality — to say when two points are
at the same position at different instants of time when only relational data are
available.

4.1 Best matching: intuitive approach

The basic idea is this: say that you're an astronomer who is given two pictures
of three stars, taken some days apart (assume, for simplicity, that the stars
are fixed on a plane orthogonal to the line of sight; one could ascertain that,
for example, by measuring their redshifts). You’re not given any information
regarding the orientation of the camera at the time the two pictures were taken.
The task is to find an intrinsic measure of change between the two pictures
which does not depend on the change in orientation of the camera.

One is obviously only given the relative separations between the stars ria(t),
r23(t), r31(t) at the two instants t = ¢;,t. The task is to identify a Cartesian
representation of the three particle positions ry(t) = (T4, %4, 24)(t) € R3, a =
1,2,3, at t = t;,ty such that

[ra(ts) —xo(ti)l| = rav(ts),  [lralts) —ro(ts)ll = rap(ts)

where [[va|| = |[(Za; Ya, 2a)|| = |xa|2 + ‘ya|2 + |za|2'

Va,b=1,23, (2)

Now make a tentative choice of Cartesian representation, r,(t;) = 7% and
ro(ty) = rl. Notice that the Cartesian representation of the configuration at
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Figure 8: Different notions of equilocality: the two pictures on the left repre-
sent the same triple star system at different times. The relative positions of the
stars have changed, and the astronomers are presented with the challenge of su-
perposing picture 2 on picture 1 without having any reference background. On
the right two such choices, corresponding to different definitions of equilocality,
are depicted.

any instant consists of three arbitrary vectors of R3, which can be repackaged
into a single vector of R?, because of course R? x R3 x R3 = R?. So let’s
interpret the configurations at the initial and final instants as two vectors of
R?:

qi = @2=1 rfz = (r’i,ré,ré) = (xi,yi,zi,xé,yé,Zé,xé,yé,%) )
qf = EB3:1 I’Z = (I‘{,I‘g,l‘g) = (x{aylfvZ{axgvyg’zngg’yg’zg) .

(3)
We need a criterion to judge the ‘distance’ between ¢* and ¢. There is a natural
notion of distance on R? given by the Euclidean distance d : R? x R® — R which
is just the square root of the sum of the square of the difference between each



component of the two R%-vectors:

[i G — %) ] = <§:1 IIrZ—r£I2>

This expression depends both on the intrinsic change of configuration between
the two triangles and on the relative placement of picture 2 wrt picture 1. We
can remove the latter dependence by trying all possible placements and finding
the one that minimizes (4). In other words we have to find ¢®™ = @3_ ri™
such that

2

(4)

d(q',q™) =inf d(¢',q) . Jrd™ = el = ras(ts) (5)
(I chose to move the second picture, but obviously I could equivalently have
moved the first one). In other words, we minimize with respect to trans-
formations of the second triangle that keep its observable properties (the
three rqy(ty)) unchanged. Those are the Euclidean transformations Eucl(3) =

ISO(3) = SO(3) x R3, which act on a single particle coordinate-vector as

r, —» Qr,+6,

(6)

if g=r1 ®ry; ®rs, a Euclidean transformation will act identically on all three

particles:
q— Tlq) = @5y (Ure +0) (7)

where 6 € R3 and Q € SO(3). We can introduce the auxiliary variables Q and
0 in order to directly perform the constrained variation to find ¢®™ defined in

(9):
1
2
du (¢',¢7) =infd(¢", T[g"]) = inf (Z vy, — Qrf — 92) -8
a=1
The result is a notion of distance, called best-matched distance, that depends
only on relational data. The quantity (8) is in fact invariant under Euclidean
transformations of either of the two vectors ¢* and ¢/:

3 3
dpy (T’[qi} , ) = 1nf (Z 1 +6 —Qr! 0||2>
a=1

:mf (an ylarf — (Q’)—1(9—0')||2>2 (9)

3
(zrzmrzﬁe"nz)
a=1

2

= inf = dBM(qi ) qf) )

Q , I: X4
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) T/[qf]) = dgum (qiv qf)~

For the simple problem of three stars the best-matching condition can be
solved explicitly as a variational problem. Start with the translations, and
consider a variation 8 — @ + 56 that leaves the squared distance d? (¢*, T'[¢”])
stationary (there’s no need to vary the square-root, as the square root is a
monotonic function)

and similarly dgy, (qi

§d?(¢", Tlq']) :

=2 (ri—Qr])-66=0,

a=1

60 (10)

which gives us the best-matching condition

3

1 _
6" = > (r, — ).

a=1

(11)

this condition establishes that to best-match wrt translations we just have to
subtract the barycentric coordinates from both r? and rf. In other words, we
have to make the barycenters of the two triangles coincide:

2

3
s i fn2
= inf (;Hma QAraH) :

1 . .
3 2_q Ta are the barycentric coordinates.

dawm (qi, qf (12)

where Ar, =r, —

Now we need to vary with respect to rotations. Taking Q@ — Q4 §Q (in the
sense of varying independently all the 9 components of ) is wrong, because
we have to make sure the variation keeps the matrix an element of SO(3).
Imposition of this condition,

Q4+ QL+ =T1+Q507+600Q" =1 (13)
translates into the requirement of antisymmetry of the matrix 62 QT:
50T = —(6007)" (14)

In 3D any antisymmetric matrix can be written in terms of the ‘vector-product’
operator with a vector dw

0NQ" =dwx, = MN=0wxQ, (15)
where vx is to be understood as the matrix of components €;;,vr. So our
variation takes the form Q — (I + dwx) 2, where dw is an infinitesimal vector



that is parallel to the rotation axis.
variations, we get

Imposing stationarity of (12) wrt dw

3 3
D AT, = (T4 6wx)QAr]|? = Y || Arl, — QAr]|
, ot L (16)
+20w - Y (QAr]) x (Arl, — QAr]) = 26w - > (QAr]) x Arl =0.
a=1 a=1

The above equation would be hard to solve were it not for a simplification:
three particles always lie on a plane. Therefore the infimum of d (qi, Tlq" ])
will necessarily be found among those choices of {2 that make the two triangles
coplanar. This is easily understood, because all the coplanar positionings of
the two triangles are always local minima of d (qi , Tlq* ]) under variations dw
that break the coplanarity. Say that we choose the axes in such a way that
Ar? lies on the z,y plane and start with an  that keeps Q Ar/ on the same
plane; then the quantity (16) is obviously parallel to the z plane. Therefore the
variations of d (qi , Tlq' ]) in the z and y directions vanish.

So let’s assume that Ar! = (Az’, Ayl,0) and Ar] = (Azf, Ayf,0), and
take for €2 a rotation in the z,y plane. Eq. (16) becomes

3
Z [Axfl (cosquy{: + sin¢Am£) — Ayl (cosqux{: — sin(bAy{;)] =0, (17)
a=1
which simplifies to
ZHAT‘Z xAr£||cos¢+ZArfl-Ar£ sing =0, (18)
a=1 a=1
which is easily solved
3 ,
Arf x Ar?
¢ = arctan (Z“—?} ” rd( X 7;“”) . (19)
Dby Ary - ATy

The expression above transforms in a simple way under separate rotations of
Ar] and Arl: one can verify that (left as an exercise) under a rotation («)
in the x — y plane:

Arfl — Q(oz)ATf1 , Dot = Pt — (20)
Ar! = Q(a)Ar, , Peot = oo T ¥,
which implies that the best-matched distance
3 2
don (¢ ") = (Z |Arg = Q(¢.01) Aréﬁ|2> (21)
a=1
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Figure 9: Horizontal stacking: in the picture a stacking of three-body configura-
tions is represented. The arbitrarily chosen stacking on the left is best matched
(blue arrows) by translations so as to bring the barycenters to coincidence, after
which rotational best matching eliminates residual arbitrary relative rotation.

is invariant under separate rotations and translations of ¢* or ¢7.

We have obtained an expression that allows us to measure the amount of
intrinsic change between the two configurations — change that is not due to an
overall translation or rotation. This is the essence of best matching. And it
is deeply connected to the theory of connections on principal fibre bundles: it
defines a horizontal derivative.

Now, the distance dg, we found is not very physical. First of all, it doesn’t
take into account the masses of the particles. If we take two configurations and
move around just one particle, the dgy between the two configurations changes
independently of the mass of the particle even if we move just an atom while the
other particles have stellar masses. This can be easily corrected by weighting
the original Euclidean distances with the masses of the particles:

1
3 3
d(¢'q') = (Z Mallry, — r£||2> : (22)
a=1
Moreover, to introduce forces, as we shall see, we would like to weight different
relative configurations differently, but without giving different weights to con-

figurations that are related by a global translation or rotation. We can do that
by multiplying by a rotation- and translation-invariant function:

1
3 3
d(Qiyqf) = (U(TbC) ZmaHI‘Z —r£|2> : (23)
a=1
The idea is now to perform this best-matching procedure for a complete history.

Take a series of snapshots of the kind depicted in Fig. 8, and represent them
in an arbitrary way in Euclidean space, ¢* = @2_;r% k = 1,2,.... Then



minimize d (Tk[qk],TkH[qk“]) wrt Qp and 6 for all k. What we get is a
horizontal stacking (by the blue arrows in Fig. 9) of all the configurations. In
other words, a notion of equilocality: the dots in the successive snapshots of
the third part of Fig. 9 can all be said ‘to be in the same place’. This notion
of position is not a pre-existing absolute structure but emerges out of the best
matching.

Continuum limit

Now consider the continuum limit, in which we parametrize the snapshots
with a continuous parameter s, with each successive snapshot separated by an
infinitesimal ds:

k

P =w(s), "l =uw(s+ds), v=r,., Q, 0, (24)

Then the squared distance between two successive configurations is infinitesi-
mal,

d* (Tk[q"], Tesa[¢" ")) =

3
U(rpe) Z Ma||Q(s + ds) re(s +ds) + 0(s +ds) — Q(s) ra(s) — 0(s)|?

a=1

(25)

dv:@ds.

3
~U(rpe) Y malQdrg +dQr, +d6|* s

a=1

For dQ) too, we can repeat the argument for obtaining a variation of an SO(3)
matrix that remains within the group, and we get

3
U(rse) Y ma|Qdr, + dw x Qr, +d6|*.

a=1

(26)

We can get rid of the dependence on ) by exploiting the invariance of the
scalar product under rotations:

|Qdr, +dw x Qr, +d0||> = || dr, + @ 'dw x Qr, + Q" 1d|? (27)

Here, Q~1dw x Q and Q1d@ are just the adjoint action of SO(3) on ISO(3).
Minimizing wrt dw and d€ makes this action irrelevant:

3
2_ . 2
dpnL® = dirfgeU(rbc) E me||dry + dw X v, +dO||°.

a=1

(28)

The last expression can be integrated over a parametrized path r,(s),

/ do £ = inf / ds (U (Tbe) 2>% . (29)

3

5 e

a=1

+d—w><r +%
ds 7 ds

dr,
ds

inf
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We obtain a notion of length of the path that measures only the intrinsic,
physical change that occurs along the path. The above expression is in fact
invariant under local (s-dependent) 1.SO(3) transformations

ro(s) = Qs)ra(s) +0(s). (30)
This kind of object is what is needed to define a variational principle for re-
lational physics. It realizes the kind of foundations for dynamics implied by
Leibniz’s criticism of Newton’s concepts of absolute space and time. No won-
der that, at the time, he was unable to make this precise.

Generating dynamics with best-matching

One can use this measure of intrinsic change to assign a numerical value
(weight) to any curve in the ‘extended configuration space’ (the space of Carte-
sian representations of N particles), and thereby define an action to be min-
imized by the dynamical solutions. However, such an action principle is only
capable of generating solutions with zero total momentum and angular momen-
tum, as will be shown below. Therefore such a law cannot be used to describe
a general N-particle system (like billiard balls on a table, or a gas in a box): it
should rather be used to describe a complete universe.

It is in this sense that the novel foundation of dynamics I am describing satis-
fies Mach’s principle and solves the puzzle of Newton’s bucket (in the restricted
case of a universe composed of point particles interacting with instantaneous
potentials): the dynamical law is such that it can only contemplate a universe
with zero total angular momentum. In Newtonian dynamics, on the contrary,
angular momentum is a constant of motion that is freely specifiable through
the initial conditions of our solution. The law that the total angular momen-
tum of the universe must be zero solves the problem of Newton’s bucket in the
following way: one makes a (small) error in assuming that the reference frame
defined by the fixed stars is inertial. If the total angular momentum is zero,
and the Earth is rotating wrt the fixed stars, that reference frame cannot be
inertial. This is due to the fact that the total angular momentum of the rest
of the universe must be equal and opposite to that of the Earth. The reference
frame of the fixed stars must be rotating very slowly (because the stars greatly
overweigh the Earth), and a truly inertial frame would be rotating both wrt
Earth and wrt the fixed stars. Then one would, in principle, see exactly what
Wenzel Hoffman proposed: the plane of a pendulum at the north pole would
rotate around the axis of the Earth at a slightly slower speed than the Earth
itself. This effect is, of course, impossible to detect as it is too small. But this
illustrates how a relational dynamics dissolves the puzzle of Newton’s bucket.

’Further reading: Barbour and Bertotti’s 1982 seminal paper [29]. ‘




5 Best matching: technical details

T'll now make the ideas introduced above slightly more precise. First of all,
we need to specify the various configuration spaces we're dealing with. The
largest — and simplest — of them all is the extended configuration space, or
Cartesian space QY = R3N 1% Tt is the space of Cartesian representations of
N bodies, and the mathematical embodiment of Newton’s absolute space. QN
has a Euclidean metric on it, called the kinetic metric:

dc?

kin

N
= Z mg drg - dr, . (31)
a=1

Then there is the relative configuration space QN = QN /Eucl(3), which is just
the quotient of QV by the Euclidean group of rigid translations and rotations.
Finally, if we insist that only ratios and angles have objective reality, we must
further quotient by scale transformations:

rq = ¢ro ¢ >0, (32)
which, together with the Euclidean group, make the similarity group Sim(3) =
RT x Eucl(3). We will call this last quotient the shape space of N particles,
SN = QN /Sim(3). However, since gauge-fixing or reducing wrt rotations is hard
except in some simple cases, we also consider the configuration space obtained
by quotienting just wrt translations and dilatations, pPSY = QN JRT x R3. We

call this pre-shape space.

Reduced conf. space G B=QY/G
Relative conf. space Eucl(3) = ISO(3) Qx
Pre-shape space Rt x R3 psV
Shape space Sim(3) =R* x I50(3) SN

Table 1: Different kinds of configuration space reductions of QY.

Both mathematically and conceptually, it is important that the various re-
duced (quotient) spaces are not subspaces of the space from which they are
obtained by reduction but distinct spaces.

15For this and the other configuration spaces considered below, there is in fact a distinct
space for each set of masses (or, better, mass ratios) of the particles.
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Principal fibre bundles

The groups acting on QY endow it with the structure of a principal G-
bundle [32] (this actually holds only for the regular configurations in QV, see
below). Let’s call the principal G-bundle P and the group G. The reduced
configuration space plays the role of the base space, which in a principal bundle
is the quotient space B = P/G. The fibres are homeomorphic to the group
G.'S As relationists, our prime interest is in the base space B, which we regard
as the space of physically distinct configurations, but it is only defined through
the quotienting process, and this poses problems: for example, B inherits P’s
structure of a smooth manifold only if the group G acts freely on P, which means
that there are no points in P that are left invariant by any other transformation
than the identity. But we know that this isn’t the case in QN: there are
symmetric configurations (e.g., collinear states or total collisions) for which
the action is not free. These regions represent special parts of B, akin to
corners or edges, where smoothness fails.!” Continuing a dynamical orbit after
it crosses one of those points poses a challenge, but this is a technical, rather
than conceptual, issue that I won’t go into here.

Intuitively, a fibre bundle is a sort of generalization of a Cartesian product
B x G where one erects a tower of different representations in QY above every
single relative configuration or shape (see Fig. 10). The difference with a true
Cartesian product is the lack of an origin. Obviously a point in, say, Q* cannot
be uniquely represented as a point in S? (a triangle), together with a translation
vector 0, an SO(3) matrix 2 and a dilatation constant ¢. This doesn’t make
sense because 6, ) and ¢ are transformations that connect different Cartesian
representations of the same triangle. This is where local sections (and ‘trivi-
alizations’) of the bundle enter: they provide a ‘conventional’ choice of origin
for each triangle. This means that a section associates with each triangle in a
neighbourhood of S? an oriented triangle with a definite size and position in
R3. This is purely conventional: for example I could decide that all triangles
go onto the x,y plane, with their barycenter at the origin, and the most acute
of their three vertices goes on the x-axis at unit distance from the origin. Then
I can represent any other element of Q3 through the transformation that is
needed to bring the ‘reference’ triangle to congruence with the desired one.

One is forced to define those sections/trivializations locally, that is only on a
set of open neighbourhoods, because the sections have to be smooth (continuous
and infinitely differentiable), and unless the bundle is ‘trivial’ no section can be

16The fibres and the group are just homeomorphic (meaning equivalent as topological
spaces), not isomorphic, because the fibres lack an identity element, which is an essential
part of the structure of a group. D. Wise alerted me that such a “group that has forgotten
its identity” is called a torsor. See J. Baez’ description of torsors [33].

7B becomes a stratified manifold [34].
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Figure 10: The fibre bundle structure of the three-body configuration space
Q?3, with structure group Sim(3) and base manifold S* (the space of triangles).
Vertical motion changes the representation of the triangle in Cartesian space,
while horizontal motion changes the shape of the triangle (e.g., its internal
angles).

smooth everywhere.!®
Physicists have a name of their own for local sections: gauges.
Connections

A principal G-bundle comes equipped with a natural distinction between
vertical and horizontal directions. The first are defined as the subspace V}, C
T, P of tangent vectors to P that are parallel to the orbits of G, and are related

18For example, the section I defined in the above example fails to be continuous when the
smallest-angle vertex of the triangle changes: at that point I have an abrupt rotation of the
representative triangle in Q3. This might seem a quirk of the particular section that I chose,
but it is instead an obstruction of topological nature: the topology of the Cartesian product
S3 x Sim(3) is different from that of Q3. This is easily seen: Q3 ~ R? is simply connected
while the rotation group SO(3) is not, and therefore neither is S x Sim(3).
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curves

y

group
orbits

Figure 11: The G-invariance condition for a connection: if a horizontal curve
through p is transformed by g € G, then the tangent vector at gp to the
transformed curve must still be horizontal.

to unphysical, irrelevant or gauge motions. Horizontal directions represent
physical, relevant, or true change (see Fig. 10), and they are just defined as
the vector-space complement to V), that is T, P =V}, ® Hj,. It’s clear that this
definition is ambiguous: imagine that 7,P = R3, and V, is one-dimensional.
Then any plane that is not parallel to V,, is an equally good choice of H,. If
one has a metric on TP, then H, can be defined as the (unique) orthogonal
complement of V,,, but a principal bundle does not always come equipped with
a metric on T, P. This is what connections are introduced for. A connection
on P is a smooth choice of horizontal subspaces in a neighbourhood of P.

A connection on P defines a (conventional) notion of horizontality, and con-
sequently of horizontal curves: those curves whose tangent vectors are horizon-
tal. This is the precise formalization of best-matched trajectories: they must
be horizontal according to some connection on QY. Moreover a connection
has to satisfy a compatibility condition with the action of the group G, which
basically states that the G-action sends horizontal curves to horizontal curves
(see Fig. 11).

As I said, if we have a metric on T'P, then that defines a ‘natural’ notion

of horizontality: H, = Vpl. In order for this to define a connection, the or-

thogonality condition defined by the metric has to be G-invariant,'” so that a

YA G-invariant metric associates the same scalar product to the tangent vectors of two
curves that intersect at a point and the corresponding tangent vectors to the curves trans-
formed under G.



G-transformation sends curves that are orthogonal to V), to curves orthogonal
to Vyp. A particularly simple situation is that of a G-invariant metric: in that
case the metric not only defines a connection, but all the horizontal curves are
geodesics of that metric. In [29], Barbour and Bertotti exploited the following
results to define a relational dynamical law, which I formulate in this way:

Theorem: If a metric on P is G-invariant, given a sheet in P lifted
above a single curve in B, all the horizontal curves on that sheet min-
imize the free-end point length between the initial and final orbits.
Moreover, all the horizontal curves on that sheet have the same length
according to the G-invariant metric.

The technical terms ‘sheet’ and ‘free-end point’ in this theorem will now be
explained.

The two-stage variational procedure

Now I will describe the variational principle that realizes best-matching. The
goal is to get an action, that is, a rule to associate a real number to each path on
the base manifold P/G, i.e., the reduced configuration space, be it QY or SV.
It is pretty clear, at this point, that only the simplest cases can be effectively
worked out on P/G itself [35], since in general our only way to represent that
space is redundantly through P. So what we aim for is an action principle on
P which is G-invariant, so that it associates the same number to all paths that
project to the same path in P/G and correspond therefore to the same physical
solution.?’

Stage I: Free-end-point variation

The following pictures illustrate the first stage of variation: our end-points
are two points in P/G, where the physics resides. In P they map to two fibres,
the two red lines in Fig. 12, which are two orbits of G.

1. First, take a trial curve in P (in black) between the two (red) fibres ending
anywhere on them. It projects to a trial curve in B.

2. Then [lift this curve in P to a sheet (in gray) in P using the group action.
All the curves on this sheet correspond to the same physical curve in B.

20 A note of warning is in order here: I am not trivially talking about an action that is
invariant under a ‘global’ translation or rotation of the system. For that purpose the actions
everybody is familiar with from basic physics courses are perfectly good. Here I'm talking
about an action which is invariant under time-dependent transformations. In this sense the
step from elementary action principles is perfectly analogous to that from a global to a local
gauge symmetry in field theory. The only difference is that the ‘locality’ here is only in time,
not in spacetime as in electromagnetism.
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. base space

Figure 12: Stage I: Free-end-point variation on a sheet in P. Notice how this is all
done in the bundle, P, and the base space B is abstractly defined as the collection of
all gauge orbits (here represented as red lines).

3. Consider all the horizontal curves (red dashed) in the sheet with endpoints
anywhere on the two red fibres. If the metric in P is G-invariant, these
curves also minimize the arc-length from the first fibre to the second. This
is obtained through a free-end-point variation (see below).

4. If the metric is G-invariant, all these horizontal curves will have the same
length. We’ll define the value of the action on the curve in B corresponding
to the considered sheet as the length of the curve. In this way the action
is G-invariant.

Stage II: Physical variation

Now we have an action associated with a sheet in P and consequently with
a single path in P/G. We can now evaluate it on every possible path in P/G
between the two endpoints, which means on every possible sheet in P between
the two red fibres:

5 Counsider all possible paths in P/G joining the two red fibres. Use the above
rule to assign a value of the action to each of them. If two of them lie on
the same sheet, they have the same action. The action is G-invariant.



Figure 13: Stage II: Variation of the physical curve in P/G to find the one (on
the right) that realizes the extremum between the fixed end points in P/G.

6 Minimizing with respect to this action will identify the physically realized
sheet, and consequently a unique curve in P/G.

On this final sheet there is a dim(G)-parameter family of horizontal curves.
They are distinguished only by their initial positions on the fibre. These curves
are not more physical than the others on the same sheet, but they realize a
reference frame in which the equations of motion take the simplest form. In
this sense they are special (Barbour and Bertotti introduced the notion of
the distinguished representation). They give a preferred notion of equilocality
(horizontal placement in Fig. 9).

Before showing this technique in action, let me comment on temporal rela-
tionalism.

5.1 Temporal relationalism: Jacobi’s principle

So far, temporal relationalism found less space than spatial relationalism in
this tutorial. It is time to introduce it. I will show now how to realize Mach’s
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aphorism [24] “time is an abstraction at which we arrive through the changes
of things” in a dynamical theory.

The necessary mathematics had actually been created by Jacobi in 1837,
nearly 50 years before Mach wrote that sentence. Jacobi was not thinking
about the abstraction of time from change — he seems to have been happy with
Newton’s concept of time. Rather, his aim was to give a mathematically correct
formulation of Maupertuis’s principle. Ever since its original statement, it had
been assumed, above all by Euler and Lagrange, that all trial curves considered
for comparison must correspond to the same total energy. The problem that
Jacobi solved was the correct mathematical representation of such a condition.
Euler and Lagrange had got the right answer using dubious mathematics.

Jacobi achieved his aim by reformulating Mapertuis’s principle, for systems
with a quadratic kinetic energy, in a ‘timeless’ form. His principle determines
the ‘true’ (in the sense of physically realized) trajectories of a dynamical sys-
tem with one fized value E of its total energy as geodesics in QV, which are
geometrical loci that do not depend on any particular parametrization.?!

Jacobi’s action is (integrating on a finite interval of the parameter s € [s;, sf])

@dra dr,
2 ds ds’

Sf N
SJ = 2/ ds (E — U) Tkin7 Tkin = Z (33)

i a=1
where E is a constant (the total energy of the orbit we’re interested in but
here is to be regarded as a constant part of the potential, i.e., as part of the
law that governs the system treated as an ‘island universe’), U = U(r,) is the
potential energy and T, defined above is the kinetic energy. This expression

is reparametrization-invariant
N 2 N
s 4’ 0s’
- ds’, My — | = Mg
ds 0s
a=1 a=1

(for reparametrizations s’ that preserve the end-point value of the parameter,
s'(si) = s; and §'(sy) = sy) thanks to the square-root form of the action.
Jacobi’s action is closely analogous to the expression for the arc-of length in a
Riemannian manifold with metric ds? = g*/dx; dx;:

dx; do; 3
= vJ 17‘7
/dSE /ds (g ds ds) ’

and is precisely the same thing if our manifold is QY equipped with the metric

dr, dr,

dr, dr, dr,
ds’ ds'’

d ~a
5 ds ds

(34)

(35)

N
d£2:4(E—U)Z%dra-dra,

a=1

(36)

21The same is true of a manifold, which doesn’t depend on any particular coordinate system.
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Figure 14: Vertical stacking: the same stacking of three-body configurations
as in Fig. 9 can be moved wvertically (red arrow) by a time reparametrization.
While best matching fixes the horizontal stacking, ephemeris time fixes the
vertical one.

which is conformally related to the kinetic metric by the factor £ — U.

In the language of E. Anderson [35] we can rewrite the action in a manifestly
parametrization-irrelevant form,

S‘,:Q/‘r({ (E—U)* (Z%dra-dra)% ,

i
a

(37)

where now r, = r,(s;) and rf = r,(ss) are the end-points. This is in fact the
form in which Jacobi originally formulated his principle.

The ephemeris time

Jacobi’s action gives rise to the following Euler-Lagrange equations:

d ((E-U\" dr, T \? OU
Mg — —_ =— ,
ds Tin ds E-U or,
which has a complicated form. But, as is always possible, now choose the
parametrization in which

(38)

T =E—U, (39)
with the increment of the new parameter given by
i N 3
Trin 2 Y ae1 Madr, - drg dL
dtepy, =ds | ———— | = a= =—\. 40
o S((E—U)) ( 2(E—U) 2(E—U) (40)

Following the nomenclature of Edward Anderson, I call (40) the differential of
the instant. It measures the accumulation of a distinguished ‘duration’ from
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one instant to another. The meaning of the subscript ‘eph’ will be explained
shortly. In the parametrization (40), the equations of motion take the form

d?r,

Mg 55—
2
dez

ou
- _8I‘a ) (41)

which is just Newton’s equations for N particles interacting through the po-
tential U. Note that Eq. (39), rewritten as F = T,,, + V, would normally
be interpreted as the expression of energy conservation. But, in a Machian
approach E for the Universe is to be interpreted, as I said, as a universal con-
stant (like Einstein’s cosmological constant), and then it, expressed explicitly
through (40), becomes the definition of time or, better, duration.””

Indeed, Eq. (40) above is the closest thing to Mach’s ideal we could imagine:
an increment of time which is a sum of all the dr, in the particles’ positions,
weighted by (twice) the difference between total and potential energy. Out of a
timeless theory like Jacobi’s, a ‘natural’ parametrization emerges, which gives
a notion of duration as a distillation of all the changes in the Universe [36]. In
this time, the particles in the Universe, provided one identifies an inertial frame
of reference (I'll show how in a moment), will move according to Newton’s laws.

This is the place to explain the subscript ‘eph’ in d¢,,, in (40). As I remarked
above, in the 1890s astronomers found an apparent deviation from Newton’s
laws in an anomalous acceleration in the motion of the Moon [37]. One possible
explanation was that this was nothing to do with a failure of Newton’s laws
but arose from the use of the Earth’s rotation to measure time. This was only
definitively confirmed in 1939, when it was shown that the planets exhibited the
same anomaly. This confirmed that the rotating Earth doesn’t tick a time in
which Newton’s laws are satisfied. The way out was to assume a more flexible
notion of duration, in which the second is defined by an ‘average’ of the motions
of the most prominent (and massive) objects in the solar system in such a way
that Newton’s laws are verified. In practice, to match the increasing accuracy of
observations it is necessary to include more and more objects in this definition

of time, which is called ‘ephemeris time’.?3

What is a clock?

In the physics community, there is a widespread misconception that to define
clocks one needs to make reference to periodic phenomena, which provide a
time standard because of their isocronicity. This tradition finds its origin in
the imitation of Einstein [38], with his clocks made with mirrors and light rays.

22We ask “what’s the time?”, if we want to know which instant of time is it. But we also
ask “How much time do we have?”.

23From the Greek épnuepic (ephémeris) for “diary”. Ephemerides are tables of the predicted
positions of the celestial bodies over time.



But isocronicity of periodic phenomena per se is a circular argument (if you
define the second as one period of a pendulum, then obviously the pendulum
will always complete a period in exactly one second!). A more refined version
of this idea is based on the hypothesis of the homogeneity (in time) of Nature:
two phenomena that take place under identical conditions should take the same
time. But also this is a fallacy: there are no two identical phenomena: “You can
never step into the same river twice”. Indeed, if two phenomena had exactly
the same attributes, they would have to be identified (this Leibniz’s principle
of the identity of the indiscernibles).

The relationalist point of view is that the main defining property of good
clocks (both natural and artificial) is that they march in step, and therefore
they are useful for keeping appointments [25]. The fact that we (on Earth) can
usefully make reference to an ever-flowing, ubiquitous notion of time is made
possible by the way the objects in the world behave, with a lot of regularities.
After Einstein and his relativity of simultaneity we cannot easily talk about a
universal notion of a present instant,’* but the huge degree of regularity that
our Universe exhibits is by no means diminished: it just translates into the fact
that we all can usefully make reference to a unique spacetime, and all local
measurements of clocks (and distances, see below) are mutually consistent with
a notion of spacetime. The simplest and prototypical example of a relationalist
clock is Tait’s inertial clock, which is the position of particle 2 in his solution
to the Scholium problem (cfr. Sec. 3.1).

5.2 Best-matching ‘in action’

Stage I: Free-end-point variation

Assume that we have a G-invariant metric (dr,,dr})e = Zmb M dr,, - dr}
on TP.? In accordance with Stage I of the best-matching procedure, we start
with a generic path r,(s) : [s1, s2] — P, then lift it locally along the fibres with
the group action

rqe(s) = O(s)rq(s), (42)
and look for the horizontal paths. If the metric is G-invariant, those paths will
minimize the length defined by the metric

ALy = 1/ (dra(s), dra(s)), = [ldra(s)]l, (43)

so we we only need to vary the group elements:
SBM:inf/dLZ:inf/dOsras , 44
it [ac =it [ 140 ra(s)l (44

24Here ‘easily’ anticipates that there is a sense in which Shape Dynamics defines a universal
present.
25Here I mean G-invariant in the sense described in footnote 19.
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but keeping the end points free. This last requirement is of paramount impor-
tance. One normally takes the variation while keeping the end points fixed,
which makes it possible to discard some boundary terms and obtain the Euler—
Lagrange equations. Here variation of the end points along the fibres corre-
sponds to unphysical motions, so nothing allows us to keep them fixed. The
G-invariance of the metric makes it possible to rewrite the variational principle
as
_ —1
Sumt = g(lsf)/udra 00, . (45)
If O is a matrix representation of a Lie group, the expression de = O~! dO is the
differential of a representation of the corresponding Lie algebra O(s) = exp €(s).
We can therefore replace O(s) by an s-dependent Lie algebra element €(s):
Spy = inf / |dre + der,,, - (46)
e(s)
The last expression looks like a covariant differential, which we can call the

best-matching differential [35]
Or, =dr, +der, . (47)

The free-end-point Euler-Lagrange equations (see Appendix B.2 for their
derivation) for (46) give

odL odL 60dL odL
_— = — _— = — = 4
d ( (5d6> de ’ ode |,_,,  ode| _,, 0, (48)
but thanks to the G-invariance of the metric the e variable is cyclic, % =0,
and then the equations, together with the boundary conditions ‘f;(lif |S:S1 =
Sac | =s, = 0, DLy
odL odL odL odL
((5de> 0€ |—y,  Ode|,_,, dde 0 (49)

What we have here found are the conditions of horizontality. This procedure
doesn’t work if the metric is not G-invariant because then the ‘Lagrangian’
depends on €(s) as well as on de(s).

Notice that the free-end-point variation of a cyclic coordinate is equivalent
to the regular variation of a Lagrange multiplier: if we define A = de, then the
Lagrangian depends on A but not on its derivative. Its fixed-end-point variation
gives 94€ = 0, which is equivalent to (49).

oA

26In gauge theory, there are many ‘multipliers’ (like the scalar potential Ao in Maxwellian
electrodynamics) that, dimensionally, are velocities (and hence cyclic coordinates because
no quantities of which they are velocities appear in the Lagrangian). It is therefore strictly
irregular to treat them as multipliers. Free-end-point variation explains why mathematics
that strictly is incorrect gives the right answer.



Stage II: Noether’s theorem part I
sdL

Now, if the metric is G-invariant, the quantities §5= are constants of motion
for the paths that minimize the following uncorrected action:

/dﬁbme :/HdraHG .

In fact, the action is invariant under global, time-independent G transformations

Sbare - (50)

rqo(s) — expery(s), (51)
and Noether’s theorem, part I [39] establishes that
d (Mﬁ"”e(e Fa(s)) ) —0, (52)
de =0

6dL

which states that the quantities §5= of the preceding paragraph are conserved
along the solutions. This is true, in particular, if they have the value zero.

Therefore the solutions of the Euler—Lagrange equations for S,,. are horizontal

if they start horizontal: %ﬂf s=sy — 0

Thanks to the G-invariance of our bare action, the best-matching condition
reduces to nothing more than an initial condition on the data: it is sufficient
to take the ‘bare’ action S,,.. and find the path that minimizes it with initial
conditions given by (49).

The Newtonian N-body problem

Let’s apply the technique of best-matching to Newtonian gravity. I will use
the reparametrization-irrelevant formulation (37) with the variations expressed
with respect to ephemeris time. It is sufficient to take the following metric on
QY:

Y m
=4(E = Vi) Y T‘Zdra -dr,,

a=1

dc?

New (53)
which is conformally related to the kinetic metric through the positive-definite®”
conformal factor F — V.., where

meg My

VNew = .
[ra — 13|

(54)
a<b

The conformal factor E — Vy., is translation- and rotation-invariant, which
allows us to find the horizontal curves by minimizing the action

N

[t =2 [ (E-vi) > 2 jon )

a=1

(55)

27 E — View is actually positive-definite ‘on-shell’, that is, on the physical trajectories, where
it is equal to the positive-definite kinetic energy. Notice that if E < 0, there are forbidden
regions in configuration space: those where the potential energy is smaller than E.
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where the best-matching differential here is

Dr, =dr, +dw x r, +d6. (56)
Varying wrt dw with free endpoints, I find
N
0dLye, 1
= dX;mamaxra_o, (57)
where ) .
dy = (B = Vi) 2 (Y %5 D)2 - (58)

a
The expression here on the rhs is a sort of precursor of the ephemeris time,
but it is not yet that since it depends on the auxiliary quantities dw and d@; I
introduce dy merely to simplify the equations.”® As I commented on Eq. (40),
E. Anderson calls it the differential of the instant [35, 40].

Varying wrt d@, I get

5%2"“” = i aiv:l Mg D1y = 0. (59)
If we now define the canonical momenta [41, 42] p* as
R
then the Euler-Lagrange equations read
dp® = 6d(§.zew = —dxa(;/:(iw —dw x p%, (61)

where the term dw x p® is due to the r,-dependence of Dr,. This term can be
reabsorbed into a best-matched differential of the momentum:>°

Dp°® = dp? + dw x p?, (62)
and then the equations of motion take an almost-Newtonian form:
Dp* D (Dr, OView
P (SRe) = e (63)
dyx dy \ dx Or,

281 use x for this differential quantity as the initial letter of the Greek word ypdvog
(chronos), referring to a quantitative notion of time (duration).

29The best-matched differential cannot act in the same way on rq and the momenta: for ex-
ample the latter are translation-invariant. This will be made more precise in the Hamiltonian
formulation.



As I said, dy is not an ephemeris time because of its dependence on the
auxiliary quantities dw and d@. However, if we solve (59) and (57) for dw and
d@, call the solutions dwgy, and dfg, and substitute them into (58), we do
obtain the actual ephemeris time:

-

3
dte,, = (F — VNeW)—% (Z me||drg + dwpy X rq + dOBMHQ) . (64)

We can call dr, + dwgy X r, + dOgy the ‘horizontal’ differential because it
measures the physical variation of r, and contains no part due to a rigid trans-
lation or rotation of the whole universe, and is therefore invariant under Eucl.
The ephemeris time is invariant as well, and it measures a distillation of all the
physical change in the universe.

The best-matching conditions (57), (59) take a very intuitive form if expressed
in terms of the canonical momenta:

N
L=) r,xp"=0, (65)
a=1

We can now exploit the G-invariance of the metric as a shortcut to stage I1
of the best-matching procedure. The paths that minimize the bare action

N 1
Mg 2
Sbare = 2/ <(E - VNew) ; 7 |dra||2> (66)
and start with zero total angular and linear momenta,
N N
Zmadra:Zmadraxrazo, (67)
a=1 a=1

project under Q¥ — Q¥ to the physical solutions of the best-matched theory
in Qg . Minimizing S,.,. with the above initial conditions gives Euler-Lagrange
equations (38) that take a Newtonian form if expressed in terms of the ephemeris
time for which T}, = F — Vy...

If the energy is zero, E' = 0, we see here how this kind of dynamics satisfies
the Mach—Poincaré principle. The physical, observable initial data (3N — 6
positions and 3N — 6 differentials) are alone enough to uniquely determine a
physical trajectory. The total angular and linear momenta are set to zero by
the constraints (65) (the angular momentum represents the ‘missing’ 3 data
in Poincaré’s analysis). The dynamics determines by itself an inertial frame
of reference and an intrinsic notion of duration (the ephemeris time) such that
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Newton’s equations hold. In this frame, the total angular momentum of the Uni-
verse must be zero, otherwise the Mach—Poincaré principle would be violated.
We see that relational dynamics not only provides a deeper and intrinsic foun-
dation for Newton’s dynamics (finding the physical origin of reference frames
and, ultimately, inertia), but it also imposes physical predictions that make
it more restrictive than Newton’s theory. If we could show that our Universe
possesses angular momentum, that would rule out Machian dynamics (linear
momentum wouldn’t be observable anyway due to Galilean invariance).

A nonzero energy is an element of arbitrariness that would imply a (mild)
violation of the Mach—Poincaré principle: observable initial data would fail
to be enough to determine the future evolution, by just a single datum, and
an observation of one single second derivative of the relational data would be
enough to fix the value of E. Therefore a nonzero energy, despite being possible
to describe in Machian terms, is disfavoured.

The scale-invariant N-body problem

If we want to incorporate the relativity of scale in a simple way, we might
choose a different metric on QY which is manifestly scale-invariant:

N
m View
dﬁg =—4V; Z fdr(l : dra ) Vs = Nl ) (68)
a=1 Icgm
where I, is what I call the ‘centre-of-mass moment of inertia’:*°
N
L= 3" mallra — v (69)
a=1
or, written in a more relational way (due to Leibniz),
meq My
JRN KL TS (70)

tot

a<b

Notice that I can’t put values of the energy F other than zero in (68) because
that would make the metric non-scale invariant.

The best-matching action is

N 1
Mg 2
Jaz=2 [ (v Genr) ()
where in this case
Dr, =dr, +dw xr, +dor, +dO. (72)

30That object is actually half the trace of the centre-of-mass inertia tensor, defined as
I=3,ma(ra —Tem)® (ra — Tem)-



Note the scalar auxiliary variable ¢ € R™, which corrects for dilatations. The
free-end-point variations of this action are identical in form to the ones of the
previous paragraph. These now include the one related to scale transformations:

N
0dLg 1
- Wt (Dr,) =0, 73
g = g e (0) (73)
which expresses the vanishing of the total dilatational momentum:>'
N
D=> 1, p*=0. (74)
a=1
The equations of motion are
Dp*” Vs
=— 75
dy or, (75)

where in this case the best-matching differential of the momentum gains a
correction coming from dilatations:

Dp® =dp® + dw x p* — dop?. (76)
In this case, the bare action,
N 1
Se=2 [ (FW G ™)

also conserves the dilatational momentum, and therefore its Euler-Lagrange
equations give a representation in Q% of the physical trajectories if one imposes
the condition (74) on the initial data. The equations of motion for the bare
action in ephemeris time are

Pra Ve 0V

dp?
= a o — — = I
at Meqz T o, S or, T

_1
- rcm) I 2 VNew .

cm

mg (T (78)

eph

The dilatational momentum is zero, and this implies that the center-of-mass
moment of inertia is conserved, because

dr..,
dt

=2D=0. (79)

eph

31This quantity has the same dimensions as angular momentum, and the name for it was
coined by analogy in [43]. It has not been given a name in the N-body literature and is
usually denoted by J, probably for Jacobi.
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We therefore obtain a theory which is Newtonian gravity with [én playing the
role of a gravitational constant, plus a ‘cosmic’ force parallel to r, — r.,, and
therefore pointing towards (or away from) the center of mass, which keeps I,
constant. In a universe made of at least ~ 10%° particles, this ‘cosmic’ force
would be virtually undetectable through local observations (at the scale of the
solar system or even at the scale of galaxy clusters). In fact, the accelerations of
localized systems due to this force would be almost identical, both in direction
and magnitude, and thus undetectable by virtue of the equivalence principle.

Further reading: Regarding principal fibre bundles, I suggest the book by
Gockler and Schucker [44], the review by Eguchi, Gilkey and Hanson [45],
and Frankel’s book [32]. The masterpieces on the variational principles of
mechanics are Lanczos [41], Goldstein [42] and Arnold [46].

6 Hamiltonian formulation

The Hamiltonian formulation of the kind of systems we’re interested in is non-
trivial. In fact the standard formulation fails to be predictive, precisely because
of the relational nature of our dynamics. There are redundancies in the descrip-
tion, and this means that the usual Legendre transform that is used to define
the Hamiltonian is singular, and the momenta are related to the velocities by
one-to-many mappings. This situation is described through nonholonomic con-
straints (meaning constraints that depend not only on the coordinates, but also
on the momenta).

In fact, after the two-stage procedure described above, best-matching leads
to a simple set of constraints on the canonical momenta, namely Eqs. (65), with
the possible addition of (74) if relativity of scale is assumed. There is also a
constraint associated to temporal relationalism, as I will show now.

6.1 The Hamiltonian constraint

Reparametrization-invariant theories are characterized by having a vanishing
Hamiltonian. We can see it in the prototype for these theories: the geodesic-
generating action (35), whose Lagrangian is

1
odw; dx; \ 2
L=|g"—2=L . 80
(g ds ds ) (80)
Its canonical momenta are
1

. oL pedzg dae\ 2 oday
g f— e _— v 1
# 05 (g ds ds ds ’ (81)



We see that the momenta, like the geodesic action [ ds £ from which they are
derived, are themselves reparametrization-invariant: they can be written in the
parametrization-independent form

[MES

pt = (gké dzy, dxg)_ g% dz; . (82)
The other thing one can observe is that the momenta have the form of N-
dimensional direction cosines, because as a vector they have unit length, so the
following phase-space function vanishes weakly:>>

H:gijpipj—lmo, (83)

where g/ is the inverse metric. We see from (83) that the velocities 4 are
under-determined by the momenta (their norm is not determined by the mo-
menta, which have unit norm). This is what Dirac [2] calls a primary constraint:
an algebraic relation satisfied by the momenta by virtue of their mere definition
and not due to any variation.

By its definition, the canonical Hamiltonian vanishes,

- dx;
= L= 4
Hean Zi:p o L£=0 (84)

but, as discussed below, the presence of the primary constraint (83) implies
that the true generator of the dynamics is not (84) alone. It is instead (84) plus
a linear combination of the primary constraints, which in our case is just (83):

Hioe = Hean +u (91] Pzpj - 1) ) (85)

where v = u(s) is an arbitrary time-dependent function (whose conjugate mo-
mentum does not appear in the total Hamiltonian and is assumed to vanish).

Dirac [1] developed a general theory of constrained Hamiltonian systems and
presented it in his beautiful lectures [2]. I will now reformulate everything
according to Dirac’s theory. For the readers who are not familiar with the
subject, I will start with a quick review of the technique.

6.2 A crash course in Dirac’s constraint analysis

Consider a Hamiltonian system which is subject to a set of constraints like (65),
(74) and (83). The constraints will be expressed through a set of phase-space
functions ¢, = ¢o(p,q). When all of these functions vanish the constraints are

328trong (=) and weak (=) equations will be defined below. Here, the difference is imma-
terial.
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satisfied. This identifies implicitly a hypersurface in phase space (the constraint
surface). With the notion of constraints comes that of weak equivalences: two
phase-space functions f,g are weakly equivalent if their difference is a linear
combination of the constraints, f ~ g & f—g =), us¢s. A function that
is equal to a linear combination of the constraints (which means it is zero on
the constraint surface) will be called weakly vanishing, and an equation that
holds only on the constraint surface will be called a weak equation, as opposed
to strong equations, which hold everywhere in phase space.

Dirac [2] starts by noticing that, in the presence of constraints, Hamil-
ton’s equations do not follow from the minimization of the canonical action
§ [ds (pz G — ’Hwn). In fact, when taking its variation,

6/d3 (p" di — Hewn) = /ds [(qi - %) p' — (p” + 67;7) 5%} =0, (86)

one is not entitled to separately put to zero all the coefficients of ép’ and dg;.
This because one cannot take arbitrary variations dp?, dg;: they are constrained
by the conditions ¢, ~ 0. The most generic variation one can take is one that
keeps the phase-space vector (6p?,dq;) tangent to the hypersurface ¢, = 0 (a
variation that keeps you on that hypersurface).

There is no metric on phase space, but there is enough to define orthogonality
and parallelism: it’s the symplectic structure. The reader can find more details
in Arnold’s book [46]. For our purposes, it is sufficient to say that, in the case of
a variation constrained to ¢, = 0, Eq. (86) imposes a weaker set of conditions,

1
e 0 0ba . 0 9%a
S O, =Y

for any choice of u,. The u®’s purpose is to generate the whole tangent hy-
perplane to the surface ¢, = 0 at each point of it. The above equations are
Hamilton’s equation for a generalized Hamiltonian

M =Hen + D U -

6Hcau
0q;

67-[0&1!
opi

+p' = (87)

(83)

The evolution of a phase-space function f under this generalized Hamiltonian
can be written in terms of Poisson brackets
. of OH*  Of OH*
=Y =7 — 55 :
dq; Op*  Op* Oq
The equations of motion (89) only make sense if the constraints ¢, are preserved

by them, for otherwise the evolution brings us out of the constraint surface
¢, = 0. So, for consistency, we have to require that

b = {ba;H*} = {a, Hean} + Zub{¢a,¢b} ~0.
b

(89)

(90)



Recall that Dirac’s weak equality ‘x 0’ means that the result of the above
calculation gives a combination of the constraints ¢, that vanishes when the
on-shell condition ¢, ~ 0 is imposed.

Equations (90) are the core of Dirac’s analysis. There are 4 cases:

1. There are a’s for which Egs. (90) have no solution. Then the system is not
consistent and the equations of motion admit no sensible solution, like the
famous Lagrangian £ = ¢, whose Euler-Lagrange equation is 1 = 0.

2. Some of Egs. (90) admit a nontrivial solution, and that solution does not
depend on any u,’s. Then all such solutions impose new constraints ¢/,
on the p’, g;. Dirac calls the ¢/, secondary constraints, and they need to
be treated on the same footing as the ¢,’s. Then one writes down a new
modified Hamiltonian H** = H.,., + Y., u® o + >, u'’ ¢}, and applies the
procedure again from the start.

3. Some other equations might admit a nontrivial solution which depends
on the u*’s. Each such equation will fix one of the u®’s as a function of
p,q. Dirac calls these equations ‘specifiers’. Each equation of this kind
is associated with a second-class constraint. Second-class constraints are
defined by the fact that their Poisson brackets with at least one other
constraint in the theory are not weakly vanishing.

4. All the equations that do not fall into cases 2 or 3 will simplify to tautologies
of the form 1 = 1. There will be one such equation for each first-class
constraint. First-class constraint are defined by the fact that their Poisson
brackets with every other constraint in the theory are weakly vanishing.

If we never stumble upon case 1, after a few iterations of the procedure all of
the equations will fall into cases 3 or 4 Then the system is well defined, and we
can stop. The evolution will be finally generated by a total Hamiltonian,

> dP(p.q) b,

b € second-class

Hiw = Hewa + > 0 o+

a € first-class

(91)

which is the canonical Hamiltonian plus a linear combination of all the leftover
first-class constraints (primary, secondary, ... ), and a linear combination of the
second-class constraints with the u® = u®(p,q) which have been fixed by the
specifier equations.

Dirac’s theorem

Whenever our algorithm stops (and the system turns out to be consistent),
but some of the u®’s are not specified by any ‘case 3’ condition, then these
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u®’s are gauge degrees of freedom (like the position of the center of mass in
relational systems).

As we said, the u*’s that don’t end up specified are those related to first-class
constraints, meaning that they Poisson-commute with all the other constraints
¢o and with H.,,, so that for them Eq. (90) falls into case 4.

The following is referred to by some as ‘Dirac’s theorem’: primary first-class
constraints treated as generating functions of infinitesimal contact transforma-
tions lead to changes that do not affect the physical state.

Consider the simplest case of a non-vanishing canonical Hamiltonian H..,
and one single first-class constraint ¢:

f={f Hen} +u{f. 0}

If ¢ is first-class (so that {¢, H...} ~ 0), then w is not specified by any condition
and is left as arbitrary. This arbitrariness is absent only if one considers phase-
space variables y that are first-class with respect to ¢, {y, ¢} ~ 0. Then u does
not appear in the evolution of y. Variables like y are gauge-invariant, and the
absence of any arbitrariness in their evolution signals that they are physical and
are the only candidates for observables. Non-gauge invariant quantities can be
used in the description of the system, but they depend on conventional choices,
or gauges.

Let’s show a simple example to make things concrete. Consider two free
particles on a line, with coordinates ¢; and gz. The canonical Hamiltonian is

2 2
P1 P3
Hon =7+, 92
2mi1  2mgoy (92)
and say we have the constraint
(b =N + D2, (93)

which is obviously first-class as it is the one and only constraint in the model,
and a single constraint will always Poisson-commute with itself. The total
Hamiltonian is H,.. = He.n + © ¢, and it generates the time evolution

g =2 4, o= u,, P1=p2=0. (94)
m1 ma
The solution to these equations is
pi °
as) = B = s+ [(asu) val0. m =ptsn. ©9)
(3 S1



and depends on four integration constants, g¢;(s1), pi;(s1), and the arbitrary
parameter u(s). The integration constants set the initial values of the phase-
space variables, at s = s;. The constraint ¢ =~ 0 constrains these initial values
to satisfy p1(s1) = —pa(s1).

We see that while the constraint ¢ = 0 fixed the total canonical momentum
p1+ p2 to be zero, the gauge choice allows us to represent the system in a frame
in which the total quantity mi ¢1 + ms2 go = m,. u is nonzero. The relative
distance between the two particles ¢1 — ¢o is gauge-invariant {q — g2, ¢} = 0,
its equations of motion contain no arbitrariness,

. . P1 P2
G —q="———, (96)
mi mo
and it is the only gauge-invariant quantity in the system apart from the mo-
menta py, ps (which however are constrained to sum to zero, and therefore
have only one independent degree of freedom). Therefore, there are two physi-

cal Hamiltonian degrees of freedom.
Barbour and Foster’s exception to Dirac’s theorem

Julian Barbour and Brendan Foster found a bug in Dirac’s theorem [3] that
relates to the case we’re interested in: when the canonical Hamiltonian vanishes
and the total Hamiltonian is just a linear combination of constraints.

Consider again the case of a single first-class constraint ¢, but when the

canonical Hamiltonian vanishes identically:** #H..., = 0. Then
==L — 97
f=55 =uif.e}, (97)

and now it is true that w is arbitrary, but the effect of changing u is just a
reparametrization. The same equation written as

LA r 61

u ds
is invariant under s — s'(s), u — u 25. Therefore this particular ¢ generates

physical change. If in the example above of the two particles on a line we had
H... =0, then the equations of motion would reduce to

g1 =u, Go=1u,, p1=p2=0. (98)

with solution

S

¢ = / ds’u(s’) + qi(s1), p; = const. (99)
s1

Now, we cannot say that the constraint generates unphysical change, because

it clearly moves the representative point on a dynamical trajectory. Changing

the function v = u(s) merely amounts to changing the parametrization of the

same dynamical trajectory.

33¢Strongly’ in Dirac’s terminology.
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6.3 Application to our systems
6.3.1 Differential almost-Hamiltonian formulation

We will here use the formulation proposed by Edward Anderson [35] as in
Eq. (37). In place of the Lagrange multipliers u®, we use differentials d¢® of
which we consider the free-end-point variation.?* This enables us to imple-
ment ‘parametrization irrelevance’ at all stages. The Newtonian best-matching
action (55) is extremalized by a path generated by the ‘differential-almost-
Hamiltonian’ object

dA=dxyH+d0 -P+dw-L, (100)
which is a linear combination (through differentials) of the constraints
N N N 4 4
L:;raxp“, P:;pa, H;r;?;i —U. (101)

The evolution of a phase-space function f is generated by Poisson-commuting

f with dA:

and therefore the best-matching differential of f is generated by the Hamilto-
nian constraint H ‘smeared’ with dy,*°

9f=dx{H, f} =df —d6-{P, f} —dw -{L, f}.

One sees immediately that this definition reproduces the correct action of the
best-matching differential on the coordinates and the momenta:

(102)

(103)

dq, —{d0-P,q,} — {dw-L,q,} =dq, + d0 + dw X qq,,

104
dp® — {d6-P,p?} — {dw - L,p*} = dp® + dw x p°. (104)
The equations of motion are
@ ou
Or, = dy{Hr,} =dx2—,  Dp® =dx{H,p"} = dy (105)
Mg, ara

The angular and linear momentum constraints close as a first-class system:
{L;,P;} = € P,
34 As we saw in Sec. 5.2 the free-end-point variation of a cyclic coordinate is equivalent to

the regular variation of a Lagrange multiplier.
35¢Smearings’ are defined below in the Relational Field Theory Part.

{Pi,P;} =0, (106)




but their Poisson brackets with the Hamiltonian constraint depend on the po-
tential U:

N
oU
{L,H}_;ra X 5=

Tq

(107)

The only way to make the constraints propagate and obtain a consistent
theory is to have a potential that is invariant under global translations and
rotations, so that both of the above commutators vanish strongly.

If we insist on the relativity of scale, we have to add the dilatational momen-

tum constraint N
D= j{: rq 'I)av
a=1

which is first-class with respect to the momentum constraints, but the same
holds also for the Hamiltonian constraint only for some choices of the potential,

+Z

namely, the energy has to be zero E = 0 and the potential has to be homoge-
neous of degree -2 in order for {H,D} to weakly vanish. This is a consequence
of Euler’s homogeneous function theorem [47].

(108)

{L;,D} =0, {D,P}=PF, {HD}=— Zp -p° aU

, (109)

6.4 A matter of units

Before moving to field theory, I want to make some remarks about dimensional
analysis, which in a relational setting becomes a key — and nontrivial — point.
There is much confusion about the role of units in physics,*® and the relational
point of view highlights the issue and calls for clear thinking. I’ll set the stage
for my argument here, using only relational particle dynamics as my prototype
Machian theory. The starting point is the best-matching action for Newtonian
gravity (55). The particle coordinates will be assumed of course to carry the
dimensions of a length [r,] = ¢. The masses are usually given dimension,
but they are non-dynamical objects, as they are constant in time and do not
evolve. They are therefore ‘transparent’ under all derivatives, and one can
always remove the mass dimension from any equation. This can be easily
achieved by dividing the action by the 3/2th power of a reference mass, which
is naturally assumed to be the total mass m,,, = Eivzl mg. Then the action
only depends on dimensionless ‘geometric’ masses pg, = Mg /My, (notice how

36The reader might enjoy reading the interesting and inconclusive ‘trialogue’ between
Duff, Okun and Veneziano [48] on the number of fundamental constants in nature.
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I rescaled and changed the units of the energy E' = which I can do

because it is just a constant):

= E/m,

t

N 2
[t =2 [ (B =Vt 3 e jora )
a=1

Let’s now talk about Newton’s constant G: in our expression for Newton’s
potential (54) it didn’t feature. In basic physics courses G is introduced as
a conversion factor from massxlength™' to accelerations. An acceleration is
length xtime ™2, but in our framework the independent variable is dimensionless:
it is just a parameter on the evolution curve in configuration space, [s] = 1. It
is ephemeris time dt.,, (64) that plays the role of Newtonian absolute time. Its
dimensions can be read off its expression (in the mass-rescaled case):

%

_1
dtupn = (B' — Vi /m2,) " <Z fta]ldre + dwn X Ta + deBM||2>
a

It is a length®/2, [dt,,.] = £3/2. Newton’s law follows from our use of t,,, for
parametrization and of the best-matched coordinates ri™ = r, +wgy Xrq+ 05y,

d2 BM

dt2

eph

Hallb

Z H BM BM||3

(notice the appearance of rescaled masses only). The above equation is di-
mensionally consistent without the need for any conversion factor — G simply
doesn’t appear. But what we call Newton constant and denote with G was in
effect measured by Henry Cavendish a bit over 200 years ago, so what is it?

Ma (rB1\4 _ rbBIVI) , (110)

Let’s consider its definition [49]: it is the gravitational force in Newtons
exerted by one mass of 1 kg on another mass of 1 kg placed at a distance of
1 m. This definition is of course very unsatisfactory from a relational point of
view, and we would like to express it as a comparison. But there is another
quantity in particle mechanics which has precisely the same definition, only
with electric charges in place of masses: it is Coulomb’s constant. Its definition
s [50]: the electrostatic force in Newtons exerted by one charge of 1 C on
another charge of 1 C placed at a distance of 1 m. This suggests a different
understanding of Newton’s constant: it is just the (dimensionless!) relative
magnitude between gravitational and other kind of interactions. If I were to
include electrostatic interactions in my relational particle model, I would use a
potential of this form:

Ha b
[ra — x|

€a€h

VN+C = - Z

a<b

-2

a<b

, 111
Tew — o] (1)



where ¢, are dimensionless electric charges. If the particles we are considering
are subatomic like the electron or the proton, the ¢,’s are much larger than
the p,’s. In fact, for a given particle, €,/1, = (ke/G)%ea/ma where now k. is
Coulomb’s constant and G is Newton’s constant if e, is expressed in Coulombs
and m, in kg. There’s no such a thing as a universal gravitation constant
or a permittivity of vacuum: there are only (smaller or larger) dimensionless
coupling constants. The story changes in presence of ‘non-1/r?’ kinds of forces,
like harmonic oscillators or the Lennard—Jones potential. If they are introduced
in a naive way, e.g.:

Lallp + €€ ( T 277, >
v o Hafto + €ah _ , 112
N+C+L-J ||I'a — I'bH 0 Z Hra — rb||12 ||ra — I'b||6 ( )

a<b a<b

those forces clearly require the introduction of truly dimensionful constants, as
the length r,,, of Eq. (112) where the Lennard-Jones potential has its minumum,
and €y with dimensions ¢~'. A dimensionful constant like r,, represents a
conceptual challenge: it gives an absolute scale to the Universe, which doesn’t
make reference to any dynamical quantity in it. In other words, a dimensionful
constant is associated to a length, but what is it the length of?

As a first argument, we have to ask: how do we measure things like r,, or €7
The answer is straightforward: we measure the equilibrium distance between
two atoms which interact through the Lennard-Jones potential. But that dis-
tance is always measured in relation to something else: all measurements are,
by their own nature, relational. If we doubled all the distances in the universe
there should be no visible effect: also r,, and €, ! should be doubled. Therefore
we should rather express r,, and €; ! as dimensionless constants times some
other distance in the universe, but which one? The problem is that, according
to laboratory experience, r,,, and ¢ are, to a very good approximation, constant
in time, while there are no distances in the universe which are truly constant.
If we want to give an answer that satisfies the experimentalist, we can limit to
a distance which is only approximately constant, within the experimental er-
ror: the natural choice is 7, € !« y/T..., the square root of the center-of-mass
moment of inertia of the whole universe defined in (70), essentially measuring
the size of the universe. As we remarked in section 5.2 the time dependence
given by 7,5 ' oc /I, would be very hard to detect in the lab, within human
time frames.

I will now spell out a further argument in favour of r,,, €, U« T..: Van
der Waals or harmonic forces can be considered as effective descriptions of
more fundamental physics which has just 1/72-type forces, in which one ignores
or ‘coarse-grains’ some degrees of freedom. Think about the electrical dipole
force generated by a pair of oppositely-charged particles: it falls off like 1/73,
but it is generated by purely 1/r2-type forces. Therefore the dimensionful
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constant appearing in the dipole potential must be related to some physical
lengths: it is easy to convince oneself that it is the size of the orbits of the
pair of charges. This means that if every size in the universe was scaled, the
dimensionful constants would scale accordingly. Positing 7,,, €, & /I, finds
then a justification in terms of effettive physics (or at least it appears more
physical than having non-relational constants).

The two arguments above might seem convincing, but they ignore quantum
mechanics. For instance, the argument about dipole forces doesn’t make fully
sense at a purely classical level: if we ignore quantum mechanics, the orbits
of different pairs will have a continuum of different orbital element, and these
orbital elements will change continuously due to interactions with the rest of
the universe. It would be unrealistic to assume something like 7, €5 D 1.
where the proportionality factors are (even approximately) constant in time:
in a classical world, these proportionality factors would change rapidly in time.
Quantum mechanics changes the picture: the orbitals of electrons in an atom are
quantized, and they can only jump by discrete quantities. At the deepest level,
it is this discretization that allow us to talk about ‘atoms’, and to attribute to
the dimensionless proportionality factors in r,, €, ! & /T... a set of unchanging
discrete values. The issue of the origin of physical scales and units is a deep one,
and requires a more careful discussion, which would go beyond the purposes of
this Tutorial.

Further reading: For constrained systems I suggest Dirac’s ‘Lectures’ [2],
Henneaux-Teitelboim’s book [51], and the book by Regge, Teitelboim [52].
Barbour and Foster’s paper on Dirac’s theorem [3], E. Anderson’s review [35]
for the ‘differential-almost-Hamiltonian’ approach.




Part 111 3251. Three great distinctions at least may be taken among these cases
of the exertion of force at a distance; that of gravitation, where prop-
Relational Field Theory qgation of the force by physical lin?s Ithrough the intermedz'ai.fe space

is mot supposed to exist; that of radiation, where the propagation does
erist, and where the propagating line or ray, once produced, has ez-
The ontology of fields istence independent either of its source, or termination; and that of
electricity, where the propagating process has intermediate existence,
like a ray, but at the same time depends upon both extremities of the
line of force [...] Magnetic action at a distance has to be compared
with these. It may be unlike any of them; for who shall say we are
aware of all the physical methods or forms under which force is com-
municated? It has been assumed, however, by some, to be a pure case
of force at a distance, and so like that of gravity; whilst others have
considered it as better represented by the idea of streams of power. The

Faraday is credited with the introduction of the concept of field in physics.
He found it extremely useful, in particular for the description of magnetic phe-
nomena, to use the concept of lines of force (1830s) [53]:

3071. A line of magnetic force may be defined as that line which is
described by a very small magnetic needle, when it is so moved in either
direction correspondent to its length, that the needle is constantly a

tangent to the line of motion; [... ] question at presence appears to be, whether the lines of magnetic force
3072. [...] they represent a determinate and unchanging amount have or have not a physical existence; and if they have, whether such
of force. [...] the sum of power contained in any one section of a physical existence has a static or dynamic form [...].
given portion of the lines is exactly equal to the sum of power in any
other section of the same lines, however altered in form, or however To Faraday it appeared clear that the issue of retardation was key to determine
convergent or divergent they may be at the second place. |[...] whether physical existence should be attributed to the lines of force of a certain
3073. These lines have not merely o determinate direction, [...] but interaction:
because they are related to polar or antithetical power, have opposite
qualities in opposite directions; these qualities [...] are manifest to 3246. There is one question in relation to gravity, which, if we could
us, [...] by the position of the ends of the magnetic needle, [...] ascertain or touch it, would greatly enlighten us. It is, whether gravi-
tation requires time. If it did, it would show undeniably that a physical
He speculated that the concept might be useful beyond magnetic phenomena, agency existed in the course of the line of force. [...]
3247. When we turn to radiation phenomena, then we obtain the
3243. [...] The definition then given had no reference to the physical highest proof, that though nothing ponderable passes, yet the lines of
nature of the force at the place of action, and will apply with equal force have a physical existence independent, in a manner, of the body
accuracy whatever that may be; [... ] radiating, or the body receiving the rays. [...]

_ . It was Maxwell who proved, with a monumental work, the superiority of the
l I } concept of fields for the description of electric and magnetic phenomena. In
' his 1855 seminal paper On Faraday’s Lines of Force [54] Maxwell modelled
D | the field with an incompressible fluid whose velocity defined the field intensity
and whose flux lines coincided with Faraday’s lines of force. This analogy is
’ ! \ ' particularly suited for forces that fall off as the square of the distance, like the
| electric and magnetic ones. Maxwell’s [54] ends with the following lines:

By referring everything to the purely geometrical idea of the motion
Figure 15: An illustration from Faraday’s book [53] showing his lines of mag- of an imaginary fluid, I hope to attain generality and precision, and
netic force through diamagnetic (D) and paramagnetic (P) materials. to avoid the dangers arising from a premature theory professing to
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explain the cause of the phenomena. If the results of mere specula-
tion which I have collected are found to be of any use to experimental
philosophers, in arranging and interpreting their results, they will have
served their purpose, and a mature theory, in which physical facts will
be physically explained, will be formed by those who by interrogating
Nature herself can obtain the only true solution of the questions which
the mathematical theory suggests.

In his masterpiece, A Dynamical Theory of the Electromagnetic Field [55],
Maxwell deduces the speed of light according to his model from the values
of the electric permittivity and magnetic permeability of air measured by We-
ber and Kohlrausch. He then compares it to the direct measurement of the
speed of light in air due to Fizeau and Foucault, finding good agreement:

The agreement of the results seems to show that light and magnetism
are affections of the same substance, and that light is an electromag-
netic disturbance propagated through the field according to electromag-
netic laws. [...] Hence electromagnetic science leads to exactly the
same conclusions as optical science with respect to the direction of the
disturbances which can be propagated through the field; both affirm the
propagation of transverse wvibrations, and both give the same velocity
of propagation.

The origins of Geometrodynamics

Carl Friedrich Gauss in his 1827 Disquisitiones generales circa superficies
curvas (General investigations of curved surfaces) [56] studied parametrized
(coordinatized) 2d surfaces embedded in 3d Euclidean space. He was interested
in those properties of the surface that are unaffected by a change of the way the
surface is embedded in 3d space (as, for example, bending the surface without
stretching it), or a change in the parametrization of the surface. One natural
such invariant quantity is the length of a curve drawn along the surface. Another
is the angle between a pair of curves drawn along the surface and meeting at
a common point, or between tangent vectors at the same point of the surface.
A third such quantity is the area of a piece of the surface. The study of these
invariants of a surface led Gauss to introduce the predecessor of the modern
notion of metric tensor. Among the important notions introduced by Gauss,
there is the concept of intrinsic, or Gaussian curvature, for which the famous
“Theorema egregium” holds [56]:

If a curved surface is developed upon any other surface whatever, the
measure of curvature in each point remains unchanged.
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Thus, the theorem states that the curvature of a surface can be determined
entirely by measuring angles and distances on the surface, it does not de-
pend on how the surface might be embedded in 3-dimensional space or on
the parametrization of the surface.

In 1854 Bernard Riemann had to give a habilitation lecture at the University
of Géttingen and proposed to Gauss three topics. Gauss chose the one on the
foundations of geometry [57]. The lecture revolutionized geometry, generalizing
Gauss’ results to any dimension, opening the possibility that the 3-dimensional
space in which we live and do physics might not be Euclidean and could pos-
sess intrinsic curvature [57]. Riemann argued for an empirical foundation for
geometry:

Thus arises the problem, to discover the simplest matters of fact from
which the measure-relations of space may be determined; a problem
which from the nature of the case is not completely determinate, since
there may be several systems of matters of fact which suffice to de-
termine the measure-relations of space - the most important system
for our present purpose being that which Fuclid has laid down as a
foundation. These matters of fact are - like all matters of fact - not
necessary, but only of empirical certainty; they are hypotheses. We
may therefore investigate their probability, which within the limits of
observation is of course very great, and inquire about the justice of
their extension beyond the limits of observation, on the side both of
the infinitely great and of the infinitely small.

Riemann’s central concept was that of a metric, which characterizes the in-
trinsic geometry of a manifold. The importance of Riemann’s work was so
outstanding that now we talk about Riemannian geometry.

Following that, around the end of the 19th century, Gregorio Ricci-Curbastro
and Tullio Levi-Civita [58] established the modern notions of tensors, as differ-
ential objects which are independent of the coordinate system, laying the basis
of modern differential geometry.

For our purposes, Einstein took the last step in this story by identifying
spacetime with a 4-dimensional manifold with Lorentzian signature, whose cur-
vature was related to the energy-momentum tensor of matter through Einstein’s

equations:
Ry —iRgu, =871, (113)

in units where G = ¢ = 1. How this came about is an extremely interesting
story that is recounted in great details elsewhere. My aim in this tutorial is to
do something different.

An exercise in counterfactual history



Einstein’s discovery was strongly guided by the revolution brought about by
Special Relativity, after which the unity of space and time into a continuum
appeared to be an inevitable property of any future theory of physics. Had, as it
might have happened, the Machian ideas been made precise earlier by someone
like Poincaré, Barbour and Bertotti, the history of physics would probably have
taken a different course. I will now engage in this exercise in counterfactual
history: imagine all I have explained about spatial and temporal relationalism
in the previous Part had been understood in the 19th century, and add all the
insights on the ontology of fields and geometry provided by Faraday, Maxwell,
Gauss, Riemann and Ricci-Levi-Civita. What could a relationalist physicist
have done to extend Mach’s ideas to field theory?

She/he would have started by assuming a 3-dimensional perspective, in which
space is a 3d Riemannian manifold described by a metric tensor g,p, on which
other kind of fields live (scalar, vectors...). Then she/he would have looked for
a variational principle producing a dynamics which depended on the fields and
their first derivatives and with a Jacobi-type action. Any arbitrariness in the
description, like the coordinate system used to coordinatize the manifold and
write tensors in components, should be made redundant with best-matching,
in analogy to the particle models.

In the following Sec. 7 and 9 I will show how much could have been achieved
with this handful of first principles. One can deduce the Special Relativity
principle, the invariance of the speed of light and the universality of the light-
cone. Moreover the whole of General Relativity can be derived, as well as the
gauge principle, both in its abelian (electromagnetism) and non-abelian (Yang—
Mills theory) form. In addition, the same principles allow for two different
additional kinds of relativity (Galilean Relativity and Carrollian Relativity, or
Strong Gravity) which are relevant in particular regimes of GR. Finally, by
requiring the Mach—Poincaré principle to be satisfied by those theories, one
unambiguously obtains the theory which is the main subject of this Tutorial:
Shape Dynamics.

Between Secs. 7 and 9 I have inserted a Section, number 8, on York’s method
for solving the initial-value problem in General Relativity, which is necessary to
understand the following, where I show how implementing the Mach—Poincaré
principle leads to Shape Dynamics.

The following sections will stress the fact that Shape Dynamics is logically
independent of General Relativity. It is in fact unnecessary to even know any-
thing about GR to understand these sections, and all its main features will be
derived independently, from more fundamental first principles. Needless to say,
readers who are familiar with GR, and in particular its Hamiltonian formulation
due to Arnowitt—Deser—Misner will be able to appreciate the following sections
even more. I devote the whole Appendix A to reviewing the ADM formulation
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of GR. Readers unfamiliar with it should read Appendix A either now, before
the next Sections 7-9, or after them, in order to understand the connection with
the spacetime picture. Also many readers who are familiar with ADM gravity
might have never seen the Baierlein—Sharp—Wheeler action, which is the key
link between ADM and the formulations of the next sections, so they might
consider reading Appendix A now.

Nuggets of functional analysis

In this Part I will be working on a 3-dimensional Riemannian manifold X,
which is therefore endowed with a Riemannian 3-metric g,; and an associated
integration measure |, d®z,/g. Throughout this Part I will assume the manifold
to be closed (compact without boundary). This will be relaxed in Sec. 12 of
the next Part, and in Sec. A.4 of Appendix A .

The fundamental objects of our study will be fields, understood as different
multiplets of functions on ¥. The prototype for our configuration spaces will
be £%(¥), the space of square-integrable functions on our spatial manifold .
This is also the configuration space of scalar fields. More complicated fields
like tensors will just be tensor products of £?(X) (one for each component),
with particular transformation laws under diffeomorphisms and under the basic
operations of tensor calculus (if the reader needs an introduction to tensor
calculus I suggest starting with Schutz [59], continue with Gockeler—Schiicker
[44], and ending up with Frankel [32]).

£?(X¥) can be made into an inner product space by defining

(f1h) = / /G f(z) hiz), (114)

which satisfies all the axioms of an inner product. This inner product can be
extended to dual tensors, e.g.,

(T 8,) = /d?’x\/ﬁTij(x)Sij(at), (115)
and to tensor densities, e.g.,
(Tij|5ij):/dsxg%Tij(x)Si-(x) y=1-w-z, (116)

if T is a density of weight w and S;; is of weight 2.

The constraints in field theory are actually one constraint per space point and
can contain spatial derivatives of the fields. The proper way to understand field
theory constraints is through smearings: 1 can transform a constraint y(z) into
a real number by integrating it against a test function (x| f). Then (x| f)



becomes a linear functional of f(x), of which one can take variations. For
example, if the metric g,p is the field we want to take variations of, we have

S(x|f) /d3 X|f

where the sum over repeated indices is understood. Here

gi5 (), (117)

S(x|f)
» 0gij (@)
tion called the functional derivative of (x| f) wrt g;;(x).

is a distribu-

If two fields are canonically conjugate, e.g., ¢(z) and p(x), then the Poisson
brackets between two functionals F[q,p], G[g,p] on the phase space defined by
q and p is

oF  6G oF  6G
{F,G}:/d?’x( - >
5 dq(x) op(x)  op(x) q(x)
Notice that since one single field-theoretical constraint y(z) is actually one
constraint per spatial point, the Poisson bracket of x with itself can be nonzero.

One has in fact to smear it with two different smearing functions f and h, and
the Poisson bracket will be

{(X|f)7(><|h)}=/zd3x(

(118)

S(x|f)o(xIh) o(x|f)o(x|h)
dq(z)  dp(x) op(x)  dq(x)

which has no reason to vanish, unless x is wltralocal (it contains no derivatives
of g, p), in which case its variations will be linear in the smearings (with no
derivatives acting on them), and by antisymmetry in f and h the expression
above will vanish.

) . (119)

I will use the following notation for symmetrization and antisymmetrization
of indices: - N N - N N
lis] — LT — 1)y, is) — 1T+ 1Y)

The fundamental extended configuration space we will start with is Riem,
the space of Riemannian 3-metrics. It is the geometrodynamical equivalent of

Cartesian space QY = R3¥ for particle dynamics.

7 Relativity Without Relativity

In a series of papers Julian Barbour, Brendan Foster, and Niall O Murchadha
and Edward Anderson and I [60, 61, 62, 63, 40], motivated by the desire to
enforce reparametrization invariance and temporal relationalism, have shown
how powerful the choice of a square-root form of the action is. This approach
makes it possible, without any prior spacetime assumptions, to arrive at General
Relativity, Special Relativity and gauge theory on the basis of relational first
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principles. I'll give here first a simplified account of the original results in the
‘modern’ language I used with E. Anderson in [40], and in Section 9 I'll get rid
of all the simplifying assumptions made in this section and repeat the analysis
in full generality (summarizing part of my recent contribution to this program
with Edward Anderson [40]).

Let’s start from the following assumptions:

1. The action is a local functional of the 3-metric gqp and its first derivatives.

2. The action is of Jacobi type, that is, the product of the square roots of a
potential and a kinetic term which is quadratic in the velocities dgqp.

3. The theory must be free of any redundancy in the description of the fields,
and this independence must be realized locally through best-matching.

Then the simplest Lagrangian ‘line element’ satisfying these assumptions that
one can write is®”

ALy = /d3$\/§VR — 2A\/(g““gﬂ = g"g") dgi; dgi ,

where R is the 3-dimensional Ricci scalar and A is a spatially constant pa-
rameter. The relative factor between the two possible ways to contract the
indices of the metric velocities dg,;, has been put to —1. This is the only work-
ing hypothesis and will be relaxed in the next subsection. It is important to
notice that the above Lagrangian presupposes nothing about spacetime: it is
merely the simplest parametrization-irrelevant and local Jacobi-type expression
one can form from a 3-metric. No spacetime covariance (and no local Lorentz
invariance) has been assumed. T'll show now how much can be deduced just
from this. Calling the local expression

1 [(g*tgit — g'igk!) dgij dgm
2 R—2A ’

(120)

dy = (121)

the field-theoretical version of the differential of the instant, the canonical mo-

menta read
i _ 6dLy _ N{ (

ikgjl _ gijg

MY dgp - (122)

37Notice that the square root is inside the integral. For this reason, the above action is
not perfectly analogous to a Jacobi action for particle mechanics: in particle models the
analogue of the integral [ d3z is a sum over the particle index a and the vector component i
Ssaconi =2 [[(E-U) X2, ; "5* (dr%)2]1/2. This sum is inside the square root and makes the

Jacobi action into a norm for the velocity vector dri. The action J dLo is not a proper norm,
but putting the integral inside the square root by analogy with Sja.cobi would spoil the locality
of the action. By locality I mean here that the action can be written as the integral of an
expression that depends only on the values of the fields in a neighborhood of the point. As we
shall see, this requirement of locality of the square root has very far-reaching consequences.



Due to the local square-root form of the action, the momenta satisfy at each
space point the primary constraint

H =7 (07pij — 30°) = Vg (R—2A) =0, (123)
where p = p“g,;. The Euler-Lagrange equations are
dp” =/g (Rg” — RV + V'V’ — g A) dx
(124)

—2A/gg7 dy —
V9 7

In order for the theory to be consistent, the constraint (123) must be propagated
by the equations of motion,

(p™pr? — Lpp") .

dH ~ 4dx+/g Vidx V;p" +2dx /g V;V;p"

= 2 AV (e V) 12
dx

We see that the Hamiltonian constraint is not propagated unless V;p* ~ 0.

This is not guaranteed and has to be imposed on the initial conditions through

the additional constraint H; = —2 Vjpj ;- However, doing so doesn’t ensure

that the equations of motion will propagate the condition H; = 0: it has to be

checked explicitly

dH; = -V dxH~=0. (126)

We see that this additional constraint is preserved by the evolution, as its prop-
agation gives a linear combination of Hamiltonian constraints, which therefore
vanishes weakly.

The new constraint we had to introduce is, as I already illustrated, the dif-
feomorphism constraint, and it acts on the metric as (307). Let’s then realize
diffeomorphism invariance at the level of the action through best matching:

AL = /d%\/ﬁ\/R - 21\\/(9”9]'1 — 979")Dgi; Dgra,  (127)
where the best-matching differential is
Dgi; = dgij + £4egi; = dgi; + Vid& + V;dE; . (128)

The local ‘differential of the instant’ [cf. (40)] and the canonical momenta have
the same structure with the best-matching differential ® in place of d:

(129)

dx = 1\/(9ik9jl — 99g") Dgi; Dgui

2 R—-2A ’
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_ 0dL yiee

_ VI
odgi;  2dx
The local square-root form of the action still leads to (123) as a primary Hamil-

tonian constraint. The best-matching condition gives the diffeomorphism con-
straint

(9"g" ~

j

g g™ D . (130)

0dLassr 9 ik j ij ij i
5d§d-ﬁ =-2V; T\{i;(g kgl — gligt)y Dgy | = -2V, p7 = H' ~ 0. (131)
The Euler-Lagrange equations, and in particular the term %, are now

changed, due to the dependence of the best-matching differential on the metric.
This leads to the appearance of the term £4¢p” term in

dp” =\/g (3Rg”7 — RY + V'V — g" A) dy
. 2d
oA G dy — 2

132
"Edéplj )

(p™*pi? — Lpp™)

but this term, as we have already seen in parti¢1e models, can be brought to
the left to form a best-matching differential of p*:

Dp¥ = dp¥ — Lagp” =\/9 (5Rg” — R + V'V

. 2dy

—2A/gg7 dy — —=

V9 7

The same thing happens with the propagation of the Hamiltonian and diffeo-
morphism constraint:

—gYA)dx
(p"pe? — 3pp") . (133)

2 -
OH ~ o gVa (X2 V;p7) . DH;=dxViH — Vi(dxH) =~ 0, (134)

The Hamiltonian constraint smeared with dy generates the same equations,
forming Anderson’s ‘differential-almost-Hamiltonian’:

Df ={dA, f},

together with the definition of the momenta (which is one of the two Hamilton
equations),

dA = (dx|H), (135)

2dyx
V9

Rigidity of the choice of the Lagrangian

Dgij ={dA, gi;} = (girgst — 39i91) ™ (136)

In [63] the authors tested a somewhat more general ansatz for the potential
term. They first considered an arbitrary power of the Ricci scalar, R%, and



then a linear combination of the terms R?, R% R;; and AR, which are the only
scalars with dimensions £~% that can be built with the metric field alone (R has
dimensions =2 and no scalars with dimensions /=3 exist). The propagation of
the Hamiltonian constraint, in the words of the authors, “leads to an explosion
of unpleasant non-cancelling terms”, which rapidly end up trivializing the the-
ory if included as new constraints (checking this explicitly is left as an exercise
for the reader).

The Lagrangian (120) is not the most general possibility also in other re-
spects: one could cancel the ‘R’ term, leaving the potential as a constant. Or
one could change the relative factor between the two terms appearing in the
kinetic term. These choices lead to interesting and viable alternatives. There
was a preliminary discussion of them in [63] and in [60], but a thorough analysis
of these cases has only recently been completed by Anderson and myself in [40].
I give a review of these results in Section 9. For the moment, I’ll limit myself
to noting an important detail, which at this level might seem unimportant and
be ignored, but will become very relevant later. The issue regards the relative
factor in the ‘supermetric’: if we generalize the Lagrangian (127) to

dL s = /d3x\/§v R-2 A\/(Qikgjl - )‘gijgkl) Qgij DG (137)

by adding the coefficient A in the kinetic term, we get an additional term in the
propagation of the Hamiltonian constraint:

DH = % Vi [ Vp - Ak vy (138)
which, if the diffeomorphism constraint V;p* ~ 0 is already implemented, in-
troduces a new constraint p ~ const. This is not propagated by the evolution,
but it gives rise to a ‘specifier’ equation (case 3 of Dirac’s analysis) which, in its
turn, leads to a well-defined system with two propagating degrees of freedom
(see Section 9 for the details). The new constraint has a simple geometric in-
terpretation as the generator of position-dependent conformal transformations

Gab — ¢4 Gab » (b(l') > Oa (139)

(also called Weyl transformations) of the 3-metric. These transformations play
an important role in York’s solution of the initial-value problem of GR, which
I review in Sec. 8, and, as I'll explain below, are needed to implement the
Mach—Poincaré principle. It is striking that one ends up considering the same
constraint p & const in the solution of the initial-value problem and by consid-
ering a generalized supermetric.

Inclusion of a scalar field: Special Relativity
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The ansatz for coupling of a scalar field to the metric field is

AL = / e /g\[R —2A+ kgt VipV0 + ()
(140)

'\/(Qikgjl — g9 g*) Dgi; D + Dp?,

Here, U(¢) can be any function of ¢, and D¢ = dp+ £Laep = dp+dEiV,p. A
point to note here is that the form of the scalar kinetic term D¢? is, if assumed
quadratic, uniquely fixed by best matching, while its coefficient is free because
it can be changed by rescaling of the field. In contrast, the unknown constant
k will then appear multiplying the field propagation term ¢* V;pV,;p. This
will have consequences, as we will soon see. Meanwhile, we see that the scalar
field, together with the g;; field, contributes directly to the local ‘differential of
the instant’,

1 ik gdl _ i gkl » 2
dy = L [0 = 979") Dgij Dgu +Dp? (141)
2\ R—2A+kgiV,oV,ip+U(p)
but only indirectly (through dy) to the metric momenta:
i 0dLecarar VI ik i ij Kl
i = = kil _ gii gty Dy, . 142
p ddgi; 2dx(g 9" =979") Dgu (142)
The scalar field has its associated momentum
§d£scalar \/g
= D VI gy 143
m odep 2dy v (143)

and the Hamiltonian constraint involves a quadratic combination of both the
metric and the scalar-field momenta

H=1\g(R—2A+kg" V,oV0+U(p))— ==

S (07piy — 39" +7%) m 0. (144)

The equations of motion are
Dp” =\/g (3Rg”7 — R7 + V'V — g A) dx + k VoV’ p /g dx

iy 2d
+ (EV*oVip+ U(p) —2A)y/g g dy — =X

V9

(p™pi? — Lpp") ,

, oU
Or =2k/gV; (V'edx) + de,
(145)
and best-matching wrt diffeomorphisms gives
0dL,... g ) )
—=2 = 2V, p¥ 'o=H"=0. 14
5dE, Vip? +7nVip=H" =0 (146)



Now I come to the key point: if we try to propagate the Hamiltonian con-
straint (144):

2 . )
DH = o gV, (dx2 Vjp”) +(4k+ 1)£V1 (ﬂ' Vi<pdx2)
(147)
~ (4 + 1)£vi (7 Vipdx?) ,

we find an obstruction. The option of introducing a new constraint 7 V;p =~ 0
can be readily excluded, considering the fact that m V;¢ is a vector constraint
which would kill 6 phase-space degrees of freedom whereas we introduced only
two with the scalar field. The only remaining possibility is to propagate H
strongly by setting k = —i. This result is very significant: we have found that
the scalar field has to respect the same light cone as the metric field, which in
turn implies Special Relativity in small regions of space for small intervals of
time (local Lorentz invariance).

To see this, we treat ¢ as a test field that has no back reaction on the metric
and consider a Euclidean patch, where the coordinates are chosen so that we
can write the metric as a small perturbation around a static Euclidean metric
Gij = 0i5 + hqp. Since ;5 is static, dd;; = 0 and dg;; = dh;;. We can put d§
to zero as it is used to fix the coordinate gauge, and dx = dt can be used as
definition of the unit of time. The variation of Eq. (142) is

dp" ik gt i ki G Pk
G Vet =g =5 .
o dhy; dnit dhv dh
1 iy 4 9 il _ 9 Kl kl )
+2\/§<g a ! dtg> dt
The only first-order term is the first one, so
dpij ik 5 ij d*hyj
=30 Foit — 51 M) —p o). (149)

The other side of the Euler-Lagrange equations is (since we are treating ¢ here
as a test field with no backreaction on the metric, we ignore all the terms that
depend on ¢ in the following equation)

dp" _ (akql ij ij 1/ sik sjl i skiy i dhyg 150
& =(0"0"hiy 0 RY7) — (66 66)dt T (150)

where it’s easy to show that
Rij = 2(0;0 hik, + 0;0"hj), — 00 hyj — 6* 0,0t (151)

Taken together, the above equations give the equations of motion of linearized
gravity on a flat background. It is well known that these equations represent
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spin-2 gravitons propagating, in the coordinates we used, with a speed set to 1
[64].

Now consider the scalar field: the two terms of its Euler-Lagrange equations
are

dm : oU dm d?p
— =-2k0'0; — + O(h? — =1_T 152
dt g, PO T g (152)
which combined together give the following equation
d?p ; oU
— +4k0'0; 2— =0, 153
Fr s 255 (153)

which is the equation of motion of a Klein—Gordon field with potential 2U and
propagation speed 4 k. The choice of k that makes the theory consistent, k = i
is therefore the one that fixes the propagation speed of the scalar field to 1.
Thus, the scalar field respects the same light cone as the metric field. Moreover,
as is shown in [63] and we shall shortly show for a one-form, the mechanism that
underlies this result is universal: it works for all fields coupled to the metric
field.

This result is very striking. It is an independent derivation, from Machian
first principles, of the essence of Special Relativity: constancy of the speed
of light and a common light cone for all fields in nature. What is more, it
implies local Lorentz invariance. Let me stress that General Relativity assumes
the universal light cone and Lorentz invariance among its founding principles,
while this theory deduces them from a smaller set of first principles, which are
therefore arguably more fundamental.

Inclusion of a one-form field: Gauge Theory

The ansatz for inclusion of a one-form field is

ALt = / d3x¢§\/R —2A+W(A) + V(g1 A;A;) 150

'\/(Qikgjl — §g") Dgi; Dgr + gIDAD Ay,

where W(A) = aV;A;V'AT + BV, A;VIA 4y VI A;VIA;, V can be any func-
tion of giinA]‘, and @AZ = dz4z + £d§A1 = dAZ + deV]Al + vldé']A] The
local differential of the instant is

1 [(gi*gi — giigh!) Dg;; D HDADA,
dy = L, [ @9~ 999%) Dgi; Do + 9 i (155)
2 R-—2A+W+V
the metric momenta are
i 0Ll NG ik i i
ij — T Zerm VI ik gl i) D 156
P 5, 2dx(g 9" —39"9") Dy (156)



the momentum conjugate to A, is

i 0dLlim VI 4
E'= ——2 =Y ¢gY DA, 1
sdd, ~a2ayd P (157)
and the Hamiltonian constraint is
H=\g(R=20+W+ V)~ (p7pi; — 5p° — g5, B' E?) = 0. (158)
The equations of motion are
Op7 =\/g (ARg7 — R7 + V'V — g" A+ U+ W)dy
129 (a VAV AT+ BVFAIVI A, 44V AD vak) dy
i Aj dx . -y 2dx i ij
VIV - B B - T e =) (99
DE' =—-2/g [aV;(VI A" dx) + BV;(V' AT dy) + v V' (V/ A dy)]
+2/gV' A",
while best-matching wrt diffeomorphisms gives
§5dL » o , , ,
me =-2V;p? + E/V'A; — A'"V,E) = H' ~0. (160)
Propagation of the Hamiltonian constraint gives
01 = Y9G, (242 V0 — dx? BT VA, + dy2 ATV, B
—ai(xjp*x j+dx iE)
2V9 LVF(dx? E7 Vi, A LVF(dx? BV VA 161
_W[(OH—Z) (dx kA;) + (8= 7)V7(dx jAk)]  (161)
2 . .
— vd—ka(df EFV;AT) — Z{%v’@ (dx* V,E7 Ay) .

Here, the first line vanishes weakly due to the diffeo constraint (160). In the
second and third lines there are three terms that offer us the option of making
them vanish strongly through the choice of the parameters «, 8 and 7y, otherwise
they would imply the additional constraints

EVViA; ~ const., FEIV A, = const., E"V, Al ~ const.. (162)

None of these propagate, nor does any linear combination of them. Their prop-
agation would thus require the introduction of further tertiary constraints, the
procedure continuing (for any choice of a, 8, ) until we find an inconsistency.
Therefore the only choice is to set o = —i, 8= i and v = 0. With this choice
of parameters the W term in the potential takes the form

W =3(V,A;VIA" - VA,V AT). (163)
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In (161) a further secondary constraint appears, this time without any option
to kill it strongly:

G=V,E'"~0. (164)
This is the ‘Gauss constraint’ of electromagnetism. Let’s propagate it:
DG =2/gVi(dy V' AY). (165)

This shows that the only way to make it propagate is to take V' = 0, which
means no potential — and, in particular, no mass term for the form field.

The secondary constraint we have found generates gauge transformations of

A;. Extending the definition of the Poisson brackets to include the form field

and its conjugate momentum {F,G} = [ d3z (2L 2L — oL 08 e get

{4, (0l9)} = =Vio.

We can easily implement this symmetry from the start, through best-matching.

(166)

Best-matching gauge transformations

The ansatz is

dﬁgauge = /d3$\/§\/R -2 A =+ %(lejv]A’ — leJle])
(167)
'\/(gikgﬂ — ") Dgi; Dgm + gD AD A,
with the modified best-matching differential
DA; =dA; + £LagAi + VidD. (168)

With this choice everything is the same as above, except that now the momenta
E" have the modified definition

Ei \/-a

= Y2 g (dA; + LagA; + Vidd 169

9 dX g ( + d¢ +V ) ) ( )
and we have to best-match with respect to d®,
0dL, e ;

SRS = VB 170

0do (170)

We already know that the constraint algebra closes. The equations of motion

for the form-field are
DE' =dE' — £La¢E' — Vid® = L /g V;(VIA'dx — VI Aldy). (171)

We see that the form field A; enters the equations of motion only through the
combination F¥ = V?AJ — VJA?. We can use the dual vector field density

B = L1ty A, (172)



(notice that the contravariant form of the Levi-Civita symbol €7* is a density
of weight 1, while the covariant form e€;;; has weight -1). Then the equations
of motion take the form

dE" — £4¢E' — V,d® = \/g €;;, V' B, (173)
but the vector density B’ satisfies a transversality constraint
V:B'=0. (174)

Let’s now consider a flat background g¢;; = 6;; in Cartesian coordinates d§; = 0,

and use the ephemeris time dy = dt.,. Equations (169), (170), (173) and (174)

now take the form
dE

V-E=0, — =
T dtep

dB
dtepn

-V xB, V-B=0, =V xE, (175)

These are obviously the source-free Maxwell equations. In addition we see that
the definitions of B and of E? in terms of A’ and its space and time derivatives
are nothing more than the standard expressions of the magnetic and electric
fields in terms of the vector potential:

dA
E=1
2 (dteph

+Vdd5) , B=1VxA. (176)

Yang—Mills Theory

In [62] Anderson and Barbour considered the case of N 1-form fields coupled
to each other in all possible ways compatible with a fairly general ansatz —
namely, that the potential must be at most second order in the space deriva-
tives and at most fourth order in the field variables. For the kinetic term, the
only freedom that was left was to have a symmetric matrix coupling the best-
matched velocities of the different 1-form fields. If A, o = 1,..., N, are the
various 1-form fields, propagation of the Hamiltonian constraint requires the
introduction of N Gauss constraints:

Go=VE,—CP o Ej A} ~ 0, (177)
and these non-Abelian gauge transformations must be implemented in the best-
matching differential as

DAY = dAY + £4eAY + V,dd* + O, AP dd7 . (178)
The kinetic term is therefore
dL2, = 0ap g DAF DA, (179)
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the potential term is constrained to be

W = g g 80y (VA + 10%5, A7 A7) (ViAf + 3070 AT AT) , (180)
and the 3-index matrix C'“g, is constrained to satisfy the Jacobi rules
0ap (C%3y CPor + CY3, CP oy + C%3, C?P15) = 0, (181)

which implies, as Gell-Mann and Glashow have shown [65], that the matrix
C“ g~ represents the structure constants of a direct sum of compact simple and
U(1) Lie algebras. What we have found is nothing less than Yang-Mills theory,
thus covering the whole bosonic sector of the Standard Model.

Further generalizations

In addition to the above, one could consider an antisymmetric tensor field
F = —FJ% (the symmetric case is already included in the treatment of the
metric field), but this turns out to be completely equivalent to treating the
dual 1-form field B; = % €ijk I 7k and similarly for the case of NV antisymmetric
tensor fields. The proof of these statements is left as an exercise.

The question posed in [62] of whether topological terms €., ,o F*" F?7 as
proposed by ’t-Hooft can be accommodated in this approach remains to be
answered. Terms of this sort appear to be needed to explain the low-energy
spectrum of QCD [66, 67], although they lead to the so-called ‘strong CP prob-
lem’ [68].

In [60, 61] Anderson extended the analysis to several new cases, for example
Strong Gravity and generalizations thereof, in particular a new class of theories
that can be considered as Strong-Gravity limits of Brans—Dicke theory. Partic-
ularly interesting (because they are realized in Nature) are spin-1/2 fermions
of the theories of Dirac, Maxwell-Dirac and Yang-Mills—Dirac. Fermions are
introduced in a somewhat phenomenological fashion, with the introduction of
a spin connection but without a first-order formulation of the gravitational de-
grees of freedom. The kinetic fermionic part of the action is therefore outside
the local square root, and it does not contribute to the differential of the instant.
The potential term, instead, does contribute. A more satisfying treatment in-
volves Palatini’s formulation of GR, which does not have a local square root at
all. A discussion of first-order formulations of gravity in the relational setting
is still missing.

Finally, a paper [40] I recently wrote with E. Anderson completes the analysis
of the metric field in full generality, moreover in a purely Hamiltonian setting,
employing Dirac’s method. These results will be summarized in Section 9,
where they will be used to justify Shape Dynamics.



Further reading: The complete literature on the ‘Relativity Without Rela-
tivity’ approach is [63, 62, 60, 61, 40].

The problem of many-fingered time

The Machian first principles on which we have based our field theories up
to now have proved to be quite powerful in not only deriving the relativity
principle from a simpler set of axioms, but also in identifying all the kinds
of (classical) fields that are presently thought to be fundamental in nature.
However, these principles fail to realize, in the case of the gravitational field,
what Barbour and Bertotti identified as the only precise formulation of Mach’s
principle: the Mach—Poincaré principle. The ‘culprit’ is the local square-root
form of the action, the very thing that plays such a key role in some of the
most interesting results I have shown: the derivation of the universal light
cone and gauge theory. It does this because it leads to local Hamiltonian
constraints, which constrain one degree of freedom at each space point. This
leads to a mismatch. For having identified the diffeomorphism symmetry and
implemented it through best-matching, we attributed to the gravitational field
3 degrees of freedom per space point, which is the dimensionality of Superspace,
gravity’s putative configuration space. But the dynamical laws we found do not
realize the Mach—Poincaré principle on Superspace: given two points in it, there
is a whole ‘sheaf’ of curves that extremalize our best-matching action (127).
The variational principle we have, in its most advanced form (the ‘differential-
almost-Hamiltonian’ approach), produces a curve in Superspace given initial
data consisting of a point in Superspace and a transverse momentum, plus a
lapse that depends on both time and space (check appendix A for the definition
of lapse). But then any other lapse is equally good, and produces a different
curve in Superspace which shares only the endpoints with the original one (see
Fig. 16). The Einstein—Hilbert action assigns the same value to both curves.
The uniqueness required by the Mach—Poincaré principle is absent. In Fig. 16 I
show graphically what this ambiguity means: each curve in Superspace that can
be generated by a different choice of lapse corresponds to a different foliation
of the same spacetime.

From the Machian point of view, this situation is unacceptable, but the way
out was actually anticipated already in the 1970’s. As we can see from the
counting of the degrees of freedom, the gravitational field has two Lagrangian
degrees of freedom per point (Riem has six per point, the diffeos reduce it
to Superspace, which has three, and the Hamiltonian constraint further reduces
them to two). But Superspace has three degrees of freedom per space point, and
therefore it cannot be the physical configuration space of GR. The Hamiltonian
constraint, unlike the diffeo constraint, does not admit a simple geometrical
interpretation in terms of transformations on the configuration-space variables
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alone, and therefore cannot be used to quotient Superspace into the physical
configuration space of GR. The orbits of the Hamiltonian constraint do not lie
on Riem: they mix the metric and the momenta. In other words, the vector field
corresponding to the Hamiltonian constraint is not a map of Riem onto Riem: it
lives inextricably in phase space, and the associated phase-space transformation
of the metric depends on the momenta.

Moreover, the Barbour—Foster result [3] I sketched at the end of Sec. 6.2
strongly suggests that the Hamiltonian constraint is not exclusively a generator
of gauge transformations. There ought to be a single linear combination of
H(z), some (f|H) = [d®z f(z) H(x) which is associated with genuine evolu-
tion. If not, one would reach the absurd conclusion that dynamical evolution
is a gauge transformation (look at Kuchai’s review [69] for a criticism of such
an idea). The particular linear combination of H that generates reparametriza-
tions actually depends on the gauge-fixing we choose for H, which in turn is
related to the way we foliate spacetime. In a patch of spacetime, any positive
function f(z) can be used as a lapse defining a foliation, and the corresponding
linear combination (f|H) would then be our generator of true evolution.

The Hamiltonian constraint must be an admixture of gauge and dynamics,
and, at the first glance, there does not appear to be any obvious way to disen-
tangle the two if one insists that refoliation invariance is sacrosanct. As I said,
a way out of this puzzle was already proposed in the 70’s, mainly thanks to J.
W. York, who built on the work of Y. Choquet-Bruhat and A. Lichnerowicz.

8 York’s solution to the initial-value problem

I will now explain the core of York’s work on the initial-value problem of GR.
What York did is highly relevant for both Shape Dynamics and the Machian
program in general: it indicated strongly that the physical degrees of freedom
of GR are conformally invariant, in addition to diffeomorphism invariant, and
it identified a corresponding fully reduced phase space of GR. As I will show, it
allows us to find a solution to the problem of many-fingered time and to formu-
late a theory of geometrodynamics that satisfies the Mach—Poincaré principle
and which we call Shape Dynamics.

York found a general method for solving the ‘initial-value problem’, which
means finding phase-space data g;;, p* on an initial Cauchy hypersurface that
satisfy GR’s Hamiltonian (305) and diffeomorphism constraints (306).

The diffeo constraint merely requires the momentum p* to be a tensor den-
sity whose covariant divergence wrt its conjugate g;; vanishes. It is clearly
closely analogous to the Gauss constraint of electrodynamics, which can also



Superspace

Spacetime

Figure 16: Many-fingered time issue: a single solution to Einstein’s equations
(the slab of spacetime on the left) between two Cauchy hypersurfaces (in purple)
where two initial and final 3-geometries [g1], [g2] (the [-] brackets stand for
‘equivalence class under diffeomorphisms’) are specified, does not correspond to
a single curve in superspace (on the right). Instead, for each choice of foliation
of the spacetime on the left that is compatible with the boundary conditions
[g1], [g2] there is a different curve in superspace. Here I have represented two
different choices of foliation in red and a blue.

be formulated on a Riemannian manifold (X, g) and fixes the divergence of a
vector field to be zero. In electrodynamics one can find an explicit solution of
the Gauss constraint by identifying the longitudinal part of the vector field in
terms of a scalar field that solves Poisson’s equation. Subtraction of the longitu-
dinal part then solves the problem. All of this is based on a very general result
of differential geometry called the Helmholtz Decomposition Theorem, which
allows one to identify the longitudinal and transverse components of a vector
field on a general Riemannian manifold (see the first section of Appendix B.4).

Berger and Ebin [70] found an analogue of Helmholtz’s theorem for symmet-
ric 2-tensors (later rediscovered by Deser [71]), which allows one to uniquely
determine their ‘transverse’ and ‘longitudinal’ parts (that is, the divergence-free
part and the remainder) in terms of a vector field (analogous to the scalar field
mentioned above) which must satisfy a certain elliptic equation, for which ex-
istence and uniqueness theorems hold. I won’t reproduce this result here, since
it is already contained as a sub-case in York’s treatment of the diffeomorphism
constraint, which I describe in detail in Appendix B.4. So the diffeomorphism
constraint is no problem: it always admits a unique solution, at least on a
compact manifold.?®

38In the asymptotically flat case, one can find up to a 6-parameter family of solutions to
the diffeo constraint associated with the Killing vectors of flat space (see Appendix B.4).This
is done by using special boundary conditions and is important for the covariant definition of
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The problem is the Hamiltonian constraint. With the method sketched above,
I can build any solution I like of the diffeo constraint by starting with a 3-metric
gi; and an arbitrary symmetric tensor p¥ and extracting its transverse part wrt
gi; by solving an elliptic differential equation. Now this transverse part will not
in general satisfy the Hamiltonian constraint: a quadratic combination of its
components must be proportional to the Ricci scalar of g;; at each point. The
constraint is scalar, so I could try to locally rescale the tensor by a scalar func-
tion p¥ — f(x) p¥, adjusting its magnitude to solve the Hamiltonian constraint
at each point, but then I would lose the transversality with respect to g;;. Al-
ternatively, I could consider the Hamiltonian constraint as a (nonlinear and
very complicated) differential equation for g;;, but the transverse part py of p*
is defined relative to g;; itself: pY depends nonlocally on g;;, and the equation
becomes an integro-differential equation.

Lichnerowicz’s partial solution

In 1944 [72] Lichnerowicz had found a way to decouple the Hamiltonian and
diffeo constraint in the case of a mazimal Cauchy hypersurface, that is, one
whose extrinsic curvature has a vanishing trace K = K* = 0. Consider the
two constraints expressed in terms of the extrinsic curvature:

V(K9 — g7 K)=0, KYK;;—K*-R=0, (182)
Lichnerowicz’s strategy to find a metric g;; and an extrinsic curvature K i that
solve the above equations was to start from an arbitrary pair g;;, K* that do
not solve it and make a conformal transformation of the metric

Gij = ¢>4g,»j , g7 = ¢ 2g" | ¢ smooth and positive, (183)
and simultaneously of the extrinsic curvature (see Appendix B.4) K U=
¢~1°K% that transform g;;, K* into g;;, K* which do satisfy the constraints.
Then the problem of satisfying the constraints become that of finding the cor-
rect ¢. This is possible by virtue of the maximal slicing condition K = 0 and
the ellipticity of the equation for ¢ that one finds. Let’s see how this works.

As T show in Eq. (369) in Appendix B.4 below, under the conformal trans-
formation

VW4 = V(¢ W) = ¢ 1OV, W7 — 24" W d'log ¢, (184)
so, if W% = K% — g% the diffeo constraint transforms to
Vi(KY — g1 K) = 67107,k + 6109 (9~ K), (185)

momentum and angular momentum of the gravitational field. However, it does not need to
bother us at this stage.



and therefore if K = 0 the transformed diffeo constraint does not depend on ¢.
It is this conformal covariance of the diffeo constraint in the K = 0 case that
makes it possible to decouple the two constraint equations and solve the Hamil-
tonian one separately just for the ‘conformal factor’ ¢. The scalar curvature
transforms according to the formula [72]

R=¢*R—8¢°A¢. (186)

Therefore the two constraints take the following form in the barred variables

VK =0, ¢ PKIK; — ¢ *R+8¢°A¢p=0. (187)
The last equation is strongly elliptic and quasilinear. For equations of this kind
there are well-known theorems of existence and uniqueness of the solutions.

The initial-value problem can be therefore solved with the following procedure:

1. Start with an arbitrary metric g;; and an arbitrary traceless K% .
2. Find the transverse part KY of Kl with respect to gi;.
3. Solve the ‘Lichnerowicz equation’ (187) for ¢.

4. Then the ‘physical’ initial-value metric and extrinsic curvature, which sat-
isfy the constraints, are g;; = ¢*g;; and K = ¢ 1KY,

Lichnerwicz’s method has a serious limitation: on compact manifolds it works
only for Yamabe-positive metrics (see below). The final physical data, in fact,
satisfy the Hamiltonian constraint with K = 0,

K9K;; =R, (188)
and the left-hand side is, by construction, non-negative. This implies that the
techinque is only consistent if the scalar curvature on the right-hand side is
non-negative at every point as well. This restricts the conformal equivalence
class®® of the metrics we can take as initial data.

To justify the last statement, I need to introduce a result in pure mathematics:
the Yamabe theorem [73, 74], which Yamabe proposed as a conjecture and
believed to have found its proof in 1960. However Trudinger found an error in
Yamabe’s proof in 1968, and later Aubin and Schoen supplied the correct proof
around 1984. The theorem states that every Riemannian metric on a closed

39The conformal equivalence class, or conformal class for brevity, of a metric gij is defined
as {gi;/3 ¢ > 0, ¢ smooth, g;; = ¢4gij}. The space of conformal classes of metrics is called
conformal superspace, which in this tutorial we also refer to as shape space S when there is
no risk of confusion with the shape space of the N-body problem. Shape Dynamics takes
conformal superspace to be the reduced, physical configuration space of gravity.
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manifold™ (of dimension > 3) can be conformally transformed to a metric with
constant scalar curvature. This constant is obviously not uniquely determined
because one can change the magnitude of the Ricci scalar with a rescaling (a
constant conformal transformation), but its sign is a conformal invariant. In
fact, if the manifold is compact there cannot exist a conformal transformation
mapping a metric g.p with R > 0 everywhere to another metric g;; with R<0
everywhere. To see this, take Eq. (186), multiply it by ¢! and integrate it
over all of X:

/\/!3R¢*1=/\/5(R¢—8A¢)E/\/§R¢~ (189)
b b b

The final step in which the Laplacian is cancelled is legitimate only if ¥ is
compact. The above equation proves that if R is definite everywhere it cannot
change sign everywhere under a conformal transformation.*! The sign of the
Ricci scalar in the representation in which R is constant is therefore invariant

under conformal transformations.

What is more, we can go further and introduce a real quantity, called the
Yamabe constant, which is a conformal invariant and represents precisely the
value of the Ricci scalar in the conformal gauge where it is a constant, rescaled
by the volume of the manifold so that it’s invariant under constant rescalings

as well: & 2 p G A
of5.g) = inf { LI RB0 S0
6 J B2/
A theorem [77] by Yamabe, Trudinger, Aubin, and Schoen states that within a
conformal equivalence class there exist metrics which realize the minimum, and
they must have constant scalar curvature R = const. Riemannian metrics can
be classified according to the sign of the Yamabe constant, and divided into
Yamabe positive, negative and zero, which means, according to the theorem,
that they can be transformed into a metric with, respectively, positive, negative
or zero constant scalar curvature. In general a manifold can be equipped with
metrics belonging to different Yamabe classes. The following quantity:

ViE] = irglfy[E,g] ,

(190)

(191)

is a topological invariant of the manifold X, and is called the Yamabe invariant.
The Yamabe-Trudinger—Aubin—Schoen theorem states also that no manifold
in dimension 3, 4 or 5 can have a Yamabe invariant larger than that of the
3-sphere:

Y[E < YIS,

40The analogous statement on noncompact manifolds is wrong, as proved by Jin [75].

41In the noncompact, asymptotically flat case one cannot discard the boundary value of
A¢, and it is these boundary conditions that allowed York to define a mass-at-infinity for the
gravitational field in the asymptotically flat case [76].

n=34,5. (192)




The manifolds themselves can then be classified according to the value of their
Yamabe invariant: Type -1 manifolds only admit negative-curvature constant-
curvature metrics. Yamabe type 0 admit constant-curvature metrics with zero
or negative curvature. Type +1 manifolds admit at least one constant-curvature
metric with positive curvature.

We now observe that the Lichnerowicz equation (187) is conformally covariant
in the sense that if ¢ is the solution of (187) with data g;;, K%, then for any
smooth and positive  one has that w = §71¢ is the solution of (187) for the
data §i; = 0*gi;, K% = 0~'°K%. Thus, one is free to choose the § such that
0*gap has Ricci scalar R[0%g;;;2) = const with const either = —1,=0 or = +1
Va (which exists by Yamabe’s theorem). It is now evident that Lichnerowicz’s
method cannot be used with Yamabe-negative metrics on compact manifolds.
For in that case one would have a conformal transformation (generated by w)
that maps a metric g;; with R = —1 to a metric g4, which has an everywhere-
positive R (because by assumption g, has to solve (188)). The Yamabe zero
case is distinguished: in that case Lichnerowicz’s equation can be solved only
if K% = 0 at every point, as can be seen from (188). This is a very non-generic
initial condition.

In the noncompact case, Eq. (188) admits a unique solution for any initial
data if the manifold is asymptotically flat [78] (if the initial data include con-
ditions at infinity).

An observation following the proof of the conformal covariance of Lichnerow-
icz’s method: for practical reasons, one starts by specifying a complete 3-metric
Gij (six components) and a complete symmetric 2-tensor K (another six com-
ponents), but then the end result, in the form of g,, and K%, depends only on
the conformally-invariant and diffeo-invariant part of g;;, that is, its conformal
class (two degrees of freedom). Moreover, it depends only on the TT-part of
K (which are another two degrees of freedom). These would be physical data
that solve the initial-value problem if Lichnerowicz’s solution were general, but
it isn’t. York succeeded in generalizing it to arbitrary Yamabe class, and can
consequently claim to have identified the physical degrees of freedom of the
gravitational field [79].%? Let’s see what he did.

York’s general solution
In a series of papers [80, 79, 78, 81], York and O Murchadha made decisive

progress by letting the extrinsic curvature have a spatially constant trace:

KY =KJ. + %Tg” , T = const.

(193)

Here, 7 is a spatial constant but it is time-dependent. In particular, it grows
monotonically whenever York’s method can be applied, and can be used as a

42 Subject to a caveat, which we shall mention below.
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time parameter in its own right. For this reason it is also referred to as the
York time. A tensor such as (193) is automatically transverse with respect to
the metric g;; because the covariant divergence of a constant times g* is zero
by the metric-compatibility condition. A further assumption of York makes all
the difference. The transformation law of K% under conformal transformations
is taken to be

K9 =¢ K + ¢ rg", (194)

so that after a conformal transformation the trace part is still spatially constant:

gij [_(ij = gij Kij (195)
If that is the case, then Lichnerowicz’s decoupling of the Hamiltonian and diffeo
constraints continues to hold: the TT-part is conformally covariant, as proved
in Appendix B.4, while the trace part is assumed to be invariant and therefore
transverse as well:
Vi(rg?)=0,  Vi(rg7)=V;(rg7)+7g" A%, +7g* AT, =0, (196)
where AI'}, is defined below. Thus when we pass from g;;, K % to gij, K no
term containing a derivative of ¢ appears in the diffeo constraint to threaten the
transversality condition, which remains independent of ¢, so that the two con-
straints are still decoupled. But now the conformally transformed Hamiltonian
constraint gains a new term, quadratic in 7:
¢ G g KS KL — 272 —¢ ™" R+ 8¢ "A¢p =0. (197)
Note the different powers of ¢ in front of the kinetic term and of —72, which is
entirely due to York’s assumption of the conformal invariance of 7. Equation
(197) is called the Lichnerowicz—York equation. A solution of it exists and
is unique on arbitrary compact or asymptotically flat manifolds, regardless of
the conformal class of the metric. Let’s see how one studies the solutions of
Eq. (197). In accordance with the theory of quasilinear elliptic equations [82],
Eq. (197) admits a unique solution iff the polynomial
2.3 2
f(z) =372+ R2" - KK, (198)
(where I called z = ¢* and KK = g3, g1 R;]TR";ZT) admits a single positive root
at every point.

The function f(z) has its extrema at z = 0 and z = —R/72, and its second
derivatives at those points are f”(0) = 2R and f”(—R/7?) = —2 R. Thus if
R > 0, then z = 0 is a local minumum and z = —R/7? a local maximum; if
R > 0, then vice versa. Moreover f(0) = —KK is always negative, and changing
the value of KK just shifts the whole function downwards. Therefore we always



R<0  1f(2) R>0 1 f(2)

KK

.

Figure 17: The polynomial (198) admits a single positive root for both signs
of R. The term KK can only push the curve down, moving the root but not
changing its nature.

Y

fall into one of the two cases of Fig. 17, where we either have a maximum at
z =0 and a minimum at z > 0, with a zero to its right (for R < 0), or we have
a maximum at z < 0 and a minimum at z = 0, with a zero to its right (for
R > 0), all of this regardless of the value of KK. If we have R = 0, the zero is
at z = (2KK /72)1/3, which is positive as long as KK # 0, otherwise it’s zero.

York’s general solution of the initial value problem works in a spacetime
neighbourhood of a CMC (constant-mean-extrinsic curvature, meaning with
K = const.) Cauchy hypersurface. Therefore the caveat promised in footnote
42 is that York’s method can only be applied to CMC-foliable spacetimes, which
however are a large class [83] and have nice singularity-avoidance properties.

Further reading: Lichnerowicz’ paper [72], York’s 1971 [80], 1972 [79] and
1973 [78] papers, O Murchadha’s ‘readings of the LY equation’ [84], Misner—
Thorne-Wheeler [85], Book on elliptic PDE’s [82].

9 A first-principles derivation of SD

I will now bring to an end this Part’s journey from relational first principles to
Shape Dynamics. I will use the analysis which Edward Anderson and I made
in [40], where we considered a pure-geometrodynamics theory in full generality,
without any restriction on the potential term (apart from requiring a second-
order potential which is covariant under diffeomorphisms), and completing the
Dirac analysis of the constraints. Although SD was not discovered in [40], I find
that analysis the most satisfactory way to justify it, starting from the present
standpoint. For me, [40] represents the ‘missing link’ between the so-called
‘Relativity Without Relativity’ approach and modern Shape Dynamics. I will
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postpone to the beginning of the next section a review of the actual works that
led to the formulation of SD.

The most general Jacobi-like, local square root Lagrangian we can take, with
a lowest-order (dimension £~2) potential term is

AL, eneral = /d?’x\/gx/aR ) A\/()\l g* gt — Xy g g*) dgi; dg (199)

where a, A, A\; and Ay are spatially constant parameters. Since a global rescal-
ing of the action by a constant is irrelevant, it is only the ratio between the
parameters ¢ and A that has a physical meaning. For this reason we take
a € {+£1,0}, so that the parameter a only determines the sign of R and whether
the corresponding term is present or not. The parameters A1, Ao present in the
kinetic term parametrize the choice in the relative factor between the two pos-
sible ways to contract the indices of the metric velocities (A1 = Ag = 1 is the
‘DeWitt value’, which corresponds to General Relativity).

The ‘differential of the instant’ is

L (Mgt git — Aa g gkt) dgij dgm
dx_2\/ 2289 )00y S0 (200)
The canonical momenta are
17 6d£ enera g ; ; ;g
PV = e - = 2\{1;(/\19”“9” — A2g"g™) dgna - (201)
ij

Due to the local-square-root form of the action, they satisfy at each space point
the Hamiltonian constraint

H=1g(@R—-2A\)—

Ve (202)

(pijpij - 3,\373,\1]32> =0.

Note that 3)\2)‘73)\1 diverges for Ay = %)\1. This singular case requires special
care because for it the momenta satisfy a further primary constraint.

The Euler-Lagrange equations are
dp” =a /g (3Rg"7 — R +V'V/ — g A)dy

. ) . 203
_ 2A\/§g1] dX _ (pzkpkj _ ( )

2 dy A iy
Y 3A23A1pp”) :
The same equations are generated by the total ‘differential-almost-Hamiltonian’
object

df ={dA, f},

dA = (dy[H). (204)



In order for the theory to admit solutions, the Hamiltonian constraint must be
first-class with respect to itself, which, by virtue of (204), implies dH = 0, i.e.,
that it is propagated by the evolution. This is generated by the Poisson bracket

Vip) . (205)

a ; ; ; _
{(dx|H), (do|H)} ~ N (dxV'do —doV'dx| —2V,p/; + 2523

We have a first set of choices here:

I. We can close the constraint algebra strongly by taking a = 0.

II. We can close the constraint algebra strongly by taking A\; — oo (with Ay
fixed).

ITI. We can introduce a new, secondary constraint

Aa—A1

Z, = ,QVjpji#»QOévipv D v

(206)

The first two possibilities correspond respectively to the removal of R (case I)
and of the kinetic term (case II) from the Hamiltonian constraint.

Case I is known as strong gravity, a theory in which the light cones collapse
to lines: no signal can be transmitted from one point to another, and each
spatial point becomes causally disconnected from the others. This was named
‘Carrollian relativity’*® by Levy-Leblond [86, 87]. Belinsky, Khalatnikov and
Lifshitz conjectured that near a cosmological singularity the contribution of
matter to gravity becomes negligible compared with the self-coupling of gravity,
and the variation of the gravitational field from one point to another can be
neglected [88]. The strong gravity regime would then describe physics near a
singularity according to this BKL conjecture.

Case II corresponds to a non-dynamical metric which is constant in time.
The addition of matter gives rise to a dynamics in which signals are transmitted
instantaneously across a fixed foliation. This is just Galilean relativity, which
is the limit in which the speed of light goes to infinity.

Case III is more complicated, and divides into several sub-cases. First of
all, on introducing a secondary constraint we have to check whether it closes a
first-class system with itself and with the primary constraints.

The self-commutator of Z; is

{(d€']2), (dx?[2))} = ([d€,dX]'| Zi + (2a — 6a”)V'p), (207)

43 After Lewis Carroll, whose Red Queen character in Alice in Wonderland says: “Now,
here, you see, it takes all the running you can do, to keep in the same place”.
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where [d€, dx]® is the Lie bracket between the two vector fields d¢ and dy. So
the constraint closes on itself only if 6 &> —2a = 0. This equation admits two so-
lutions: a = 0 (corresponding to the DeWitt value A, = —A;) and a = £. Both
of the choices that make the constraint Z; first-class wrt itself have a clear geo-
metrical meaning. The choice v = 1 makes Z; — H; = —2 V;p" into the gener-
ator of diffeomorphisms, while o = % makes Z; —» S§; = —2 (Vjpij — % Vl-p) into
the generator of special diffeomorphisms, or unit-determinant diffeomorphisms,

which are diffeomorphisms that leave the local volume element /g invariant.

Notice that special diffeomorphisms (strongly) commute with conformal
transformations (generated by p*g;;)

{(d&’[Ss), (delp)} =0,

where S; corresponds to taking the traceless part of the momentum in the
standard diffeo constraint,

(208)

(deilS,) = —2 / A&V, (0 — L g p). (209)

or the Lie derivative of the unimodular metric g*%gij,
; y i1 1
(d€'[S;) = /p” (£aegij — % 9i;VrdE") = /p”93 Lag(9”2gi5).  (210)

Here £d5(g_%gij) = V;d§; +V,;dE — % giijd«fk is what York calls the confor-
mal Killing form [78] associated with the vector d¢.

A related concept is that of transverse diffeos: they are diffeomorphisms
generated by a transverse vector field V;&! = 0. It’s easy to show that
(§'H;) = (&S;) — 2(Vi&'|p); therefore if a vector field is transverse the dif-
feos it generates are special. The converse, however, is not true: there are
special diffeomorphisms that are generated by vector fields with a longitudinal
component.

Making a coordinate change from A1, A2 to o, A\; the Hamiltonian constraint
takes the form

H=Vg(aR-2A) 5 (p7pi; — 5 (1-a) p?) (211)
Therefore the value o = 1/3 corresponds to
H=\g@aR~2A)— 3 (07pi; — 59°) - (212)

Analysis of case III



For any value of a other than 0 and %, we are forced to split Z, into two

secondary constraints: one is the diffeomorphism constraint #;, and the other
should be a constraint implying V;p = 0.** A moment’s thought reveals that
the most generic possibility is to have p = %T \/9, where 7 is a spatial constant.
The constraint p generates infinitesimal conformal transformations of the three-
metric and its momenta:

{(@lp),9i5} = 0950, {(elp),p7} = —pp”. (213)
The addition of the constant term 7 changes the generated transformations into
volume-preserving conformal transformations (VPCT’s). In fact 7 cannot be
just any number: by consistency (if the base manifold X is compact, as I am
assuming in this section) it is forced to be equal to (2 thirds of) the average of
p over the whole space:

T = gifdsxp
ErN

where the spatial average (-) is defined as

. [d3zp

Il
Wl

(p) s (214)

= 215
0= T (215)
for a scalar density p. Rewriting the constraint as
we recognize its volume-preserving nature:
abs (PlC) } = (¢ — ij s
{90, (£IO)} = (¢ = (£)) 935 (217)

{7, (0lC)} = (¢ — (L)) (P + 3(p) Vg 9.

The diffeo and conformal constraints close as a first-class system among them-
selves:

{(d€" M), (A [H;)} = ([d€, dx]"[Ha)
{(d€'[H:), (dplC)} = (£LagdelC)
{(dglC), (dplC)} = 0.

(218)

Therefore case ITI divides into three sub-cases:

44Taking V;p = 0 itself as a new constraint would be wrong, as it is highly reducible
(meaning that its components are not linearly independent) and we would be constraining
too many (three) degrees of freedom. An equivalent scalar constraint is sufficient.

IIl.a Our secondary constraint is first-class wrt itself and generates reg-
ular diffeomorphisms. The diffeomorphism constraint H? is propagated by
H:
{(dxIH), (d&*[Hi)} = (dx|£acH)
and therefore we end up with a first-class system, which is just ordinary
GR in the ADM formulation.

At this point we discovered our symmetries, so we can encode them back
into the action through best-matching, as we did at the beginning of Sec. 7:

(219)

AL = / d*z\/gVa R -2 A\/(g““gﬂ = 999") Dgi; D ,
Dg;; =dgi; + £Laegi; = dgij + Vid&; +V;dE

(220)

and the diffeo constraint becomes primary, a consequence of the free-
endpoint variation wrt the best-matching field d£°.

IIL.b Our secondary constraint is first-class wrt itself and generates

special diffeomorphisms. The propagation of the special diffeo constraint
S; gives

{(dx|H), (d¢'|S:)} ~ —3a(V/g(A — R — 3A/a)dx|V'dE,) .

This falls into case 3 of Dirac’s analysis (see Sec. 6.2): it is a ‘specifier’
equation for the smearing dy of the Hamiltonian constraint. The system is
second-class, and instead of each constraining two degrees of freedom per
space point (giving a total of four physical dofs), the constraints S; and H
gauge-fix each other and constrain the dofs only down to six per point in
total. The specifier equation is

(221)

Vila(A—R—-3A/a)dx] =0, = a(A—R-3A/a)dy = const.. (222)

The above equation is of the form Af(z) + g(z) f(z) 4+ const. = 0: it is an
elliptic equation of the kind we have encountered in the preceding section,
like the Lichnerowicz—York equation (197). It admits a unique solution for
each positive root of the equation g(z) f(x) + const. = 0 (considered as an
equation for f(z) at each point), and there is only a one-parameter family
of zeroes: in fact the constant represents an integration constant. One can
write the equation as (A — R — 3A/a)dx = ((A — R — 3A/a)dx) or, since
(Adx) =0,

Adx — (R+3A/a)dx + ((R+3A/a)dx) = 0. (223)

The last equation is homogeneous in dy and therefore the overall normal-
ization of dy is irrelevant. This last one-parameter ambiguity is related
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to the fact that we can reparametrize the solution dy(z) with any time-
dependent, spatially-constant function. It is the leftover reparametriza-
tion invariance of the solutions one obtains once H has been gauge-fixed.
If dx.. is the solution of the equation for dy, then the generator of this
reparametrization symmetry is

dAglobal - (dXsol|H) ~ 07 (224)

which is the last leftover of the Hamiltonian constraint that hasn’t been
gauge-fixed by S,.

We ended up with a theory with six Hamiltonian degrees of freedom per
point, those constrained by S, ~ 0, and a single, global Hamiltonian con-
straint dA, 1.1, which can only be calculated by solving a differential equa-
tion (223). This equation is invariant under the transformations generated
by 8&7

Gij = 9ij + £cgij — %gijvkﬁk (225)

P = 7+ £ep = EpIVCE — S p L£eg¥
(the proof of this is left as an exercise), and therefore the global Hamilto-
nian constraint is invariant as well.

Now, if we implement the special diffeomorphisms in the action through
best-matching:

dLsaiee :/d?’z\/g}vaR - 2A\/(9ikgﬂ — 294 g") Dgi; D ,

(226)
Dgi; =dgi; + Lacgij — 2 9 VdCF,
the above action can be rewritten as
dLsqiee :/d%\@m 9*99'Dgi; Dy, (227)
Dgi; =dgij — 39i;9" dgr + Lacgij — 2 9 Vid(",
and the relation between momenta and velocities, p¥ = %(gikgﬂ -

3979")(dgij + £acgij), is not invertible. Therefore the momenta satisfy
an additional primary constraint: g;;p*”/ = 0. We are forced anyway to in-
clude conformal transformations: this case therefore reduces to a sub-case

of ITI.c, which I now discuss.

ITl.c We have to introduce two separate secondary constraints, the

diffeomorphism constraint #, and the volume-preserving conformal con-
straint C = p — (p) \/g. These constraints are first-class among themselves.

49

As in the last case, the propagation of C,

{(dx[#), (do[C)} = 2a(y/g(A — R —3A/a)dx

_ 3 (228)
— P pdy — 5 dxH[do — (do)).
gives a ‘specifier’ equation for dy,
2a(A—R—3A/a)dx — 12_§’1a (p)? dx = const. . (229)

This again is an elliptic equation and admits a unique solution. This
solution dy.., if used to smear the Hamiltonian constraint, (dx..|H), gives
the part of H that is first-class with respect to the corresponding conformal
constraint. This first-class part is a single residual global Hamiltonian
constraint

dAglobal = (dXsol H) ~0. (230)

This d A, .p. is invariant under VPCT’s (and diffeomorphisms), and there-
fore generates the dynamics in the reduced configuration space.

The theory we obtained satisfies the strong Mach—Poincaré principle in
the quotient of Superspace by VPCT’s. The quotient of Superspace by
ordinary conformal transformations is conformal superspace, which we also
call Shape Space S in analogy to the particle models:

S := Superspace/Sim , Gij ~ ggj iff 3 ¢ st ogi; = 64¢gz{j' (231)

The quotient of Superspace by VPCT is just’® the Cartesian product be-
tween S and the real positive line R*, representing the dof associated with
the total volume of space, V = [d3z,/g.

These results do not depend on the value of «, and therefore they hold
also if & = 0 or 1/3. The sub-cases III.a and ITI.b are included in this
one. The theory we are dealing with is (generalized) Shape Dynamics. I
call it generalized because proper SD refers just to the case « = 0. It is
not clear, at this point, whether the value of o has physical meaning. This
is because in the shape-dynamical description its value can be reabsorbed
into a rescaling of York time. Should it turn out that o has physical
meaning, then it would have to be considered as a dimensionless coupling
for Shape Dynamics. The chances then are that this coupling would run
under Renormalization Group Flow, and @ = 0 would presumably be the
IR value, where equivalence with General Relativity (and with it spacetime
covariance) emerges as a sort of accidental IR, symmetry. The o = 1/3
value might then be the UV limit.

45],0cally - one has to exclude degenerate metrics and have special care in the case of
metrics with conformal isometries



This table summarizes the different cases we have encountered:

Case Parameter values DOF’s Theory

I a=0 4-12 p.p. Carroll Relativity
11 y=20 0 Galilean Relativity
IIl.a a=0 4 p.p. General Relativity
IIL.b o= % 4 p.p.+ 2 global 777

ITl.c any 4 p.p. + 2 global  Shape Dynamics

I have reached the point at which I can finally introduce Shape Dynamics.
As Henneaux and Teitelboim state in their book [51], a second-class system
like that of case IIl.c can be seen as a gauge-fixing of a first-class system.
Doing this often requires enlargement of the phase space with further redundant
(constrained) degrees of freedom, and this is the case also in Shape Dynamics,
where it is necessary to introduce a scalar field ¢ and its conjugate momentum
. Then one modifies the Hamiltonian, diffeo and VPCT constraints:

o3

6vy

—3p9") (pij — 5p9ij) — (1 =) (p -9 (1 - 676‘2’) <p>)2

V9

—VgRe*? — \Jge?Ae? =0,
H =—=2Vpl +7Vio~0,  Q=r—4(p— ()9 ~0,
The above system is first-class. This theory is called the Linking Theory, and
it leads to SD as the following gauge-fixing: m ~ 0. That generates the set of
constraints we found in case IIL.a (for & = 0). A different gauge-fixing, namely
¢ =~ 0, gives instead a first-class system (General Relativity) by killing just the
modified VPCT constraint Q. I'll define from scratch, and more carefully, the
Linking Theory in Sec. 11 after some historical background.

Further reading: my paper with E. Anderson [40].
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Part IV

Shape Dynamics

10 Historical Interlude

In Sec. 11, I will present Shape Dynamics as the first-class extension in the
manner of Henneaux and Teitelboim [51] of the theory we studied in case III.c
of last Section, when o = 0. However, that’s not how SD was originally discov-
ered, which I now briefly recount before proceeding.

The stimulus came from Barbour’s desire to create a scale-invariant Machian
theory, first of particle dynamics and then dynamical geometry. The first step
was the derivation in 1999 of a particle-dynamics model (published in 2003 [43])
with dilatational best matching and the Newton gravitational potential Ve (of

degree —1) replaced by the potential I{H}/ 2VNew, where I, is the centre-of-mass
moment of inertia. The dilatational constraint D = )" mqr, -1, resulting from
the dilatational best matching commutes with this potential, and the resulting
theory defines geodesics on shape space. The strong Mach—Poincaré principle
is therefore satisfied.

Barbour and O Murchadha then extended the underlying ideas of this particle
model to dynamical geometry in [89] in 1999. This proposed and implemented
the idea that the refoliation invariance of GR should be replaced by invariance
under full three-dimensional conformal transformations. This led to a geodesic
theory on conformal superspace that satisfies the strong Mach—Poincaré princi-
ple and eliminates a perceived Machian defect of GR highlighted by York’s work
on its initial-value problem. He had shown that it could be solved by taking the
following initial data: a conformal equivalence class of 3-geometries, its vari-
ation, and a single real quantity (the value of York time or, as O Murchadha
showed [84], the spatial volume). The necessity for this additional degree of
freedom is quite puzzling. One could completely specify a solution of GR with
initial data on conformal superspace S (two degrees of freedom per point) if it
were not for this additional single global degree of freedom, which is not confor-
mally invariant. This puzzle is eliminated in the theory of [89], which was later
more fully developed in [43] and is based on a modified form of best matching
in which the action is not equivariant. With ¢ the best-matching field, it de-
pends not only on d¢, as in the original best-matching proposed by Barbour
and Bertotti and but also, in a decisive innnovation due to O Murchadha, on
¢. One has to vary independently wrt ¢ and d¢.

The work on this theory was interrupted by the successes of the Relativity
Without Relativity approach but then explored further by Barbour, Foster,



0 Murchadha, Anderson and Kelleher. However, it soon became clear that
although the theory had a good chance to reproduce the predictions of GR for
local subsystems of the Universe it would badly fail to explain cosmological
observations because in it the volume of the Universe must remain constant.
Interest was then concentrated on a theory invariant under volume-preserving
conformal transformations (VPCTs). Such transformations change the ratios
of the determinant g of the metric freely at different space points but leave
the total volume of space unchanged. It had already been conjectured in [89]
that such a theory would be observationally equivalent to GR, but progress was
slow until Foster found a neat and computationally covenient way to implement
VPCTs. The transformation takes the form

d(z) == ¢(x) — £ log (\/ge®?)

in which ¢ is subject to no restriction except ¢ > 0 and would imple-
ment an unrestricted conformal transformation were it not for the correction
f% log (/g e5%), which restores the total volume to the value it had before the
transformation implemented by the unrestricted first term. This device then
rapidly led to the papers [90, 91], which created a VPCT-invariant theory based
on the modified form of best matching employed in [89, 43].

gij = €*%gi; (232)

Because of the use of VPCTs, this meant that the reduced configuration
space of the theory is Conformal Superspace + Volume (CS+V), so that one
still has the curious extra (non-shape) degree of freedom, but the use of VPCTs,
as opposed to unrestricted conformal transformations led to a crucial result: it
patched a worrisome flaw in York’s method: When attributing a constant trace
(times /g) to the momentum:

gip? =g,

York did it in a particular conformal frame, which was not the one in which the
metric and the momenta satisfy the Hamiltonian constraint. But when mak-
ing connection to that frame, York assumed that the trace of the momentum
transforms like /g under confromal transformations, that is, he assumed the
York time 7 to be invariant! York did not give a satisfactory justification of
this assumption in his work. But [90] found a first-principles justification of
what the authors called ‘York scaling’: first, York’s ‘CMC’ condition should be
understood as the nonlocal expression:

9(x) {p) = Vg(x)

(233)

[ Pyply)
[ d3z\/g() ’

second, the conformal transformations to the frame in which the scalar con-
straint is satisfied should only be wvolume-preserving and implemented as in

gijp” (x) = (234)
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(232). They then have a nontrivial action on the canonical momenta:

P = et p = 31— ) gur™) Vg 7] | (235)
and one can verify that this transformation leaves the York time, written as
(p), invariant (left as an exercise). This was an important conceptual clarifi-
cation brought about by [90, 91]. However, the variational principle behind
the ‘non-equivariant best matching’ used in these papers was not adequately
explained and, moreover, did not lead to a genuine gauge theory of conformal
geometrodynamics but rather to a representation of GR in CMC gauge. It was
several years before the next step was taken. To this we now turn.

11 Shape Dynamics and the Linking Theory

In [92, 93], Gomes, Gryb and Koslowski formulated Shape Dynamics the way
we understand it now, and they sharpened the idea of intersecting constraint
surfaces with a global flow in the intersection which I illustrated in Fig. 4.
In the formulation of [92, 93] Shape Dynamics is founded on GR, and on the
realization that in the same phase space of ADM two first-class systems of
constraints coexist which are dual to each other in the sense that they represent
good gauge-fixings of each other. The proper treatment of this system in the
Hamiltonian language makes the mathematics of [92, 93] more solid than that
of [90, 91], however, from a foundational point of view, these papers lack the
self-contained logic which characterized the RWR approach: they relied on GR
as the construction principle for SD. It was for that reason that I introduced
SD with last section’s analysis, which first appeared in [40], in order to provide
the ‘missing link’ between the RWR approach and modern Shape Dynamics.

So let’s consider now the ‘Linking Theory’, which is the first-class extension
of the second-class system of case III.c, when a = 0.

The most elegant way to introduce the Linking Theory is to keep explicit
equivalence with GR at every stage. So we start with the ADM system:

1 ii
7-[2% (p]pij—%pQ) —V9R,

72Vjpij ~0.

(236)
H =

Then we trivially extend the phase space (the cotangent bundle to Riem(X))
with a scalar field ¢ and its conjugate momentum 7. We also add a further
constraint:

Q=7~0, (237)



which makes ¢ into a gauge degree of freedom. This constraint is trivially first-
class with respect to the other ones (236). So we have a first-class system which
has the same number of degrees of freedom as ADM gravity and is trivially
equivalent to it: ADM gravity can be recovered with the gauge fixing ¢ ~ 0.

Now we perform a canonical transformation with a type-2 generating func-
tional:

P [ % (g PV +0T1+ gyl - 1PV |

(238)
o(x) = p(x) — §log (\/ge*).
The transformation rules are
oF L . . B SF .
E - 64¢P” + %(eﬁﬁf) - 1)<64¢9klpkl>g\/§g” ) (51'[” = e4¢gij s
6F” . N GF (239)
_ 4¢  pij _ 4 . pij 6 -
(S(b H+4( gsz <6 gsz >g\/§€ )7 oIl ¢,
which translate into (g;;, ¢;p¥, 7) — (Gij, ®; P¥,1I), where
Pii — =49 1—¢b i Gi-ze‘w i s
P -0 SNVES L Gy=te
O=7m~4(p—(p)V9), P=¢.

Now express the Hamiltonian, diffeo and Q constraints in terms of the trans-
formed variables [this calculation is left as an exercise — don’t forget that the
covariant derivative of a tensor density of weight w = 1 is Vjp¥ = 9yp¥ +
Ii,pl + T, p" — T, p¥ and that the Christoffel symbols transform under con-
formal transformations g;; — ¢ as Fé — F’k+2(5’ Od+08'10;0— 91k 019)],
and obtain

e=6¢ i 1 ; 1 N 2 p?
L .4 _ 00 _ = _ 69 2_ £
Hy 7 (p pw+3\/§(1 e ><p>p 69(1 e ) (p) 2)
-9 (R 2 — 86(£A6¢;) ~0, (241)
Ho=—2e" [V —2(p— g (p) V'e] = 0
Qs =m—4(p—(p)V9) =0,
which are equivalent to (another exercise for the reader)
66 . —64
L= ij 1, t] o1 6¢>
H,; 7 (0" — 3p9"7) (Pij — 509i5) — 6\[ ( V9 (p >)
-9 (R 29 SeéAe‘g) ~0, (242)
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where we recognize the Lie derivative of the scalar field in the smeared version
of the diffeo constraint 7—[’ &) = [d3z ( U Legi; + 7T£5gb).

The equations of motion of the Linking Theory

Let’s find the equations of motion generated by the total Hamiltonian of the
Linking theory,

they are, after application of the constraints,

. e=6% N 1

mfﬂam—pMm+£ww+2‘7§*@m—ﬂ%ﬂ (244)
— (N e ) (B gy

7 == 4((p) = p) (67 — E/alp)g") + £ep + 5% /g (p)* N (245)

9N (\}gaikakj + +(p) a“) + 62¢\/§(%RN — AN — 2NA¢3) g¥
+e2? /g (viva ~ RN —ANV$Vi$ — 4VIGVIN + 2N vivqu)

. HolN
30 (7 = 2vatg) () + 4 (D) (65 1) Vg o).

where ¢/ = pil — 1 pg¥ is the traceless part of the momenta. The derivation
is again left as an exercise.

The GR gauge

General Relativity is obtained by the gauge fixing ¢ ~ 0, which is second-class
only with respect to Qg[¢, m; x):

{¢(2),(Qylp)} = plx) .

This fixes p &~ 0, which in turn eliminates ¢ and 7 from the theory, giving the
ADM constraints.

The SD gauge

(246)

Shape Dynamics follows from the gauge fixing 7 =

non-vanishing Poisson bracket*®
6(H4|N) 6(H4|N) 64(2)
- ~ € g(l’) ’
oo

0, which has a single

{(#Hy1N),

m(z)} = (247)

56(x)

46The Poisson bracket {(7{;\&), n(z)} =2V [(P -
surface: if m ~ 0 then qu ~ 0 implies p =~ (p) /g

(p) /9) &] vanishes on the gauge-fixing



where (after applying the constraint H4 ~ 0)

S(H|N i i ' D e
HylN) G e [56NAe¢+8A(e¢N)—2N(4Re¢+e5¢<p>2)],

5¢(x)

Define now the conformal Laplacian O = 8 A — R, which is covariant under
conformal transformations, in the sense that if go, = €**gap, Of = e 42O (e f),

(248)

so that when it is applied to (f e‘l;) for any scalar f it is invariant under the
transformations generated by Q 4 We can then rewrite the expression above as
follows

B(HIN)

6o (x)
which is an explicitly conformally-invariant expression. This is the Lapse Fizing
Equation. It can be solved for N and admits a one-parameter set of solutions, all
related by a constant rescaling. Let’s call a solution N,,,. Then H, = (H$|Nsol)
is the part of the Hamiltonian constraint that is first-class with respect to the
gauge fixing m and therefore survives it.

ge? [7N O e® + O(e?N) — 2 N65‘Z’<p>2} . (249)

The general solution of Eq. (247) consists of a linear combination of the two
solutions Ny, Ny of the homogeneous equation (248) plus a particular solution
Ny of the following nonhomogeneous equation:

O(H;|N 5
M = %@ Jg(z). (250)
6¢(x)
The complete solution is then
N,y =c1 N1 +ca Ny +w Ny, (251)

where ¢; and ¢y are spatial (but not necessarily temporal) constants, and w is

defined as
S(H;|N
w = M . (252)
o¢
Plugging the above solution into (247), we get
[ 1N (@)} = w [1 = (9 g) | 04) (o). (253)

This is a secondary constraint, for which w plays the role of a Lagrange multi-
plier. We can write this constraint as

Hglz/dg’x\/ﬁ(eﬁé—l) ~0.

The above constraint is not trivial: in the constraints of the Linking Theory
there is nothing ensuring that ¢ is actually volume-preserving. If one were to

(254)
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solve the constraint H 6~ 0 for (;Aﬁ, the solution dg[g,p; x) would not in general

be volume-preserving. Since H P 0 completely fixes gZ;, the condition that
[d3z /g (66(;; - 1) = 0 must be considered to be an equation for g;;, p*/. We

have therefore identified the leftover global constraint. In Eq. (254), (;AS must
be considered as the solution ¢[g, p; z) of the LY equation (242), and Eq. (254)
must be treated as a constraint for the metric and metric momenta. It is obvious
that H,, commutes with the conformal constraint Q e

So, reducing phase space by integrating away ¢ and 7, the final set of con-
straints we get is

Alp = (P) V9) »

(255)
where €5%19:7%) is the solution of the LY equation. We recognise here
the volume-preserving conformal constraint Q together with a conformally-
invariant global Hamiltonian constraint H, that generates the evolution and
is a nonlocal functional of the dynamical degrees of freedom g;; and p”. The
proof that H, is both conformally and diffeo-invariant is left as an exercise,
and it implies that the above system is first-class.

Mo = [ g (307 1) = 2V Q=

11.1 The degrees of freedom of Shape Dynamics

As T said in Sec. 9, the reduced configuration space of SD can be clearly iden-
tified: it is the quotient of Superspace by volume-preserving conformal trans-
formations, that is S x RT, conformal superspace plus volume. SD has the
structure of a theory that satisfies the strong form of the Mach-Poincaré prin-
ciple on S x R*. It satisfies the strong and not the weak form of this principle
because of the reparametrization constraint H,,: one needs just a point and a
direction in S x RT: we only need the increment in S, not the one in R* to
determine the dynamical orbit — thanks to H,,.

This state of things might look a bit unnatural: there is just a single, global
degree of freedom that does not belong to S and yet is necessary for the dy-
namics. York, noticing this fact, wrote [79]:

The picture of dynamics that emerges is of the time-dependent geom-
etry of shape (‘transverse modes’) interacting with the changing scale
of space (‘longitudinal mode’).

With ‘transverse modes’ he referred to the conformally-invariant degrees of
freedom. Notice the singular in ‘scale of space’ and ‘longitudinal mode’: he
didn’t refer to the local scales y/g(x) but to the single, global one V.



But the reparametrization invariance of SD, expressed by the global con-
straint #,,, suggests that this ‘heterogeneous’ degree of freedom V' is not as
physical as the conformally invariant ones living in S. The other ingredient to
understand what’s going on here is due to N. O Murchadha and J. Barbour, who
noticed [94] that in the initial value problem, the choice of the initial volume V'
is purely conventional: it is just a matter of units of lengths. There is an ‘acci-
dental” symmetry in the equations of Shape Dynamics which implies that V' and
the York time 7 are not genuine physical degrees of freedom. We call this sym-
metry dynamical similarity, by analogy with a similar symmetry in Newtonian
gravity [9, 14]. This symmetry can be expressed as (pir, 7) — (a*pir, a™27),
where prZ; is the transverse-traceless part of the momenta, « is a constant (in
space and time) and all the other dynamical degrees of freedom are left in-
variant. The transformation I wrote connects a solution in S x RT to another
solution, but if we project these solutions down to S they both project to the
same curve. The two solutions are just related by a change of length units,
which cannot have physical significance.

So the punchline is: if, justified by the consideration that a single global unit
of length is unphysical, we project the solutions down to S, we end up with a
theory satisfying the weak Poincaré principle in S.

11.2 The solution to the Problem of Time in SD

In [9] J. Barbour, T. Koslowski and I noticed how Shape Dynamics motivates
a simple solution of the notorious problem of time of Quantum Gravity, men-
tioned in Appendix A. The problem of time in GR consists of two levels: first
there is the problem of many-fingered time, discussed at the end of Sec. 7.
For each choice of the lapse function N(z,t) one obtains a solution of ADM
gravity which is differently represented in Superspace but corresponds to the
same spacetime, just foliated in another way. This is part of the reason why,
upon naive quantization, one obtains a Wheeler-DeWitt equation that is time-
independent (static) (see Sec. A.2). This problem is absent in SD because
the refoliation ambiguity is removed by the VPCT constraint: SD is compat-
ible with only one particular foliation of spacetime, that with constant trace
of p. However the theory is still reparametrization-invariant, even within
that particular foliation. Reparametrization-invariant theories have vanishing
quantum Hamiltonians, and their quantization gives a static wavefunction(-al)
which does not evolve. One strategy to circumvent this issue which has at-
tracted interest in the literature is to accept that the Universe is described by
a static wavefunctional and claim that our perception of time is the result of
two factors: the wavefunctional being peaked around some semiclassical, high
quantum number state, and us having access only to partial information about
it [95]. Then the result of our measurements are comparisons of expectation
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values of partial observables, and these evolve only with respect to each other,
in a limited sense. To understand this, imagine a 2d quantum harmonic os-
cillator described through a Hamiltonian constraint like those we encountered
in Sec. 6. And imagine that the energy constant F in the Hamiltonian con-
straint H = T —V — E ~ 0 is equal to the energy of some high quantum
number state, %h(nl + ng) with n; and ng large enough. Then the solution of
the time-independent Schrédinger equation looks like Fig. 18: a volcano-shaped
Probability Density Function. One can, within a certain interval, use one of
the two oscillators as an ‘internal clock’ with respect to which the wavefunction
of the other oscillator is seen to evolve. This can be kept up as long as the
chosen clock evolves monotonically: as soon as its value approaches a turning
point where it inverts its motion, this description becomes untenable. Then a
‘grasshopper’ strategy is adopted, in which one jumps from one internal clock
to the other, exploiting the intervals in which they evolve monotonically. This
strategy can be called Tempus Post Quantum, in the sense that one seeks a
physical definition of time in the observables of the Universe after quantizing.
There are two problems with this: first, nothing ensures that the wavefunc-
tion of the Universe will ‘oblige’, and get into a semiclassical state. One would
like to have a mechanism for which this happens.*” Second, the ‘grasshopper’

47We think that our approach provides such a mechanism: read below and ref. [15].

Figure 18: Probability density function for an eigenstate of the 2d quantum
harmonic oscillator with sufficiently high quantum numbers. The horizontal
axes represent the two oscillator coordinates. One can ‘cut’ the wavefunction
along one axis, and obtain a marginal probability distribution for the other
variable. Changing the location of the cut, one obtains a ‘time evolution’ for the
marginal distribution. However, the total probability is not conserved by this
evolution. Moreover the evolution cannot be continued indefinitely because,
sooner or later, near a ‘turning point’ for the variable that is being used as
internal clock, this interpretation will break down altogether (figure concept:
[95]).



strategy is problematic. As soon as one uses an internal clock, even far from
the ‘turning points’, there will be violations of unitarity: one can easily see,
for example, that in Fig. 18 the area of the ‘cross-section’ of the PDF is not
conserved.

The strategy we adopted in [9] is the opposite: ‘ Tempus Ante Quantum’. If
we identify our ‘internal clock’ before quantizing, we will have a time-dependent
Schrédinger equation. This is a desirable situation, but the problem with it is
that it is not clear what should provide a good universal internal clock. It should
be a quantity that grows monotonically in every solution (no ‘turning points’)
and depends equally on every different part of space, in accordance with some
measure). A priori, the search for such a quantity might look as hopeless as
Kuchar’s search for ‘unicorns’ [69]. The advance that Shape Dynamics intro-
duces is to single out such variable: I'm talking about 7 = % (p), the York time.
In addition to the good properties for a universal internal time that I already
mentioned, York time is geometrically distinguished: it’s the only non-shape
degree of freedom that plays a dynamical role in SD. 7 is clearly monotonic:
this can be seen by writing its equations of motion in the Linking Theory and
then applying all the constraints and the 7 ~ 0 gauge fixing [9]. To use it as
an internal clock at the classical level, one has to ‘deparametrize’ the theory.

Deparametrization: non-autonomous description on S

Deparametrization is a simple idea: take a reparametrization-invariant theory
with a Hamiltonian constraint H(qi,p', g2, p%,...) ~ 0. Say you want to use
the variable ¢, in the interval in which it’s monotonic, as an internal clock.
Then p', which is conjugate to ¢; and generates g;-translations, will play the
role of a ‘Hamiltonian’ that generates evolution in the ‘time’ g;. Then we have
to solve the Hamiltonian constraint wrt pi: p1 = f(q1,q2,p%, ...) to obtain

H(qr, f(a1,q2,0% -+ ), q2,0%, ... ) = 0. Then f(q1,q2,p?,...) will generate the
evolution of all the other variables, g2, p?,... with respect to ¢i:

dg; dp’

= 2 )4 = 2, 256
dCh {f(qlaQ27p ) )7(]z}a dql {f(q17QQ7p ; )7p}7 ( )
where 1 = 2,3, ....
The variable conjugate to York time is the volume V = f d3x\/§7
{r.V}=3{).V}=(vg) =1. (257)

Therefore to deparametrize SD with respect to 7, we have to solve the global
Hamiltonian constraint for V. The reparametrization constraint of SD is H,,
in Eq. (255):
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where g?)[gij,pkl,T;x) is the solution of the LY equation (242), written in the
form

65 y 3 S
: 7 (" = 5p9") (Pis = 5P9is) = gVGT* = /g (Re2?—efae?) =0,
(259)

Now notice that the LY equation is covariant under conformal transformations
of the form g;; — Agij, p7 — Ap¥, ¢ — ¢p—log X and 7 — 7, where A = \(z) >
0. Therefore \/56643[9” P7.75%) s fully conformally invariant: it cannot depend
on the volume V. Deparametrizing with respect to 7 is then immediate: the
solution of H,, ~ 0 for V is simply

V= / A fg 8 PNoia v o) (260)
and the Hamiltonian generating evolution in 7-time is (see [96], but essentially
the same Hamiltonian has been written by York)

Hy, = /dsx geG(z;[gij’pkl’T;$). (261)
The above Hamiltonian depends on 7, which we now take as the independent
variable. Hamilton’s equations are consequently not autonomous (meaning that
they depend explicitly on the independent variable) and they are not invari-
ant under 7-translations. This means that among the initial data needed to
specify a solution we have to include a value of 7. The initial-value problem is
completely specified by local shape initial data (a conformal equivalence class
and TT momenta) plus 7. However, one can rewrite this system as an equiv-
alent one which is autonomous, at the cost of having ‘friction’ terms which
make the equations of motion non-Hamiltonian [14]. The key to do this is to do
some dimensional analysis: initial data on shape space should be dimensionless,
however the metric momenta are dimensionful. One can obtain dimensionless
momenta and equations of motion by multiplying p* by an appropriate power of
7, and reparametrize 7 to log 7, but then the new momenta won’t satisfy Hamil-
ton’s equations (the difference will just be a dissipative term proportional to p*
in the equation for dp” /dlog 7). Using log 7 as independent variables allows us
only to describe half of each solution: the half in which 7 is positive. The other
half can be described as a different solution of the same dissipative system. So
each solution is split into two half at the instant when 7 = 0. This description
is suggestive: one can do the same in the Newtonian N-body problem, where
the role of 7 is played by the dilatational momentum D. The dissipative na-
ture of the equations of motion imply an irreversible growth of a scale-invariant
quantity (a function of shape space) which measures the degree of complexity
of the shape of the universe. This defines a previously unnoticed arrow of time



that points from the simplest and more homogeneous to the more complex and
clustered states. In [14] we conjectured that an analogous arrow of time can be
identified in geometrodynamics, and may be a better way to think about the
evolution of our Universe.

Construction of spacetime

A solution of Shape Dynamics is a curve in conformal superspace,
parametrized with York time 7. A way to represent it is witha conformal
gauge, for expample the unimodular gauge:

o -9
g’l] (1'775) - det g1/3 ’ (262)
from the tangent vector to the curve dg;d we can build CMC momenta as

i fmikeed i~ dgr
P = (5" - 357" (dT (263)

+ ££§kl> + 2757,
notice that, since g;; is unimodular, (g**g/' — 15 gk!) (% + £§§k1> is auto-
matically zero-trace. Then we can solve the diffeo constraint for g, P o)
and make p* transverse: V,;p" = 0 (as remarked in York, such an equation
for £" is elliptic and admits a unique solution on a compact manifold). At this
point we have everything that’s necessary to solve the Lichnerowicz—York equa-
tion and get a scale factor ¢[g;j, p”/; 7, x) which can be used to define a proper
Riemannian 3-metric as g;; = ot gij defining local scales (it is not unimodular).
Finally, we can take the last step of solving the Lapse-fixing equation and get
a lapse N[¢, Gi;j, p"; T, x), with which we can define a 4-dimensional Lorentzian
metric:
_N2 +¢4 gab ga gb ¢4~acfc
Juv = e e L . (264)
" Goe § " Gab
Notice that nothing ensures that det g,,, # 0. The above metric can be degen-
erate and won’t globally define, in general, a spacetime.

The emergence of rods and clocks

In [28] Einstein remarked, about his theory of Relativity:

It is striking that the theory (except for four-dimensional space)
introduces two kinds of physical things, i.e. (1) measuring rods and
clocks, (2) all other things, e.g., the electromagnetic field, material
point, etc. This, in a certain sense, is inconsistent; strictly speaking
measuring rods and clocks would have to be represented as solutions
of the basic equations... not, as it were, as theoretically self-sufficient
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entities. The procedure justifies itself, however, because it was clear
from the very beginning that the postulates of the theory are not strong
enough to deduce from them equations for physical events sufficiently
complete and sufficiently free from arbitrariness in order to base upon
such a foundation a theory of measuring rods and clocks. If one did not
wish to forego a physical interpretation of the coordinates in general
(something that, in itself, would be possible), it was better to permit
such inconsistency - with the obligation, however, of eliminating it at
a later stage of the theory.

The construction of a spacetime metric from a solution of SD I showed before is
a first step in the direction sought by Einstein:from scale-invariant and timeless
shape-dynamic first principles, one creates, as opposed to simply postulating, a
structure in which length and duration (proper time) are ‘there’ to be measured.

But this is only the first step. We must show how the basic equations of the
theory lead to the formation of structures which serve as rods and clocks that
measure the dynamically created lengths and durations. We know that this
happens in the actual Universe. Sufficiently isolated subsystems move along
the geodesics of this metric, and the proper time,

ds® = (¢ €67 — N?) dr? + 2&; da’ dr + ¢*§ij da'* da? (265)
turns out to be the time ticked along their worldline by natural clocks belonging
to sufficiently isolated and light subsystems, like for example the rotating Earth.
Isolated/light subsystems also provide natural rods, for example, rocks on the
surface of the Earth, as their sizes can be compared with each other.

The challenge of the “emergence of rods and clocks” program is to prove that,
for suitable operational definitions of rods and clocks from material systems(e.g.
isolated enough galaxies, which have both a characteristic size and a rotation
time), they will behave as is simply postulated in the spacetime description.
Namely, rods will stay mutually congruent when brought close to each other
and compared (apart from Lorentz contraction if they are in relative motion),
and clocks will all approximate proper time along their trajectories (which will
all be geodesics of the same spacetime metric). In brief, all good rods and clocks
will provide mutually consistent data that conspire to form a unique spacetime
manifold all observers will agree on.

If this gets well understood, then the cases in which it fails (e.g. black holes,
the early universe) will become particularly interesting, and we will have a
whole new perspective on them that would not be available if the existence of
spacetime is taken as the fundamental postulate. The point is that Shape Dy-
namics is capable of describing situations that cannot be described as a (single,



smooth) spacetime manifold, and these are likely to be very relevant for cos-
mology and astrophysics (not to speak of quantum gravity, where thespacetime
‘prejudice’ might have severely hampered progress).

12 Asymptotically flat Shape Dynamics

Shape Dynamics makes sense primarily as a description of a spatially closed
Universe. However, it gives interesting predictions also if applied to localized
subsystems. The simplest case is the asymptotically flat one, in which ¥ is
open and the inferred 4-metric tends to Minkowski’s metric at infinity. This is
supposed to model a small region of the Universe which is isolated by a vast
empty region. The falloff conditions at infinity should capture the effect of the
rest of the Universe on the local system: they provide a reference frame. The
falloff conditions for the fields that contribute to form the 4-metric are (see
Appendix A 4)

Gij — (57;3‘ + 0(7”71), pij — O(T72) ,

N —=1+0(1Y, & —00).

Now X is open. A noncompact space does not go along very well with CMC
foliations: the volume of space is not a well-defined concept (it is infinite), and
therefore the meaning of York time %(p), which would be its conjugate variable
in the compact case, is not clear. A consistent choice is to put %(p) to zero.
This foliation is called mazimal slicing. It makes sense as an approximation of
a localized region of both space and time, in a time interval so short that the

expansion of the Universe is negligible.

(266)

If (p) = 0 the canonical transformation that defines the Linking Theory is
much simpler: (g, p*) — (Gyj, P*), (¢, 7) — (@,1I), where
P =™ 10pid  Giyi=e? g,
b ! i (267)
M=r—dg,;p7, ®=0¢.

Now consider the ADM Hamiltonian and diffeo constraints and the Q constraint
for the upper-case variables (G;;, ®, P",1II) and express them in terms of the
lowercase ones:

1
H=—p"pje 5%~ /gRe*® — \/ge?Ae® =0,

V9 (268)
Hi:—QVjpij—l—?TV“qb%O, OQ=7m—4p=~0.
The lapse-fixing equation in this case is
VIe P (AN +2g7 Vig ViN) = 22 e N (ppi; — 5p°) =0, (269)

o7

while the equations of motion are (we exclude the Hamilton equations for 7 as
they are killed by the SD gauge-fixing 7 ~ 0)

: 2 4, N
9ij = 4pgij+£§gij+%8 M%Pz‘j, (270)
¢ = Led—p, (271)
PY= Aepl Lt = oo Ne °C2p" ! — 50" prig") (272)

+VINe2? (R -2V Vg +4Vie Vg — L R +2A¢g7)
~Vge?? (VIVIN —4VU VIN — AN g7) .

We have to assume some falloff conditions for all the fields in the Linking
theory. In order to preserve the asymptotic form of the metric variables and
obtain finite boundary terms, we are then forced to take the falloff conditions
for the additional degrees of freedom of the Linking Theory to be

p— O™, e? 5 1+0(r ™), T — O(r %), (273)

Boundary Hamiltonian

As shown in Appendix A.4, asymptotically flat ADM gravity requires a
boundary term to be included in the total Hamiltonian. H. Gomes showed
in [97] that an analogous boundary Hamiltonian is required in the Linking
Theory:

ESD:f/ Pz /g (2k —2ko +80,¢?) . (274)
ox

This Hamiltonian is conformally invariant.

12.1 The wormbhole solution

We now turn to the spherically symmetric case. As shown in Ref [4], the
assumption of spherical symmetry, together with asymptotically flat boundary
conditions, implies that the solution is static and depends only on a single
parameter. The proof requires several steps which I will now highlight.

Spherically symmetry implies that the 3-geometry is conformally flat.

A spherically symmetric 3-metric can be written as

ds? = h(r)dr? + k(r) (d6? +sin® 0 d¢?) , (275)

and, if h(r) and k(r) have compatible boundary conditions, one can al-

ways reparametrize r so that h(r)dr? — %dr2 and the metric (275) is



conformally related (through the conformal factor k(r)/r?) to the flat met-
ric. Another way of proving this is to explicitly calculate the Cotton tensor
Cije = ViRij — VR + i (ViR gir — ViRg;j) of the metric (275) and check
that it vanishes identically. Then the metric is locally conformally flat. So
we can write g;; = A7;;, where 1;; = diag(1,72,r?sin? ) is the flat metric
in spherical coordinates and A = A(r,t). Moreover, to be compatible with the
assumed boundary conditions, we must have A — 1+ O(r~1).

If the metric is conformally flat (it is always in the conformal class of the flat
metric), the shape momenta must vanish at all times, that is p¥ — %p g7 =0.

The Lichnerowicz—York and Lapse-fixing equations reduce to Pois-
son’s equation.

It is easy to prove that, due to their conformal covariance, can write the
Lichnerowicz—York and the lapse-fixing equation as equations for Q = le?.
Their form is

AQ=Q' +20 =0,
A(NQ) = (NQ)" + 2(QN)' =0,

(276)
(277)

where ' denotes the radial derivative. We have essentially the same equation
for Q and for QQN. Their solution is immediate:

Q=a+

c—l—%
. =—7F, (278)

this completely fixes the dependence of Q2 and N on the radial coordinates, but
leaves free their time-dependence in the form of a possible time-dependence of
the integration constants a, b, c and d.

The boundary conditions for Q are of course  — 1+ O(r~1), so they fix a
to 1. Analogously the boundary conditions for N fix ¢ to 1.

The equations of motion for g;; and qb together reduce to an equa-
tion for () alone, relating the shift to b and b.

Combining (270) and (272) we get
2N64¢pij
Vnes?

which does not depend on p anymore (of course not: we used the conformal
gauge freedom to use the flat metric 7;; as our reference metric). Now, using
gij = A\'n;; and Ae? = Q we end up with

£ (€%9i5) = £e (e*9i5) + (279)

2NQ4pij

4930771'3‘ = £§ (94771']‘) + W’

(280)
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which does not containt ¢ and A separately anymore. We can then take the
trace wrt % of both sides and use the constraint p ~ 0:

Q= Q7% Le (M) -

15 (281)

Now, if £ respects spherical symmetry then its expression in spherical coordi-
nates must be £* = §%,. £(r,t). Then the above equation turns into a differential
equation for ¢:

b=1(2L-2)¢-Lb+r)¢. (282)
whose solution is (k is a new integration constant)
4 r(bS+9b°r+45b*r2 —60b>r> log r—45b2r*—9br® —1r%) .
&(r,t) = g b — ( TS ) g, (283)
The traceless part of 4 (e'?g;;) kills ¢ and b.
Taking the traceless part of Eq.(280) we get
Q2
0ij = \/;N [£¢ ('ni5) — gmign™ £¢ (2nua)] (284)
which is computed to be
2
3 0 0
7"281119(94—1)5 N
- r 1 ’_
oy =" 0 0 (r¢'—¢),  (285)
0 0 —g

3(r2 sin? )

now, if we want to preserve spherical symmetry, the traceless momenta must
be zero at all times. This implies r £’ — & = 0 whose solution is £ = g7, where
q is another integration constant.

The condition { = gr, combined with (283), implies that ¢ = & = 0 (and
therefore £ = 0), and that b = 0, so that b is constant in time, and so is the
conformal factor:

(286)

The equations of motion for p¥/ imply that d = b.

Consider now Eq. (272), and impose that ¢ = 0. The equation can be
written as
1 1

(7“3 sin 9) 1
r2’ rQSiHQG} '

Zjij = (d_b) (b+7’)4

diag {—2, (287)



If we want to preserve the condition p*/ = 0, then, we need to have d = b =
const. This fixes also the lapse to be constant in time:

1-2% :

= b=0.

= , 288
142 (288)
The spacetime line element is that of an isotropic wormbhole.
Finally, we can construct a 4-dimensional line element by going to the gauge

¢ = 0, which selects the 3-metric g;; = e4¢’mj = (1 + %)4771-]-, and using the

lapse N:
ds? = — N2de? + 9ij da’ da?

(289)

2
1-2%
= — <1 - Z) de® + (1 + 2)4 (dr2 + 72 (d6? —|—sin29d¢2)) :

The line element we constructed possesses an inversion symmetry r — ?
around the sphere » = b. Outside of this sphere the line element is just that of
Schwarzschild spacetime in isotropic coordinates. Inside it is an ‘inverted’ copy
of it. The origin » = 0 is not a singularity like in Schwarzschild, it is instead a
‘point at infinity’ as it takes an infinite amount of proper time for any timelike
geodesic to reach it from any other point. For example, take a radial geodesic
parametrized by the radius ¢ = #(r),0 = 0,¢ = 0. In a small neighbourhood of
7 = 0 the geodesic equation reads

2t'(r) + 7t (r) + O(r*) = 0,

(290)

Figure 19: The 3-metric has an inversion symmetry around the sphere r = b,
and has two asymptotically flat regions. This diagram illustrates the topological
structure of the corresponding spatial manifold (suppressing one dimension):
two asymptotically flat regions glued together at the dashed line.
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and then the solution is, for small r, t(r) ~ ¢1 — c2/r (with co > b? otherwise
the geodesic is not timelike). The proper time elapsed from r =€ to r = R is:

! 1-2)? (aey? A =
dr (1+£) (6) —(1+37) N/ drTjOO. (291)

€

The above proves that » = 0 is an asymptotic region. The 4d Riemann tensor
vanishes as r — 0 (left as an exercise), and therefore » — 0 is an asymptotically
flat boundary region. What we have is two asymptotically flat regions glued
together at an ‘event horizon’ at r = b.



Part V

Appendices

A Arnowitt—Deser—Misner Gravity

A.1 The Arnowitt—Deser—Misner (ADM) formalism

To write GR in Hamiltonian form, we need a notion of time. Therefore assume
that spacetime M is globally hyperbolic, then choose a foliation by spacelike
hypersurfaces ¥;, where ¢ will be a monotonic label for the leaves.

Now consider on M a system of coordinates adapted to the foliation: on each
hypersurface ¥, introduce some coordinate system (x1,x2,x3). If it varies
smoothly between neighboring hypersurfaces, then (z1,xs,x3,t) constitutes a
well-behaved coordinate system on M. The theory of foliations tells us that in
such a coordinate system the 4-metric (4) g, (7,t) can be decomposed into the
induced metric on the leaves g;;(x,t) plus a scalar N(z,t), called the lapse, and
a three-vector N, : M — T'(3,), called the shift. Then

(4)900 =—-N?+ Gij N'N7, (4)90i =N; (4)gij = 9ij > (292)
and the inverse metric g™ (1) is
@Wg" = _1/N? @Y Z NiN?, @Y — i NN N (203)
Let n*(x,t) be a unit timelike 4-vector field, g,,n*n” = —1, normal to the
three-dimensional hypersurfaces. Its components are
n* = (1/N,—N'/N) . (294)

This equation clarifies the meaning of the lapse N and the shift N¢. The lapse
N(z,t) expresses the proper time elapsed between the point (z,t) € ¥; and
the point (2, + 6t) on the following infinitesimally close hypersurface ¥; s
towards which n* points. Starting from the point (2’,¢ + dt), one has to move
‘horizontally’, on the spatial hypersurface, by an amount N*(x’, ¢+ dt) to reach
the point with coordinates (z,t + dt) (see Fig. 20).

To decompose the Einstein-Hilbert action (plus cosmological constant A),

Sen = [ d*z/—Wyg ((4)R — QA) ,

(295)
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Figure 20: Graphical representation (in 2+1 dimensions) of the meaning of the
lapse and the shift.

into its spatial components according to the chosen foliation, we need an ex-
pression for the determinant of the 4-metric, which is readily obtained from

Eq. (293),
Vg =Nj. (296)

We also need the decomposition, named after Gauss and Codazzi (see [32] sec.
8.5a pag. 229), of the 4D Ricci scalar 4 R into the 3D intrinsic scalar curvature
R and the extrinsic curvature,

dgi;

dt )’

1 dgi; 1
— (fog = M)~
2N< NYis dt> oN

of the leaves (£ is the Lie derivative wrt the 3-vector field N*). We get

K = (viNJ— + VN, — (297)

WR=R+K;; KV - K? -2V, (Kn") — %VN’N. (298)
The Einstein-Hilbert action (295) then reads
Sen = /d4x\/§{N(R—2A+K¢j K'Y — K?) (299)
—2NV, (Kn"*)-2V;V'N} ,
where the next-to-last term is obviously a 4-divergence,
- 2/d4:c VINV, (Kn*) = =2 [ d*z/—®gV, (Kn") =0,  (300)



while the last term is a 3-divergence:

— 2/d4x gV;V'N = —2/dt /d?’xvi (VIN) =0. (301)

Thus the final form of the 34+1 decomposition of the Einstein—Hilbert action is

Spy = /d4x VIN (R—2A+ K K7 — K?) . (302)

Let’s write this in the Hamiltonian language. The coordinates are the 3-
metric g;;, the lapse N and the shift NV; (the same number of degrees of freedom,
10, as there were in the original 4-metric). The only time derivatives that appear
are those of g;;, through the extrinsic curvature (297), and in particular we have
no time derivatives of N and N;, which therefore are just Lagrange multipliers.

The momenta conjugate to g;; are

B Y o
p= e = VI (K g - KY)
ij

(303)

(notice the /g factor: p% is a symmetric tensor density of weight 1).

The canonical Hamiltonian is given by the Legendre transform Hapy =
J &z (p §ij — Lan) and (with some boundary terms discarded) is equivalent
to

Haou = / Px (NH+N;H) (304)
where (with the trace p = g;;p)
H- L <pl_jpij 1p2> +vg(2A—R)~0, (305)
NG 2
is called the Hamiltonian, or quadratic constraint, and
H = -2V;p7 ~0, (306)

is the diffeomorphism, or momentum constraint. The ADM Hamiltonian is a
linear combination of constraints with N and N; playing the role of Lagrange
multipliers. It therefore vanishes, and there is no preferred notion of time.
This is an expression of the reparametrization invariance of GR, and leads to
the ‘problem of time’.

Notice the minus sign of p?/2 in the kinetic term p;;p* — %pz of (305). Tt
is related to the Gauss—Codazzi equations, and has nothing to do with the
Lorentzian signature of spacetime. The Lorentzian signature can be read off
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the sign in front of R, which is negative, and would take the opposite sign if
spacetime were Euclidean.

A comment on the interpretation of the constraint (306). I said it generates
3-diffeomorphisms. In fact, if it is smeared with a vector field &;, (&|H') =
J A3z &;(z) H'(x) and the Poisson brackets with the metric are taken,

{9i5(2), (EH")} = Vi&j + V& = £egij - (307)
then the metric transforms as g;; — gi; + £¢g;;. The Lie derivative [32, 98] £,

is the way an infinitesimal diffeomorphism like ; = x; +&; acts on tensor fields
of any kind. See appendix B.3 for details.

Further reading: ADM’s review of their original papers [99], and the more
recent review [100]. Misner, Thorne, and Wheeler’s Gravitation [85], Frankel’s
book on the geometry of physics [32] and Schutz’s Geometrical Methods of
Mathematical Physics [59].

A.2 The Wheeler-DeWitt equation

The quantization of the ADM representation of Einstein’s theory can be un-
derstood — only formally — in the language of the Schrodinger functional
U : Riem — C, where Riem is the space of Riemannian three-metrics. The
ADM constraints (305) and (306) translate into operator equations on the wave
functional ¥[g]. The one associated with the quadratic constraint is called the
Wheeler-DeWitt equation and, ignoring operator ordering issues, is

i—R—&-2A.

— 308
59ij 09k ( )

N | 1
HY =0, HZ(Qikgjl_gijgkl>
g 2
This equation is the functional analogue of a time-independent Schrodinger
equation®® for the Hamiltonian H with eigenvalue 2A. The other equation is:

)

]

HU =0, (309)

which enforces invariance of the wave functional ¥[g] under diffeomorphisms.

48 As a differential equation, it is closer to a Klein-Gordon equation, being a hyperbolic
functional differential equation (due to the minus sign in the kinetic term), whereas in non-
relativistic quantum mechanics the time-independent Schrodinger equation is elliptic.



A.3 The Baierlein—Sharp—Wheeler action

In 1962 Baierlein, Sharp and Wheeler [101] found an action for GR which is
of Jacobi type, explicitly enforcing reparametrization invariance. Consider the
Einstein—Hilbert action in ADM Lagrangian variables (with the explicit metric
velocities g;; in place of the extrinsic curvature). The action has an interesting
dependence on the lapse N:

Sen = /d?’m dt /g [N(R—2A)+iIN"'T], (310)
where the kinetic term 7' is
ikl i dgij dgri
T = ik gl _ij kKl J =i _ £ . 311
(99" = 979" |~ — £x59is | |~ — £w9m (311)
Varying the action wrt N,

—INT?T+R-2A=0, (312)

we can solve the resulting equation for N,

T

N=25/— 313
2V R-2A" (313)

and, substituting last expression in the action, eliminate the lapse from it:

Spew = / Bz dt JgVR—2AVT. (314)

This is the BSW action. We got this action from ADM, let’s show that we can
do the converse. The canonical momenta are
oL

o= = 9B =28) ik i i @756,%
50, 7 (979" = g¥g") |~ — Lxgm ) -

(315)

3

As usual in Jacobi-type actions, there is a primary constraint involving the
momenta that comes from the square-root form of the action. In this case, the
constraint is just the ADM quadratic constraint (305).

The vector field N; appears without any time derivative, and is therefore a
Lagrange multiplier. This implies a primary constraint stating that the mo-
mentum conjugate to N; vanishes:

oL

— =0. 316
5N, (316)

PN =
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From the Euler-Lagrange equations for N,, we get a secondary constraint,
saying that the variation of the action with respect to N, vanishes. This is the
ADM diffeomorphism constraint:

oL
ON;

=2V,;p? =0. (317)

If we calculate the Hamiltonian, through a Legendre transformation, we get

Hgsw :/dgx (pij Gij — ‘CBSW)

3 T pii P —p2)2 (318)
=/d T~ —==+pY £59;; — V(R—2A T).
/ I\/E < m p Ngj ( )
If now we define N =,/ ﬁ and integrate by parts p7 £ 5g:;:
Hysw = Hapu = /dgﬁﬂ\/g (NH + N; ,Hl) , (319)

we see that the theory is equivalent to GR in the ADM formulation.

A.4 Asymptotically lat ADM
The ADM hamiltonian (304), which I reproduce here:
Hypn = /Ed?’ac (NH+NH')
does not generate Einstein’s equations if ¥ is not compact. In fact one has
to take into account the boundary terms I discarded in (300) and (301). To

calculate the necessary modifications to the Hamiltonian, we can vary (304)
and pay attention to each integration by parts

5HADM :/ d3.’E {AU 59” + Bij (5]9”}
by
+/ d®z /g Vi (Nkpij 89ij — 2N p* 89,5 — 2N, 5pjk)
> (320)
+/ Pz \/gV? (VN Sg;; — N V'ig;;)
b
+/ Bz /g V7 (N g" Visgi — ViN g 6gi) -
b

Instead of considering this problem in full generality, I will specialize to the
asymptotically flat case. The boundary conditions are these: the 4-metric has



to reduce to Schwarzschild at spatial infinity, which in Cartesian coordinates
reads

m m T;T;

2 _ _ 2 o 7
ds 7—00 (1 871'7") dt + (5” + 8 7“3
Therefore the spatial metric in a generic spacelike hypersurface goes to the

Euclidean one like g;; 2. The lapse

) dridz’ +O(r~2).  (321)

— 8;5 ~ r~ 1, and its derivatives g;;r ~ 772
and the shift can be read off (292) and go like N — 1 ~ r~! and N* ~ r~L.
Their derivatives will go like N; ~ =2 and N° g~ r~2. The momenta, defined
as (303) and (297), have to go like p”/ ~ r=2. Now, considering the boundary
terms in (320), the only ones that contribute are those that go like 7~2, because
the surface integrals go like 72. The only compatible terms belong to the last
two lines, which contribute with the following leading order:

o’ (g" 0,091 — D 5955) = —0Egi;] ,
(o)

(322)
Elgi;) 2/ 4?07 (96" Okgis — 96'0j9m1)
)
where géj is the flat metric on the boundary (6% in Cartesian coordinates). We
have found a local boundary integral that can be added to the ADM Hamilto-
nian to give a well-defined variational principle:
4] (HADM + E[QZJD = / dg‘r {AU 592']' + Bij 5Pij} . (323)
b
Remarkably, we end up with a generator of the dynamics which is not pure
constraint: it is a true Hamiltonian, which doesn’t vanish on the solutions of
the equations of motion. Rather it takes the value E[g;;], which depends on the
leading order of the metric at infinity. Moreover, E|g;;] is a conserved quantity:
in fact the equations of motion are exactly identical to the compact case where
Elgi;] = 0 (a boundary term does not affect the equations of motion), and
therefore H ,py; alone is conserved and always identical to zero on any solution.
Then, since the total Hamiltonian is conserved by definition (because it is time-
independent), the boundary term is conserved.

The boundary conditions we have considered for the shift (N* ~ r~1) are too
restrictive. In fact the most generic ones are N* ~ £ 4 r~! where ¢ is a vector
which is tangential to the boundary and &' ~ r because of Killing vectors at
infinity. The new contribution to the variation is

/ d?oy, (545G, — 26'p"%6 g5 — 28;6p7F)
a5

where the first term vanishes because &? is parallel to the boundary and therefore
d?0,€* = 0. The remaining terms can be written as a total variation

_ 20, (€1 5(pF g;:)) = — 25 (& pik)
2/82d e (6507 g.)) “/md L (&%)

(324)

(325)
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So we get the boundary terms

Blo.&l =2 [ dan (") (326)
)
which are such that the variational problem is well-posed:
§ (Haow + Elgi5] + Blgij. &) = / d®z {AY 6g;; + By; 6p” } . (327)
b

In the pure Schwarzschild case we have g;; = d;; + %wﬁ"? and therefore
Ok9ij = 5= ((L-k ;4 0k — 3 lif’f"% 0 0kgij = —g=+% and therefore (since

do? is parallel to z* and is normalized so that its integral on a sphere of radius
Ris 47 R?,
m

ESchw = -

dcosfBdp =m,
47 S2

(328)

the boundary energy coincides with the Schwarzschild mass.

B Other Appendices

B.1 The case for closed spacelike hypersurfaces

It is well known that on a compact space the total electric charge must be zero.
This is a consequence of the Gauss constraint: V - E = p. Defining a region
Q € ¥ with a well-defined boundary 02, and calling the total charge inside
that region Q(Q) = [, d*z\/gp, we can prove that Q(Q) = —Q(X \ Q) which
implies that the total charge in 3, Q(X) = Q(Q) + Q(X\ ) = 0. The proof
makes use of the Gauss law:

Q(Q):/d?’x gV-E= | do-E
¢ o =Q(2)=0.  (329)
Q(E\Q):/ d*z gV~E:—/ do - E
\Q a0

In the case of a 3-metric gqp with a Killing vector £,, defined by the Killing
equation £Legap = V& +Viéa = 0, we can prove that an analogous result holds
as a consequence of the diffeo constraint:

—2V,p7 = j', (330)
where 7% is the contribution to the diffeo constraint due to matter fields. For
example j© = —wVip for a scalar field and j' = EIV'A; — A'V;E7 for an



electromagnetic field. Now, the Killing equation and the diffeo constraint imply
that the projection of j* along the &; direction, j*&;, is a divergence:

—2V,(p78) = &

Therefore, by the same argument for electric charge, fz d3z % & = 0 on a closed
3. Depending on the isometries of g;;, the quantity j*&; might either represent
some components of the linear or angular momentum of matter. Therefore, if
the metric has isometries, one finds that the Machian constraints (vanishing to-
tal linear and angular momentum) arise just as a consequence of the closedness
of space.

(331)

This argument makes use of Killing vectors, but the generic solution is not
guaranteed to possess isometries. This is related to the fact that in the generic
case the gravitational field will carry some angular and linear momentum (for
example in the form of gravitational waves), and one cannot limit consideration
to the matter contribution. The way to properly take into account the gravita-
tional contribution requires a much more subtle treatment which I will not go
into here.

Assuming we have an analogous result for the generic case, the consequences
of the observation reported here are clear: a closed spatial manifold is Machian,
while manifolds with a boundary or open manifolds are subject to boundary
conditions that spoil the self-contained nature of the theory. They cannot
be descriptions of the whole Universe, because for example they admit the
presence of a nonzero angular momentum. They might be at most descriptions
of subsystems of the Universe, which do not take into account what is going on
outside. In the case of a compact manifold with a boundary this seems pretty
obvious, but in the noncompact case it is not. In fact the most popular choice
that theoreticians make of the spatial manifold and related boundary conditions
is asymptotically flat. This choice is particularly non-Machian, as it requires
one to specify the value of an external angular momentum and energy at infinity,
which are by necessity externally given and not fixed by the dynamical degrees
of freedom inside the Universe. Asymptotically flat spaces are still very useful
to describe isolated regions of space, but they shouldn’t be used as models for
the whole Universe!

B.2 Free-end-point variation

Let S be an action I wish to extremalize over a principal G-bundle, g be the
canonical coordinates (the particle coordinates, or the metric and matter fields)
and ¢ the compensating coordinates that move us on the fibre,

S = / s L(q, 4,6, 9) . (332)
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My aim is to extremalize the action given boundary values for the fields g at the
endpoints of the trial curve, ¢(s1) and ¢(s2), but I want to leave the endpoint
values of the compensating fields free, so that I actually just specify an initial
and final gauge orbit. Taking the variation of the action wrt ¢ and ¢, I am led
to the condition

52 oL d (oL oL
o= e i () oo o

Now, the action has to be stationary with respect to all variations d¢ around
the extremalizing trajectory ¢(¢). So it has to be stationary also under fixed-
endpoint variations {d¢ s.t. dp(s1) = d¢p(s2) = 0}. This implies that the
extremalizing trajectory has to satisfy the Euler-Lagrange equations

6L d (68

§¢  ds\s¢p/)

but the extremalizing trajectory must also make the action stationary, 65 = 0,
and therefore the only possibility is that it is at the same time such that

6| _ oL

0¢ls=s, 00

Both boundary terms must vanish because the action has to be stationary with
respect to variations with one fixed endpoint and one free endpoint as well.

EP)

(333)

S$=81

(334)

=0.

S§=82

(335)

B.3 Lie derivative

The Lie derivative is a map from any kind of tensor and a vector field to a
tensor of the same kind. Here I will only give the definition and some useful
properties.

The Lie derivative of a tensor with respect to a vector field £¢ is the directional
derivative in the direction of £¢. Associated with & there is a vector flow that
induces a one-parameter family of diffeomorphisms ¢s:

dos(z)?

ds &
Calling ¢; the pullback [32] of the diffeomorphism on tensor fields, we have that
0T (9s()
is the value of T;lll at ¢s(x) pulled back to the point x.

T
derivative of T} "™ wrt § at z is

( T (g (2)) — Thim <x>>

Then the Lie

£
3 Ji--In s—0

p (336)



It is clear then how the Lie derivative represents the action of an infinitesimal
diffeomorphism generated by the vector field £ on an arbitrary tensor field.

Coordinate expression

If TJZl ; is a m, n-tensor density of weight w, its Lie derivative with respect
to a vector field &; is

i k i1 b k i1...im
LTy m =0Ty +w o™ T 0"
*%ﬁﬂﬁﬂ$~f6€mﬁbk (337)
Op€ Tyl 5 + oo+ 05,8 T

Notice that, although not obvious at first sight, the expression on the right-
hand side is covariant; in fact we can replace all the partial derivatives d, with
covariant derivatives V., and the Christoffel symbols cancel:

LTy = VT +w Vi T
_ vkﬁ“ Tk AL kaim Tnk

~Jn
+ vjl gk TZI “im NI vjngk TZI lm

(338)

The Lie derivative obeys the Leibniz rule with respect to both the inner and
the tensor product, meaning that

il k1R 7 zm ky...kp
£e (6...Tj11‘..jn Slllu.ls ) o ££T . Jn S[lcll‘..l]: (339)
o T »555111.11.5
where ¢ denotes any combination of Kronecker deltas, as for example
5 6 . 5J3k 5]7

Unlike the covariant derivative, the Lie derivative does not depend on the
metric. For this reason, when one takes metric variations of expressions con-
taining the Lie derivative, the variation commutes with it:

d i1 kl 4 iy zm kl ko Q1. 0 kq..
o (Tiam £estri) = s T £eSal + T £ ( o Shihe )
Examples

The Lie derivative of the metric field is
Legi; = V& + V&, (340)

(note that the right-hand side depends on the metric, but only because the
metric appears in the first place on the left-hand side). As can be deduced
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from the expression (336), the Lie derivative respects also the symmetry of
the tensors it acts on. For example, its action on a covariant (meaning with
downstairs indices) symmetric tensor like the extrinsic curvature is
LKy = VK + Vieh Ky (341)
If the tensor is contravariant (meaning with upstairs indices) and a tensor den-
sity of weight w = 1 like the metric momentum, then its Lie derivative is
Vg pM — Vil p*

£ep'! = E°VpY + Uik pl — (342)

B.4 TT decomposition of tensors

Helmholtz Decomposition Theorem

Any vector field F on a 3-space ¥ (which we assume endowed with a Rieman-
nian metric g,p, even though it’s not necessary for the theorem) can be written
as the sum of a transverse F1 and longitudinal F,

F=F.+F., (343)
where V- F; =0 and V x F, = 0. The two parts can be written respectively
as the curl of a vector field @ and the divergence of a scalar field ¢:

=V x80, F,.=Vo¢. (344)
If ¥ is compact, or if it is noncompact but all the fields have appropriate fall-off
conditions at infinity, the two parts are mutually orthogonal with respect to
the natural global inner product between vector fields (this is where the metric
plays a role), as can be proved with an integration by parts:

(FT|FL):/d3x\/§FT'FL:/d3x gV x0-Vo

(345)
:—/d3x gV - (Vx0)p=0.

The decomposition can be made by solving the equation V- F = V - F, and
V xF =V x F; for ¢,

A$p=V F. (346)

This is Poisson’s equation for ¢ with source V -F, which is well-known to admit
a unique solution. Once the solution has been found, let’s call it V™2V - F, the
transverse part can be readily defined as Fr = F — V(V~2V - F).



This decomposition is unique modulo a harmonic part, i.e., a field which
solves the Laplace equation

F,=VA, AA=0. (347)
This equation admits only the zero solution on closed spaces, and the same holds
for simply connected noncompact spaces if vanishing boundary conditions are

chosen.
York’s conformally covariant decomposition of symmetric tensors

In close analogy to the Helmholtz decomposition theorem, symmetric tensors
admit a decomposition into a transverse-traceless (spin-2) part, a longitudinal
(spin-1) part, and a pure trace, scalar part.

XU = X¥ 4+ XV 4+ XU = X3 4+ (LY)9 + L X g¥, (348)
where X = ginij, and
(LY)" = VY7 4+ VY — 2 gl v,y * (349)

is the conformal Killing form of the vector field Y. It can be obtained as the
Lie derivative wrt Y of the unit-determinant part g~/ 3gij of the metric:

(LY)ij = ¢ £y (g7 gi5) .- (350)
We can solve for Y the transversality condition
Vi(LY)7 = V(X7 — £ X gY), (351)

on the left-hand side of which we have a linear second-order differential operator
acting on Y (the Ricci tensor comes from commuting the covariant derivatives:
[V, VIY7 = R';Y7),
Vi(LY)7 = (AY) = AY' + iV'V,;Y7 + R Y7 (352)
Here the operator Aw is strongly elliptic, as can be seen by studying its principal
symbol, that is, the matrix obtained by replacing each derivative by an arbitrary
variable 0; — z; and taking only the highest derivatives (second):
op(AL) = 6% 2Pz + 1775 (353)
If this matrix has positive determinant for any value of z;, the operator is
elliptic, and if its eigenvalues are always positive the operator is strongly elliptic.
Both conditions are realized: detop = § (2F2;)® and the eigenvalues are ¥z
with multiplicity 2 and %zkzk.
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The operator Ay, also has the property of being Hermitian with respect to
the natural global inner product between vectors, as can be seen with two
integrations by parts,

(Zi|(ALY))) = /d%\/gzi Vi (LY)¥ = —/d?’x gV, Z(LY )"
(354)
— [ @ VaY T L2)T = ((8.2)).

Now let’s come to the kernel of A, which represents the analogue of harmonic
fields in the Helmholtz decomposition. The equation for the kernel is

(AL = AL+ 2VIV;E + B¢ =0. (355)
On compact manifolds, or on noncompact manifolds but assuming that Y®
asymptotically approaches zero sufficiently fast, the above equation is equivalent

to the vanishing of (L&)%,

(LE)' = V' + Vg = 2 g7 Vigh = 0. (356)
This equation identifies conformal Killing vectors of the metric g;;, namely
vectors that generate infinitesimal diffeomorphisms which leave the metric in-

variant up to a conformal transformation,
¢ =3Vt

In an asymptotically flat space the conformal Killing vectors will not vanish at
infinity and cannot therefore be ignored. One can, however, relax the boundary
conditions for the Y® field, requiring that it approach one of the conformal
Killing vectors of Euclidean space. Then Eq. (351) has a unique solution.
These boundary conditions are useful for defining the total momentum of the
gravitational field in the asymptotically flat case [76]. In the closed case, the
good news is that the conformal Killing vectors are always by construction
orthogonal (according to the natural global inner product) to the source of
Eq. (351), namely the divergence of the traceless part V;(X% — %Xgij) of
X"

Legij = ¢ Gij » (357)

(GIV,(X7 = 3 Xg") =~ [ EayGVs6(0T - L X gY)
_ / P /g (Vi€ — L Ve i) X0 (358)
= %/d3$\/§(L§)in“ =0.

Since the source term in Eq. (351) is orthogonal to the kernel of the operator
A, this operator is invertible in the subspace to which V;(X% — %Xg”)



belongs. Equation (351) therefore admits a unique solution modulo conformal
Killing vectors, the addition of which does not change the TT-decomposition
of X% because X,’ is insensitive to them.

The three terms in the TT-decomposition are orthogonal to each other:

(Xor|X1) = —2(V;X20&) — 2(9i; X2 Vi) =0,
(Xrr|Xe) = 5(94, X741 X) =0, (359)

1
3
(Xe|Xw) = 3(gi; (LY)7|X) = 0.

One could further decompose the longitudinal part in the manner of
Helmholtz into a pure-spin one and a pure-scalar part, but this last decom-
position is not conformally covariant.

Conformal covariance of the decomposition

Make the conformal transformation

Gij = 0" 9ij gl =o¢""g" (360)
of the metric and assume that the transformation acts on a symmetric tensor
X as follows:

X = ¢~ 10X (361)
We will see a posteriori ¢~ !0 is the only scaling law that leads to conformal
covariance for a contravariant symmetric 2-tensor. This can be understood
by considering the fact that the metric momenta p*/ have to transform in the

opposite way to the metric:
7= ¢ 4pii
But p¥ is a tensor density, and to have a proper tensor we have to divide it by

/9, which transforms as ¢°. This explains where the ¢~'? factor comes from.
More precisely, the exponent of (361) is fixed by the form of (348).

(362)

Let’s now consider the transformation of the TT-part of X% . We first recall
its definition by (348),

X =X =3 X g7+ (LY)7 = (XY — $ X g¥) + (LY)", (363)
and we then remember that
(LY)7 = g* gl g 3 Ly (g7 P gr) = ¢* g™ ' 5" P £y (57 Pg) . (364)

Let us next denote by (LY)¥ the conformal Killing form calculated with Jijs

Xih =XV = 3 X gV) + ¢*(LY)". (365)
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X;jT through
Y)Y,

We now show that this tensor is TT with respect to the transformed metric

gi;- The tracelessness is trivial because every traceless tensor wrt g;; is traceless

also wrt g;;, and the two terms that comprise X are separately traceless. The

transversality is less obvious. It needs to hold Wlth respect to the transformed

covariant derivative V;, which includes the transformed connection

After these preparations, we define the transformation of

Xig =7 "X = (XY - 3 Xg7) +¢7°(L (366)

iy, =T, +2(6';0, log ¢ + 6'10; log ¢ — gjxg" dylog ¢) . (367)
Let’s take the covariant deriative wrt g;; of X%,
ViXih = V(XY — 5 X g7) + V; [97°(LY)"]
=V, [o71 (X“ §X g7+ (LY)9)] = V(¢ 'W) (368)
e (v W9~ 10W¥ 9, log ¢ + ATy, W + AT, Wik> ,

where T called W¥ = X% — £ X g¥ + (LY)" and AT = 2(6';Vilog ¢ +
6, Vjlog ¢ — gjxVilog ¢). An explicit calculation shows immediately that

10W* 9;log ¢ — AT}, W — ALY, W = 2 g, W% 9'log ¢, (369)

but W# is traceless and the above expression vanishes. Thus, we have proved

that
d)flO [v

and if X2 was TT wrt g;; then V(X —% X g")+V;(LY)¥ = 0 and V,; X =
0, that is, Xy is TT with respect to Gij-

VX4, = J(XY -1 X g7+ V,(LY)T] (370)

It is easy to see that the above statement implies also its converse because
the original metric can be obtained from the barred one through the inverse
conformal transformation g;; = ¢L gi; = ¢~*g;;. This exists because, by
definition, ¢ # 0, and therefore the whole argument can be used to show that
if X% is TT wrt Gij thenXTT is TT wrt g;;.

We conclude that, given a symmetric 2-tensor X% on a manifold ¥ equipped
with the metric g;;, it can be decomposed as (348). On a conformally related
manifold 3 with the metric g;; = ¢4gij, the tensor X% = ¢~ '0X% decomposes
in the same way:

X4 =X 4 X9 4+ X9, (371)

where Xt = 710X, X7 = ¢710X7 and XY = ¢~10X¥J, with the vector
Y? that determines the longitudinal part being the same for X’ and X/’.
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